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We address with fluid-dynamical simulations using direct numerical techniques three
important and fundamental questions with respect to fluid flow within the mouse node and
left–right development. First, we consider the differences between what is experimentally
observed when assessing cilium-induced fluid flow in the mouse node in vitro and what is to
be expected in vivo. The distinction is that in vivo, the leftward fluid flow across the mouse
node takes place within a closed system and is consequently confined, while this is no longer
the case on removing the covering membrane and immersing the embryo in a fluid-filled
volume to perform in vitro experiments. Although there is a central leftward flow in both
instances, we elucidate some important distinctions about the closed in vivo situation.
Second, we model the movement of the newly discovered nodal vesicular parcels (NVPs)
across the node and demonstrate that the flow should indeed cause them to accumulate on
the left side of the node, as required for symmetry breaking. Third, we discuss the rupture of
NVPs. Based on the biophysical properties of these vesicles, we argue that the morphogens
they contain are likely not delivered to the surrounding cells by their mechanical rupture
either by the cilia or the flow, and rupture must instead be induced by an as yet undiscovered
biochemical mechanism.

Keywords: left–right development; biophysical fluid dynamics; nodal flow; asymmetry
1. INTRODUCTION

The determination of left and right in the body plan, in
the mouse at least, and possibly in other vertebrate
embryos (Essner et al. 2002), appears to originate with
a fluid flow (Nonaka et al. 1998). The extraembryonic
fluid filling the node, a closed depression on the ventral
surface of the embryo (figure 1), is set into motion by
motile cilia that bend like ropes being whirled in circles.
In vitro observations with bead-tracking experiments
show a strong leftward current across the node in wild-
type mouse embryos that develop normal situs (Nonaka
et al. 1998), while an artificial reversal of this current
leads to an embryo developing situs inversus (Nonaka
et al. 2002). Recently, we demonstrated with fluid-
dynamical simulations (Cartwright et al. 2004) that
tilted cilia would produce the required directional flow.
In an infinite system—in the absence of walls—there is
a flow above the cilia in one direction and another in the
opposite direction below them. Upon putting such a set
of cilia inclined towards the posterior into a closed
system representing the in vivo node, there is a leftward
orrespondence (idan@email.arizona.edu).
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flow across the middle of the node together with
rightward recirculation of fluid around the walls.
From this, we anticipated that the nodal cilia should
be tilted towards the posterior. This prediction has now
been confirmed by new experimental observations of
the node (Okada et al. 2005; Nonaka et al. 2005).
However, important points remain to be understood.
In the experimental work, Reichert’s membrane cover-
ing the node is of necessity removed. To what degree
does the observable in vitro flow with the membrane
removed differ from the unobservable in vivo flow with
it in place? Is it for this reason that the return flow
predicted in our earlier work on the in vivo case has not
been observed experimentally in the in vitro flow?

Furthermore, the latest experimental observations
of the node (Tanaka et al. 2005) show that the
mechanism by which the symmetry breaking, provided
by the flow direction, is passed on to the rest of the
embryo is rather different from the hypotheses postu-
lated previously. Some had argued for mechanical
sensing of the flow; while in our earlier work we had
indicated the physical difficulties with mechanical
sensing and had modelled chemical sensing with a
diffusible morphogen in the nodal flow. But rather than
J. R. Soc. Interface (2007) 4, 49–55
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Figure 1. Sketch of a vertical slice across the node viewed from the ventral side showing the monocilia producing the leftward flow
that transports NVPs. The mouse node is some 50 mm across by 10 mm depth. Note that, following the convention in this field, in
this and all subsequent vertical slices of the node shown here, the node is seen from the ventral side, and thus the left side of the
embryo is on the viewer’s right.

Figure 2. General three-dimensional views of particle trajectories in simulated nodal flow: (a) the upper recirculation within the
in vivo node and (b) the equivalent situation in vitro.
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this type of direct interaction of a morphogen with the
extraembryonic fluid in the node, new observations
have shown that the nodal flow in fact transports small
particles, termed nodal vesicular parcels (NVPs),
across the node (Tanaka et al. 2005). These are natural
passive tracers, some 0.3–5 mm in diameter, that
contain morphogens—sonic hedgehog and retinoic
acid—within a lipid membrane. When launched, these
pass intact through the fluid flow, but apparently break
upon impact with the walls of the node, to deliver the
morphogens they contain. Here, we take these new
observations into account indirect numerical simulations
of the hydrodynamics of the node; furthermore, we
demonstrate that there must be a hitherto undiscovered
biochemical mechanism for the rupture of these NVPs.
2. METHODS

We represent the mouse node by a fluid-filled box of
dimensions 50!50!10 mm, either completely closed as
in vivo or open at the top and placed within a much
larger fluid-filled volume to model the in vitro bead-
tracking experiments, which take place in such an
experimental set-up. We solve the steady-state
Navier–Stokes equations for the nodal fluid set into
motion by the cones that form the surfaces of revolution
of the cilia. These (length 3 mm; half-angle 458; rotation
frequency 10 Hz) rotate clockwise when viewed from
above, inclined at an angle aZ258 to the posterior. The
ciliary Reynolds number is of the order of 10K4.
J. R. Soc. Interface (2007)
The nodal flow is thus in the so-called creeping-
flow regime. We used this fact in our previous work
(Cartwright et al. 2004) to model analytically each
cilium by an exact solution of the Stokes equation.
However, in the direct numerical simulations presented
here, we have in fact solved the full Navier–Stokes
equations. We solve the equations numerically using a
finite-element method on a tetrahedral mesh. We use a
mesh of 100 by 100 points in the x and y directions, and
40–50 points in the z direction. The cilia are modelled as
the cones that are their surfaces of revolution—the
surface generated by revolving a cilium about its
rotation axis. The spatial mesh has 10–20 points in the
vertical direction on each cilium, and a similar number
about its circumference.Weminimized numerical errors
by optimizing the computational mesh, numerical
scheme and convergence criteria. Our results did not
change on increasing the fineness of the mesh.

In our simulations, we have implicitly idealized the
node in various ways. In the first place, we have
considered the node as a box. Of course, the node does
not have sharp edges and corners, but in fluid-
dynamical terms this difference is not significant. The
pertinent fluid-dynamical variable, the Reynolds num-
ber in the node—the ratio of inertial to viscous
forces—has been set to be the same in the simulations
as in the real mouse node, and we can be confident that
the fluid flow is likewise the same.

We have idealized the NVPs as passive tracers that
faithfully follow the flow. This means that we can
neglect any influence of the NVPs upon the nodal

http://rsif.royalsocietypublishing.org/


Figure 3. Horizontal slices of the velocity field in the node: on the left in vivo and on the right in vitro. (a) The upper slices are at
8 mm, near the top of the node; (b) the middle slices are at 5 mm, in the centre of the node; and (c) the lower slices are at 0.2 mm,
next to the floor of the node. The cilia appear in the upper slices just as a guide for the eye.
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flow, as well as any finite-size effect on the NVP
dynamics, and we assume them to move as
determined solely by the equation of motion of a
fluid parcel. This approach is valid as long as the
Stokes number of an NVP—the relaxation time of the
particle back onto the fluid trajectories compared to
the time-scale of the flow—is small enough and the
NVP density is close enough to the fluid medium
density (Babiano et al. 2000). One unknown is thus
the density of the NVPs; in the absence of further
data, we suppose them to be neutrally buoyant. The
NVPs will most probably be close to neutrally
buoyant. We can turn the question around by noting
J. R. Soc. Interface (2007)
that otherwise, if they were too light or too heavy,
they would be propelled by centripetal or centrifugal
forces to the middle or to the edges of the vortices in
the node. We do not observe this behaviour, and it
would make them of little use for their job of
transporting materials across the node. Small neu-
trally buoyant particles will faithfully follow a fluid
flow as long as certain conditions on the flow apply: it
should not deform fluid parcels to a greater extent;
contrariwise, particles will cease to follow pathlines of the
flow (Babiano et al. 2000). These conditions on what, in
dynamical terms, is thehyperbolicity of theflowprobably
break down precisely where the NVPs rupture.

http://rsif.royalsocietypublishing.org/
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3. RESULTS AND DISCUSSION

3.1. Nodal flow in vivo and in vitro

We present in figure 2 an overview of the circulation in
the in vivo and in vitro nodal flows. In both the in vivo
and in vitro node, there is a general leftward flow across
the centre of the node that corresponds well to that
observed in experiments (figures 3b and 4). In the
in vivo case, this fluid recirculates within the node
following the walls (figures 2a and 4a). So the general
scheme is of two vortices, one in each of the upper and
the lower halves of the node; fluid flows to the left across
the middle and returns to the right along the ceiling
(figure 3a) and floor of the node (figure 3c). The flow in
the lower vortex is more complex than in the upper
vortex owing to the presence of the cilia. While there is
a general recirculation across the floor of the node, some
pathlines representing fluid parcels become trapped in
the vicinity of a cilium and may spend some time there
before rejoining the general circulation. In contrast, in
the in vitro case, the opening of the node with the
removal of its covering membrane completely elimin-
ates the upper recirculatory vortex within the node
(figures 3a and 4b). The fluid is now free to enter and
leave the node to flow around a much larger surround-
ing volume, so that the upper recirculation occurs
around the whole of the box containing the node
(figure 2b). As the fluid volume is larger, velocities are
lower, and the rightward return current occurs far
beyond the limits of the node in a manner so diffuse that
it is almost imperceptible compared with the leftward
flow within the node (figure 4c). The strong leftward
current above the cilia is, as before, the most prominent
feature of the flow (figures 3b and 4b). The flow in the
lower half of the node, below the leftward current,
persists, but the general rightward component is
diminished compared with the recirculatory flow
around the individual cilia (figure 3c). Thus, while the
main feature of the nodal flow, the central leftward
current, is present in both in vivo and in vitro
conditions, there are significant differences in other
aspects of the two flows. This may explain why the
recirculation of fluid rightwards predicted in the in vivo
case has not been observed in vitro, and should make
one wary of using in vitro bead-tracking experiments
as the sole basis for understanding the in vivo flow;
they ought to be interpreted together with a know-
ledge of the differences between the in vivo and the
in vitro flows.

While the mouse is the animal in which the fluid-
dynamical aspects of left–right symmetry breaking have
been most studied, similar ciliated structures are present
inmany other vertebrate embryos (Essner et al. 2002).At
least in the case of the zebrafish, the fluid flow in the
equivalent structure to the node, Kupffer’s vesicle, is
also caused by the same circular movements of the cilia
(Essner et al. 2005; Kramer-Zucker et al. 2005). As in the
mouse, the cilia are also seen to be tilted (Kramer-Zucker
et al. 2005), and so we should expect a similar general
circulation. Fluid flow in Kupffer’s vesicle should be
similar to the closed system represented by the in vivo
case in the mouse node; the experiments demonstrating
flow were carried out by the injection of beads
J. R. Soc. Interface (2007)
into Kupffer’s vesicle without removing its covering
membrane (Kramer-Zucker et al. 2005).
3.2. Nodal vesicular parcels as natural
passive scalars

Having understood the fluid dynamics of the in vivo and
in vitro flows,we now add theNVPs into ourmodel, with
the aim of understanding their transportation by the
flow. We compute the trajectories of the NVPs,
assuming them to be perfect passive tracers released at
random points above the floor of the node. This
simulates their experimentally observed origin as
vesicles are projected into the flow by microvilli and
released every 5–15 s (Tanaka et al. 2005). In our model,
again following the experimental observations, we
assume their breakage when they collide with a wall or
with a cilium. We can then collect the statistics
corresponding to some hours of nodal flow of the position
within the node at the moment of rupture of a large
number of NVPs; we present the results in the
histograms of figure 5. The outcome is similar for the
in vivo and the in vitro cases. Most of the NVPs are
transported leftwards across the node and collide with
the left wall or the cilia nearest to it. The smaller
intermediate peaks in the histograms indicate that few
are broken in other locations across the floor of the node
by interactions with the cilia there. The in vitro
histogram shows a somewhat smaller main peak on the
left side of the node than the in vivo case, although it is
clear that in both instances the majority of NVPs break
on the left side of the node. This means that no matter
where the NVPs are released by the microvilli and, in
particular, if they are released in a symmetric fashion
across the node, they will most probably break near the
left wall and deliver there their cargo of morphogens.

The results shown in figure 5 depend on the gross
features of the flow—primarily the existence of the
leftward flow across the tops of the cilia—and so as
figure 5 itself demonstrates, even on completely changing
the geometry by opening the flow, the results are not
vastly different because this leftward flow is preserved.
The other pertinent variable is the position of release of
the NVPs; they need to find their way into this leftward
flow. Again, figure 5 itself demonstrates that the results
are robust with regard to changes in the exact position of
release, since it shows statistics collected by releasing
NVPs at different points within the flow. The majority of
NVPs do get caught up in the leftward flow, while a few
are entrained into the vortices around each cilium and
collide at other points along the nodal floor.
3.3. Rupture of nodal vesicular parcels

A membrane will rupture if it is forced to stretch—to
increase its surface area—beyond a critical threshold.
Rupture generally occurs in biological membranes for a
critical applied stress, the lysis tension, at which point
the membrane surface area has been increased by some
2–5% (Boal 2002). A useful analogy to visualize how
this applies here is to imagine the NVPs containing
their cargo of morphogens as sacks of potatoes. The
sack—the membrane—is easily deformable without an

http://rsif.royalsocietypublishing.org/


Embryonic nodal flow and vesicular parcels J. H. E. Cartwright et al. 53

 on 11 November 2009rsif.royalsocietypublishing.orgDownloaded from 
increase in the surface area if the sack is loosely filled,
but on the other hand, if it is completely filled, any
attempt at deforming it leads to an increase in the
surface area, with the consequent possibility of break-
ing the sack, i.e. rupturing the membrane. We should
then consider two alternatives for the NVPs: either the
membrane is taut, so that the vesicle is maintained
approximately spherical, or it is slack, so that the
vesicle can deform from the state of sphericity
without breaking.

Images of NVPs attached to microvilli in the node
show these to be projecting out from the nodal surface
into the flow with an appending NVP (Tanaka et al.
2005). This presumably adheres to its microvillus by
electrostatic, van der Waals or hydration forces. The
microvillus could either actively release its NVP by
decreasing the adhesive forces, or else detachment
could occur with no input on the part of the microvillus,
if the NVP breaks away once the microvillus projects
far enough out into the flow so that the Stokes drag
given by the local flow velocity exceeds the adhesive
forces. It then circulates in the flow until it ruptures,
apparently upon impact with a cilium or with the node
wall, releasing its cargo of morphogens (sonic hedgehog
and retinoic acid (Tanaka et al. 2005)) held within the
membrane. The average Stokes drag force suffered by
the NVPs at the point of being released into the flow,
taking them to be spherical, is given by FDZ6pmUr,
where m is the viscosity of the fluid, U is the magnitude
of the nodal flow velocity and r is the radius of the NVP.
To obtain a conservative estimate, let us assume that
the viscosity of the extraembryonic fluid is not
dissimilar to that of water, mz1 mPa s, the average
vesicle radius is rz1 mm, and the average node flow
velocity is Uz4 mm sK1. This gives an average Stokes
drag of FDz8!10K14 N; this is a lower bound, as some
of the above terms could be an order of magnitude
larger. Since the NVP is attached to the microvillus via
its covering membrane, FD corresponds to the force on
the membrane at the moment of detachment. This is
the force if the vesicle remains spherical, while if the
membrane is slack, the vesicle will deform itself to
minimize drag (Abkarian & Viallat 2005) and this force
can be in an order of magnitude less. What about the
viscous forces on a vesicle within the flow; can they
rupture the vesicle? These, in the most extreme case,
can be greater than the Stokes drag; a sphere at the
centre of an X-shaped flow, where fluid approaches from
two opposite directions, squeezing the sphere, and
recedes in the other two, stretching it, experiences a
force tending to distort it from the sphericity of
FVZ32pmVr, where V is the flow velocity at the
position of the surface of the sphere if the sphere were
not present (Taylor 1932). However, in the present
instance this force is unlikely to exceed the Stokes drag
at the moment of detachment because away from the
wall, where flow velocities are large, the shear is very
much lesser than this, while close to the wall, where
shear flow, albeit not the extreme type detailed above,
occurs, V/U .

It has been suggested that NVPs rupture on impact
with cilia or with the node wall; certainly, they appear
to break in the vicinity of cilia or the wall, but is it really
J. R. Soc. Interface (2007)
an impact process? This would be remarkable, as the
Reynolds number of a NVP moving in the flow is rather
low; using the numbers given above, ReZrUr/mw4!
10K6, viscous forces dominate over inertia. This would
imply that any impact force should be much less than
the Stokes drag, and so it should be incapable of
rupturing the membrane. Let us estimate the impact
force and compare it with the Stokes drag on an NVP as
it is released into the flow to illustrate our point. The
impact force suffered by the NVPs when they collide
with a cilium or a wall can be estimated by Newton’s
second law. If DV is the relative velocity of the NVP
with respect to the node wall or a cilium, and Dt is the
impact time, then the average force suffered by an NVP
during a collision is FZmDV/DtZmDV 2/(2ld), where
ld is the deformation length suffered by the NVP due to
the impact andm is the mass of the vesicle. This mass is
given by mZ4/3pr3r, where r is the density of the
NVP, which we shall assume to be similar to that of the
extraembryonic fluid (there is an additional factor of
the added mass of moving fluid surrounding the NVP,
which we can effectively build into this by taking r to be
the radius of the vesicle and the surrounding comoving
fluid). If bZld/r is the fraction of its radius that the
NVP deforms during the collision, then the impact force
is given by FIZ2/3pr 2rDV 2/b. b is a measure of
the packing within the NVP; a loosely filled parcel can
deform a great deal, while a tightly packed parcel
can deform only a small amount. If we assume that the
density of the extraembryonic fluid is approximately
that of water, rz103 kg mK3, and consider that in
the most energetic impact possible, a head-on collision
with a cilium moving in the opposite direction,
DVz100 mm sK1, we obtain FIz2!10K19/b N. This
impact force is an upper bound on the force experienced
by the membrane on impact: all the impact force would
be transmitted to the membrane only if there were no
internal dissipation of the impact energy, and consider-
ation of the sack-of-potatoes model indicates that it is
likely that much of the energy would be dissipated
internally. Thus, we have a conservative estimate of the
force on the membrane at the moment of vesicle release
of FDz8!10K14 N, while on collision the force on the
membrane is at most FIz2!10K19/b N. Since the
vesicle ruptures during impact, and not during release,
we suppose FIOFD, which would imply b!2.5!10K6,
that is to indicate that the vesicle must be very tightly
filled, so that it can only deform by at most a few parts
per million before stretching its covering membrane to
breaking point. If the membrane were this taut, it
would certainly have ruptured previously; either the
Stokes drag force experienced on release or the
deformation caused by shear within the viscous flow,
would certainly rupture such a fragile structure within
the flow long before it could deliver its cargo.

The inexorable conclusion of physics is that, rather
than just the mechanical breakage of the vesicles, there
must exist an active rupture mechanism that acts upon
the impact of the vesicle with a particular region of the
node or the cilia. In other words, the vesicles are not
broken by mechanical forces, so we must entertain the
idea that contact of the vesicular membrane with
something on the wall of the node or with certain cilia

http://rsif.royalsocietypublishing.org/
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destabilizes the membrane by means which might be
presumably chemical in nature. Mutant mouse
embryos in which NVPs are released, but cilia are
immobile, offer a datum in favour of our argument that
J. R. Soc. Interface (2007)
there is an undiscovered biochemical rupture process
for the NVPs. In these embryos, rupture of NVPs
appears to occur even without the flow (Tanaka et al.
2005). If the flow mechanism is faulty in this mutant,
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but the—separate—biochemical contact rupture
mechanism is functioning, these results are explained.
Might the active regions involved in this rupture
mechanism be associated with the second population
of apparently immotile cilia recently found towards the
sides of the node (McGrath et al. 2003)? This idea
would serendipitously unite the rival morphogen and
two-cilia models on how nodal flow is interpreted by the
embryo: these cilia could be mechanosensors as
originally postulated in the two-cilia model, while
concurrently acting to break up the NVPs via a
biochemical mechanism to release the morphogens
within, as hypothesized in the earlier morphogen
model. But the chemical signal would not have to be
localized to the periphery of the node for the NVPs to
dissociate primarily in this location; this remains a
function of the frequency with which they arrive in
proximity with the wall at different locations across the
node, as we showed earlier. We therefore conclude by
postulating an active biochemical mechanism for the
fragmentation of NVPs.
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NOTICE OF CORRECTION

On page 2, in the methods section, the dimensions of the fluid-filled box are now correctly given as 50!50!10 mm.

On page 6, the cilium impact velocity is now correctly given as DVz100 mm sK1.
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