Correlation between mRNA levels and functional role of α_1 -adrenoceptor subtypes in arteries: evidence of α_{1L} as a functional isoform of the α_{1A} -adrenoceptor

Daniel Martí,^{2,3,*} Raquel Miquel,^{1,*} Khalid Ziani,¹ Regina Gisbert,¹ M. Dolores Ivorra,¹ Elsa Anselmi,¹ Lucrecia Moreno,³ Victoria Villagrasa,³ Domingo Barettino,² and Pilar D'Ocon^{1,4}

¹Departamento de Farmacología, Facultad de Farmacia, Universitat de València; ²Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia; ³Facultad de Ciencias Experimentales y de la Salud, Universidad Cardenal Herrera, Valencia; and ⁴Unidad Mixta, Centro Nacional de Investigaciones Cardiovasculares—Universitat de València Estudi General, Valencia, Spain

Submitted 23 March 2005; accepted in final form 26 May 2005

Daniel Martí, Raquel Miquel, Khalid Ziani, Regina Gisbert, M. Dolores Ivorra, Elsa Anselmi, Lucrecia Moreno, Victoria Villagrasa, Domingo Barettino, and Pilar D'Ocon. Correlation between mRNA levels and functional role of α_1 -adrenoceptor subtypes in arteries: evidence of α_{1L} as a functional isoform of the α_{1A} -adrenoceptor. Am J Physiol Heart Circ Physiol 289: H1923-H1932, 2005. First published June 10, 2005; doi:10.1152/ajpheart.00288.2005.-The mRNA levels for the three α_1 -adrenoceptor subtypes, α_{1A} , α_{1B} , and α_{1D} , were quantified by real-time RT-PCR in arteries from Wistar rats. The α_{1D} -adrenoceptor was prominent in both aorta (79.0%) and mesenteric artery (68.7%), α_{1A} predominated in tail (61.7%) and small mesenteric artery (73.3%), and both α_{1A} - and α_{1D} -subtypes were expressed at similar levels in iliac artery. The mRNA levels of the α_{1B} -subtype were a minority in all vessels (1.7-11.1%). Concentration-response curves of contraction in response to phenylephrine or relaxation in response to α_1 -adrenoceptor antagonists on maximal sustained contraction induced by phenylephrine were constructed from control vessels and vessels pretreated with 100 µmol/l chloroethylclonidine (CEC) for 30 min. The significant decrease in the phenylephrine potency observed after CEC treatment together with the inhibitory potency displayed by 8-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-8-azaspiro (4,5) decane-7-dionedihydrochloride} (BMY-7378, an α_{1D} -adrenoceptor antagonist) confirm the relevant role of α_{1D} -adrenoceptors in aorta and iliac and proximal mesenteric arteries. The potency of 5-methylurapidil (an α_{1A} -adrenoceptor antagonist) and the changes in the potency of both BMY-7378 and 5-methylurapidil after CEC treatment provided evidence of a mixed population of α_{1A} - and α_{1D} -adrenoceptors in iliac and distal mesenteric arteries. The low potency of prazosin $(pIC_{50} < 9)$ as well as the high 5-methylurapidil potency in tail and small mesenteric arteries suggest the main role of α_{1A}/α_{1L} -adrenoceptors with minor participation of the α_{1D} -subtype. The mRNA levels and CEC treatment corroborated this pattern and confirmed that the α_{1L} -adrenoceptor could be a functional isoform of the α_{1A} -subtype.

chloroethylclonidine; prazosin; mesenteric arteries; adrenergic response

THE SYMPATHETIC NERVOUS SYSTEM plays an important role in regulating the contractile tone of vessels, and it has been clearly shown that α_1 -adrenoceptors mediate vasoconstriction in the peripheral blood circulation. Radioligand binding, molecular cloning studies, and isolated tissue experiments have identified three α_1 -adrenoceptor subtypes that are designated

 α_{1A} , α_{1B} , and α_{1D} (16, 19). These three subtypes display high subnanomolar affinities for prazosin. Furthermore, functional studies have provided evidence for the existence of a fourth α_1 -adrenoceptor, the α_{1L} -adrenoceptor subtype, which displays a low affinity for prazosin (p $K_B < 9$) and some other α_1 -adrenoceptor antagonists (2, 9, 11, 33, 43). This α_{1L} -adrenoceptor has no molecular correlate and seems to represent a functional phenotype of the α_{1A} -adrenoceptor (5, 12, 25).

Previous studies have shown that the mRNAs encoding the three α_1 -adrenoceptor subtypes are expressed in different arteries (37). In addition, traditional organ bath studies in the vessels using selective antagonists have suggested that although only one α_1 -adrenoceptor subtype seems to be mainly responsible for the adrenergic response, the results are not consistent with competitive antagonism at a single site, which in turn suggests a heterogeneous population of functionally present subtypes (21, 22, 26, 27, 35, 43).

The present report shows that a methodology combining the quantification of the mRNA levels by real-time RT-PCR with the pharmacological characterization of the functional subtypes provides good correlation among the potencies calculated for each antagonist and the levels of mRNA for each subtype found in the vessel. Moreover, this methodology provides additional information on minority subtypes and confirms that the α_{1L} -adrenoceptor could be a functional isoform of the α_{1A} -subtype.

MATERIALS AND METHODS

Real-Time Quantitative RT-PCR

All protocols were approved by the University of Valencia Animal Ethics Committee (Faculty of Pharmacy Section). Aorta as well as tail, iliac, mesenteric, and small mesenteric arteries (SMAs) were dissected and rapidly frozen in liquid nitrogen. Pools of tissues from three animals were made for small-sized vessels to obtain RNA, but aortas were processed individually. The frozen tissues were ground to powder in a mortar and were dissolved in TriPure isolation reagent (Roche). Total RNA was obtained after chloroform extraction and isopropanol precipitation (following manufacturer's instructions) and was dissolved in diethyl pyrocarbonate (DEPC)-treated water. The integrity of the RNA samples was checked by electrophoresis in agarose gel, and RNA concentrations were estimated spectrophotometrically. Rat genomic DNA to be used as a standard in real-time PCR was obtained from a rat

^{*} D. Martí and R. Miquel contributed equally to this work.

Address for reprint requests and other correspondence: P. D'Ocon, Departamento de Farmacología, Facultat de Farmàcia, Universitat de València, Avda, Vicent Andrés Estelles s/n, Burjassot, 46100 València, Spain (E-mail: m.pilar.docon@uv.es).

The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

CHARACTERIZATION OF α_1 -ADRENOCEPTOR SUBTYPES

Table 1.	Oligonuci	leotide	primers	used	in the	e study
	()					./

Gene	Gene Symbol	Oligonucleotide Sequences	Position*	Product Size, bp
α _{1A} -Adrenergic receptor	Adrala	S: 5'-CGA ATC CAG TGT CTT CGC AG-3' AS: 5'-ACC ATG TCT CTG TGC TGT CCC-3'	1059–1078 1139–1159	100
α_{1B} -Adrenergic receptor	Adra1b	S: 5'-GCT CCT TCT ACA TCC CGC TCG-3'† AS: 5'-AGG GGA GCC AAC ATA AGA TGA-3'	1018–1038 1298–1318	300
α_{1D} -Adrenergic receptor	Adra1d	S: 5'-GAA GGT GAT GGG TTA TGG TG-3' AS: 5'-GAA GCC ATA GCT GAA GCC T-3'	2321–2340 2454–2472	151
Glyceraldehyde-3-phosphate dehydrogenase	Gapd	S: 5'-GCA CCA CCA ACT GCT TAG CC-3' AS: 5'-CTG AGT GGC AGT GAT GGC AT-3'	1298–1317 1379–1398	100

Oligonucleotide sequence orientations are indicated as sense (S) and antisense (AS). *Positions depend on corresponding mRNA sequence in RefSeq NCBI database (38). †Oligonucleotide primer sequences for *Adra1b* gene are in accordance with Scofield et al. (41).

liver crude nuclear fraction. Freshly dissected rat liver tissue (~0.5 g) was homogenized using an Ultra-Turrax dispersing instrument (IKA) in 2 ml of solution that contained 10 mM Tris·HCl, pH 7.5, 10 mM NaCl, 3 mM MgCl₂, and 0.5% Nonidet P-40. After low-speed centrifugation (500 *g* for 3 min at 4°C), the crude nuclear fraction present in the pellet was resuspended in a solution of 10 mM Tris·HCl, pH 8.0, 1 mM EDTA, and 10% glycerol. DNase-free RNase A (Sigma) was added to a concentration of 20 µg/ml, and after 10 min at room temperature, SDS was added to a concentration of 1%, proteinase K (Roche) was added to a concentration of 200 µg/ml, and digestion proceeded at 55°C for 16 h. After digestion, DNA was phenol extracted and precipitated with isopropanol. The DNA pellet was washed with 70% ethanol, briefly air dried, and resuspended in water. DNA concentration was estimated spectrophotometrically.

Total RNA (1-2 µg) and oligo(dT)₁₆ primer (250 ng) in DEPCtreated water were preheated to 70°C and cooled on ice for cDNA synthesis. Reactions (25 µl) contained 50 mM Tris·HCl (pH 8.3), 75 mM KCl, 3 mM MgCl₂, 10 mM DTT, 40 U of RNAsin (Promega), 2 mM of each deoxynucleoside triphosphate, and 300 U of Moloney murine leukemia virus reverse transcriptase, RNase H minus (Promega). The reactions were incubated at 42°C for 45 min. A quantitative analysis of the levels of the mRNAs encoding the three α_1 -adrenoceptor subtypes was performed by real-time RT-PCR with a GeneAmp 5700 sequence-detection system (Applied Biosystems). Oligonucleotide pairs were designed for α_{1A} - and α_{1D} -adrenoceptors and for *Gapd* as an internal control. The sequences of the primer pair used for the α_{1B} -adrenoceptor were those included in the report by Scofield et al. (41). The sequences of the oligonucleotide primers used in this study, their positions on the corresponding mRNA sequences, and the expected sizes for the PCR products are shown in Table 1. The three α_1 -adrenoceptor subtypes were assayed by real-time PCR on dilutions of the same RT reaction, and *Gapd* was used as an internal control to normalize for differences in the efficiency of reverse transcription among different samples. We analyzed (in duplicate reactions) a 10-fold dilution of the RT reaction of each vessel used for each gene tested; four serial dilutions of genomic DNA (ranging from the equivalent of 33 to 3,333 copies) were performed to obtain the standard plot. Water and a mock RT reaction made without reverse transcriptase were assayed as negative controls. Real-time PCR reactions were set in 25 µl with SYBR Green I PCR master mix (Applied Biosystems) including either 5 µl of diluted RT reaction or genomic DNA and 5 pmol of each primer. The PCR reaction took place with 40 cycles and consisted of denaturation at 95°C for 10 s, annealing at 60°C for 15 s, and extension at 72°C for 20 s. After completion, the specificity of the reaction was checked by analysis of the thermal denaturation profile of the product. The threshold cycle values (Ct) obtained for each α_1 -adrenoceptor subtype in each RT reaction were interpolated in the standard plots generated with the genomic DNA, and the values of copy number per microgram of RNA were calculated using the GeneAmp 5700 sequence-detection system software (Applied Biosystems). These absolute values were normalized with the copy number values obtained for Gapd.

Functional Study in an Isolated Organ Bath

Rings of aorta, tail artery, iliac artery, and mesenteric artery (\sim 3–5 mm in length) of female Wistar rats (200–220 g body wt) were denuded of endothelium by gentle rubbing and were suspended in a 10-ml organ bath that contained a physiological solution maintained at 37°C and gassed with 95% O₂-5% CO₂. An initial 1-g load was applied to each preparation and was maintained throughout a 75–90-min equilibration period. Tension was recorded isometrically from Grass FTO3 force-displacement transducers, and data were recorded on a computer disk (MacLab).

Mesenteric arterial trees were dissected and cleared of surrounding adipose tissue. A ring segment (2 mm in length) from the second branch of the arterial tree was mounted in a myograph (J. P. Trading; Aarhus, Denmark) with separate 6-ml organ baths that contained a physiological solution at 37°C and was gassed with 95% O₂-5% CO₂ as described previously (54). After a 30-min stabilization period, the internal diameter of each vessel was set to a tension equivalent to 0.9 times the estimated diameter at 100 mmHg effective transmural pressure ($I_{100} = 90-180 \mu$ m) according to the standard procedure of Mulvany and Halpern (31). Tension was recorded isometrically, and data were recorded on a disk (MacLab).

The composition of the physiological solution was (in mmol/l) 118 NaCl, 4.75 KCl, 1.8 CaCl₂, 1.2 MgCl₂, 1.2 KH₂PO₄, 25 NaHCO₃, and 11 glucose.

After the equilibration period, a sustained contractile response to 10 μ mol/l phenylephrine (Sigma) was elicited in all vessels, and the absence of a relaxant response to 10 μ mol/l acetylcholine (Sigma) addition indicated the absence of a functional endothelium. The experimental procedures described below were followed after vessels were washed and values returned to baseline.

Concentration-response curves for contraction in response to phenylephrine. A single agonist curve was obtained by the cumulative addition of increasing concentrations of phenylephrine (0.1 nmol/l to 100 μ mol/l) until a sustained maximal contractile response (E_{max}) was obtained in each tissue. The concentration needed to obtain this maximal response was 1 μ mol/l in aorta, 10 μ mol/l in iliac, tail, and mesenteric arteries, and 30 μ mol/l in SMAs. After rings were washed and values had returned to baseline, the irreversible effect of the alkylating antagonist chloroethylclonidine (CEC; Sigma) was also evaluated. Rings were exposed to CEC (100 μ mol/l) for 30 min and then washed for 60 min before a new cumulative addition of phenylephrine was carried out.

The concentration needed to obtain 50% of the maximal response (expressed as pEC_{50}) was calculated from a nonlinear regression plot (GraphPad Software; San Diego, California).

Concentration-response curves for relaxation in response to selective α_1 -adrenoceptor antagonists. Concentration-response curves for relaxation (CRCR) were performed by the addition of cumulative concentrations of prazosin (0.001 nmol/l to 1 µmol/l; Sigma), 5-methylurapidil (0.001 nmol/l to 10 µmol/l; RBI), cyclazosin (0.001 nmol/l to 1 µmol/l; Sigma), and 8-{2-[4-(2-methoxyphenyl)-1-pipera-

CHARACTERIZATION OF α1-ADRENOCEPTOR SUBTYPES

	Expression of Adrenoceptor Subtype, copies/µg of RNA				
Artery	α _{1A}	αıв	αıd	copies/µg of RNA	
Aorta	29,451.3±14,970.8	10,659.5±3,562.3	151,627.7±93,152.4	191,738.5	
Tail	$206,922.30\pm50,342.9$	$37,357.5 \pm 12,020.8$	91,493.7±8,187.9	335,773.5	
Iliac	$22,115.1\pm4,212.0$	$4,586.5 \pm 1,107.9$	$20,747.2\pm2,626.7$	47,448.8	
Mesenteric	19,257.9±7,249.2	$7,102.4 \pm 3,827.6$	$57,797.9\pm 5,776.4$	84,158.2	
Small mesenteric	22,839.5±4,611.8	524.8±124.5	7,790.4±776.6	31,154.7	

Table 2. Expression levels of three α_I -adrenoceptor subtypes in different vessels

Values (which are normalized) are means \pm SE for 3–5 determinations performed in duplicate.

zinyl]-8-azaspiro (4,5) decane-7-dionedihydrochloride} (BMY-7378; 0.001 nmol/l to 10 μ mol/l; RBI) to tissues in which sustained contractions had been induced by a maximal concentration of phenylephrine. Relaxations were expressed as a percentage of the maximum increment in tension obtained by the agonist addition.

In some experiments, the activity of antagonists after incubation with the alkylating agent CEC was evaluated. Rings from tail, iliac, and mesenteric arteries and SMAs were exposed to CEC (100 μ mol/l) for 30 min and then washed for 60 min before a new addition of the maximal concentration of phenylephrine was carried out. CRCRs in response to selective α_1 -adrenoceptor antagonists were obtained by the addition of cumulative concentrations of each compound on this sustained maximal contraction elicited by phenylephrine after CEC treatment.

The concentration $[-\log(\text{mol/l})]$ needed to produce 50% relaxation (pIC₅₀) was obtained from a nonlinear regression plot, and the data were fitted to one- and two-site models. If residual sums of squares were statistically less for a two-site fit of data than for a one-site fit as determined by an *F*-test comparison, then the two-site model was accepted (GraphPad Software).

RESULTS

Analysis of α_1 -Adrenoceptor Subtype mRNA Levels by Real-Time Quantitative RT-PCR

A two-step real-time RT-PCR assay was used to quantify the mRNA levels of the three α_1 -adrenoceptor subtypes in the different vessels assayed. In the first step, first-strand cDNA was synthesized from total RNA using Moloney murine leukemia virus reverse transcriptase and $oligo(dT)_{16}$ as primer. The product of that RT reaction was used in the second step as a template for real-time PCR. All four transcripts (the three α_1 -adrenoceptor subtypes and *Gapd* as a normalization control) were analyzed on dilutions of the same RT reaction. In addition, negative control reactions in which a mock RT reaction was made without reverse transcriptase or in which the RT reaction was omitted were analyzed in parallel. The amplification plot did not reach the threshold value in these negative-control reactions. Serial dilutions of rat genomic DNA were amplified in parallel reactions to construct the corresponding standard plots. The standard plots in which the logarithm of the calculated copy number was related to the Ct value showed slopes close to the theoretical value of 3.33 and correlation coefficients of r > 0.99. The C_t values obtained for each gene were interpolated on the corresponding standard plot to obtain the absolute copy number per microgram of RNA, and those crude values were normalized with the values obtained for Gapd. The normalized values obtained for each α_1 -adrenoceptor subtype in the different vessels are shown in Table 2. The results indicate that all three α_1 -subtypes were expressed in the vessels analyzed, although there were significant differences in expression levels. The mRNA for α_{1D} adrenoceptor predominated in aorta and mesenteric arteries, whereas α_{1A} -adrenoceptor was prominent in tail and SMAs. Both receptor subtypes were expressed to similar levels in iliac artery. Finally, the mRNA for the α_{1B} -adrenoceptor subtype was a minority in all tissues. The relative fractions of the three α_1 -adrenoceptor subtypes in each of the vessels analyzed are displayed in Fig. 1.

Functional Study in an Isolated Organ Bath

Concentration-response curves of contraction in response to phenylephrine. A cumulative addition of increasing concentrations of phenylephrine to each tissue gave a concentrationresponse curve of contraction with E_{max} and pEC₅₀ values as summarized in Table 3 and displayed in Fig. 2. This curve could be reproduced with no significant changes after rings

Fig. 1. Relative α_1 -adrenoceptor subtype composition in the different vessels studied. Relative levels (in percentages) of the mRNAs for each subtype are shown with regard to the α_1 -adrenoceptor mRNA total copy number.

Table 3. Parameters of concentration-response curves of contraction in response to phenylephrine in different arterial vessels				
	Phenylep	ohrine	Phenylephri	
Artery	E _{max} , mg	pEC ₅₀	$E_{\rm max}$, mg	

	Phenylep	Phenylephrine		e + CEC
Artery	$E_{\rm max}$, mg	pEC ₅₀	E _{max} , mg	pEC ₅₀
Aorta	941.7±116.3	7.84 ± 0.04	54.8±21.25‡	
Tail	$1,091.7\pm215.9$	5.95 ± 0.08	$1,063.6\pm211.8$	$5.65 \pm 0.09*$
Iliac	595.6 ± 93.7	6.52 ± 0.16	429.01 ± 105.8	5.03 ± 0.11 †
Mesenteric	719.1 ± 64.6	6.93 ± 0.10	343.7±59.5†	5.13 ± 0.21 †
Small mesenteric	862.0±69.2	5.95 ± 0.08	679.8±95.6*	5.49 ± 0.13 †

Values are means \pm SE of 4–9 experiments. CEC, chloroethylclonidine. *P < 0.05, †P < 0.01, $\ddagger P < 0.01$ vs. control.

were washed and values returned to baseline (results not shown). The higher pEC_{50} value for phenylephrine in the aorta indicates that the α_{1D} -subtype plays a fundamental role in this tissue according to the higher potency and affinity of agonists for this subtype (30). After CEC treatment, only higher concentrations of phenylephrine yielded a contractile response in aorta; significant decreases in E_{max} and pEC₅₀ were observed in mesenteric arteries, and slight but insignificant changes in E_{max} and a decrease in pEC₅₀ were observed in tail and iliac arteries (Table 3 and Fig. 2).

Fig. 2. Effects of chloroethylclonidine (CEC) pretreatment on the concentration-response curve of contraction in response to phenylephrine in isolated rings.

AJP-Heart Circ Physiol • VOL 289 • NOVEMBER 2005 • www.ajpheart.org

H1926

Table 4. Values of pIC_{50} for agents tested on maximal sustained contractile responses induced by phenylephrine in rat aorta

α1-Adrenoceptor Antagonist	pIC ₅₀	n
Prazosin	9.68±0.15	10
BMY-7378	8.09 ± 0.06	6
Cyclazosin	7.92 ± 0.1	6
5-Methylurapidil	7.1 ± 0.07	6

Values are means \pm SE; *n*, no. of experiments. BMY-7378, 8-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-8-azaspiro (4,5) decane-7-dionedihydrochlo-ride}. Maximal contraction was induced with 1 µmol/l phenylephrine.

CRCRs in response to selective α_1 -adrenoceptor antago*nists.* CRCRs in response to prazosin (an α_1 -adrenoceptor antagonist that discriminates for the α_{1L} -subtype), 5-methylurapidil (an α_{1A} -selective antagonist), cyclazosin (an α_{1B} -selective antagonist; Ref. 13), and BMY-7378 (an α_{1D} -selective antagonist) were obtained by adding cumulative concentrations of the compounds to tissues in which sustained contractions had been induced by concentration of phenylephrine that had elicited maximal responses. The concentrations of phenylephrine needed to obtain a maximal response in each vessel were as follows: 1 µM in aorta, 10 µM in iliac and mesenteric arteries, and 30 µM in tail and SMAs (Fig. 2). The potency (pIC_{50}) of the fitted curves of relaxation obtained for each antagonist in the different vessels is summarized in Tables 4 (for aorta), 5 (for tail artery), 6 (for iliac artery), 7 (for mesenteric artery), and 8 (for second branch of the mesenteric tree; SMA).

Using the present methodology on rat aorta, we compared the potency of each antagonist (see Table 4) with the pK_i obtained on cloned α_1 -adrenoceptors (Table 9), and we concluded that the pIC₅₀ showed by prazosin (>9) excluded the participation of the α_{1L} -subtype in this vessel. The high potency of BMY-7378 indicated the major role of the α_{1D} subtype, which was confirmed by the lower potency of 5-methylurapidil and cyclazosin. In this vessel, the lack of an adequate response to phenylephrine after CEC treatment did not allow us to analyze the selective antagonist activity in CEC-pretreated aortas.

Table 5. Values of pIC_{50} for agents tested on maximal sustained contractile responses induced by phenylephrine in rat tail artery

au Adranagantar		Tail + CEC			
Antagonist	Site 1 pIC50	Site 2 pIC ₅₀	п	pIC ₅₀	п
Prazosin	8.80±0.12		7	ND	
BMY 7378	6.40 ± 0.10		7	ND	
Cyclazosin	8.22 ± 0.11		6	8.34 ± 0.26	5
5-Methylurapidil	8.73 ± 0.10	5.88 ± 0.26	9	7.97 ± 0.10	6

Values are means \pm SE; *n*, no. of experiments. *Site 1* pIC₅₀ represents values of agents tested on 10 µmol/l phenylephrine induced maximal contraction when curve fitting for one site was statistically significant or for first site when curve fitting for two different sites was statistically significant (see data analysis). *Site 2* pIC₅₀ represents value obtained for a second site when curve fitting for two different sites was statistically significant (see data analysis). *Tail* + CEC, tail artery pretreated with 100 µmol/l chloroethylclonidine for 30 min and subsequent washing of CEC. ND, not determined.

Table 6. Values of pIC_{50} for agents tested on maximal sustained contractile responses induced by phenylephrine in rat iliac artery

a. Adrangaantar	Iliac Artery			Iliac Artery + CEC	
Antagonist	Site 1 pIC ₅₀	Site 2 pIC ₅₀	n	pIC ₅₀	п
Prazosin	9.11±0.11		6	ND	
BMY-7378	7.61 ± 0.14		5	$6.59 \pm 0.22*$	4
Cyclazosin	8.85 ± 0.10		6	8.40 ± 0.13	5
5-Methylurapidil	8.68 ± 0.27	$6.76 {\pm} 0.03$	4	8.66 ± 0.10	4

Values are means \pm SE. *P < 0.01.

In tail artery, the pIC₅₀ obtained with prazosin (see Table 5) was consistently lower than the affinity reported for cloned α_{1A} , α_{1B} , and α_{1D} -subtypes (see Table 9), and it was also lower than the pIC₅₀ obtained for prazosin in aorta or iliac or mesenteric arteries (see Tables 4, 6, and 7). The prazosin potency in tail artery correlated well to the values described for the functionally defined α_{1L} -adrenoceptors (2, 9, 11, 33, 43). Concentration-response curves for 5-methylurapidil discriminated for two different sites (pIC₅₀ Site 1 and pIC₅₀ Site 2; see Table 5), one of which (pIC₅₀ Site 2) disappeared after CEC pretreatment as Fig. 3 shows. The 5-methylurapidil potency after CEC treatment was similar to that observed by site 1 in untreated vessels and correlated to the pA_2 of this antagonist for the α_{1A}/α_{1L} -subtype (2). The cyclazosin potency was not affected by CEC pretreatment at that time, and we concluded that the participation of the α_{1B} -subtype was not evident. In accordance with this and the low tissue sensitivity to CEC treatment, a major role of the α_{1A}/α_{1L} -subtype in tail artery and a minor role of another CEC-sensitive subtype (probably α_{1D}) were suggested.

High prazosin potency in iliac artery excluded the functional role of α_{1L} -adrenoceptors (see Table 6). The concentrationresponse curve for 5-methylurapidil provided a significant fit for two different sites, one of which (pIC₅₀ *Site 1*) correlated well with the presence of the α_{1A} -subtype in the vessel (see p K_i values in Table 9). A comparison of the pIC₅₀ value for BMY-7378 with its p K_i value, which was obtained in competition experiments on cloned α_1 -adrenoceptor subtypes, suggested the partial role of α_{1D} -adrenoceptors together with (an) other subtype(s). One of the two affinity sites evidenced by 5-methylurapidil in nontreated iliac arteries disappeared after

Table 7. Values of pIC_{50} for agents tested on maximal sustained contractile responses induced by phenylephrine in rat proximal or distal mesenteric arteries

. A despessenter	Mesenteric Artery			Mesenteric Artery	+ CEC
Antagonist	Site 1 pIC50	Site 2 pIC50	n	pIC ₅₀	п
Prazosin	P: 10.2±0.08* D: 9.62±0.12		6	ND	
BMY-7378	P: 9.81 ± 0.13 D: 6.97 ± 0.09	P: 7.53±0.11	4 8	ND	
Cyclazosin	P: $10.23 \pm 0.10^{*}$ D: 9.32 ± 0.10		6	8.89 ± 0.20	6
5-Methylurapidil	P: 10.3±0.29 D: 9.34±0.39	P: 7.46±0.34 D: 7.06±0.19	4 5	9.54 ± 0.08	4

Values are means \pm SE; *n*, no. of experiments. Region of mesenteric artery is described as a proximal (P) or distal (D) section with regard to aorta. *Data from Ziani et al. (54).

H1928

Table 8. Values of pIC_{50} for agents tested on maximal sustained contractile responses induced by phenylephrine in rat small mesenteric artery

a. Adrenocentor	Small Mesent Artery	eric	Small Mesenter Artery + CEC	
Antagonist	pIC ₅₀	n	pIC ₅₀	n
Prazosin	8.48 ± 0.28	6		
BMY-7378	6.30 ± 0.14	8		
Cyclazosin	9.36 ± 0.20	6	8.92 ± 0.22	6
5-Methylurapidil	7.98 ± 0.11	7	8.15 ± 0.08	7

Values are means \pm SE for agents tested on 30 μ mol/l phenylephrineinduced maximal contraction; *n*, no. of experiments.

CEC treatment, and the site that remained sensitive to 5-methylurapidil antagonism correlated well with the α_{1A} -adrenoceptor subtype (see Table 6 and Fig. 3). In addition, the lower potency shown by BMY-7378 after CEC treatment suggested that the α_{1D} -adrenoceptors were irreversibly alkylated by CEC (see Table 6 and Fig. 3). The cyclazosin potency did not significantly decrease after CEC treatment. Therefore, the functional role of the α_{1B} -adrenoceptor was not clearly shown by this antagonist. According to these results, a mixed population of α_{1A} - and α_{1D} -adrenoceptors were functionally active in iliac artery.

The high prazosin potency in mesenteric artery (see Table 7) excluded the functional role of α_{1L} -adrenoceptors. CRCRs for BMY-7378 showed marked differences depending on the portion of the artery used. BMY-7378 discriminates for two sites in the section close to aorta (proximal section); one of them, which corresponded to the α_{1D} -subtype, was not evident in the distal section of the vessel (see Table 7). That the concentration-response curves for 5-methylurapidil provided the best fit to the two-site model suggests the participation of the α_{1A} subtype and another subtype in the functional response to phenylephrine. Pretreatment of mesenteric artery with CEC destroyed this adrenoceptor population, and posterior concentration-response curves for 5-methylurapidil yielded a value of pIC_{50} for one site (see Table 7 and Fig. 3) that correlated well with the p K_i obtained on cloned α_{1A} -adrenoceptors (see Table 9). The potency shown by cyclazosin after CEC treatment was not significantly lower than the value obtained from nontreated arteries (see Table 7); thus the role of α_{1B} -adrenoceptors was not confirmed by this antagonist. According to these results, a mixed population of α_{1A} - and α_{1D} -adrenoceptors were functionally active in this artery, where the role of α_{1D} -adrenoceptors was seen to be greater in the portion of mesenteric artery close to aorta.

The pIC₅₀ value obtained for prazosin in SMA (see Table 8) correlated well with its affinity for the α_{1L} -subtype (p $A_2 < 9$). BMY-7378 inhibited phenylephrine-induced contraction with a low potency that excluded the major participation of the α_{1D} -subtype in this vessel. The pIC₅₀ value obtained with 5-methylurapidil corroborated that the α_{1A}/α_{1L} -subtypes were mainly responsible for the adrenergic response in this tissue. No direct evidence for the participation of the α_{1B} -subtype was obtained when cyclazosin was used as an antagonist.

DISCUSSION

In the present work, we propose a new methodology that not only simplifies the pharmacological analysis of the population of α_1 -adrenoceptor subtypes that are functionally active in a vessel but also provides additional information about the nature of the other subtypes involved in the adrenergic response.

Our method includes the quantification of mRNA levels for each subtype by real-time quantitative RT-PCR and the realization of concentration-response curves of contraction in response to cumulative concentrations of phenylephrine before and after CEC treatment. Changes in the parameters of these curves (E_{max} and pEC₅₀) offer valuable information that is complemented by the CRCRs of selective antagonists on maximal phenylephrine-induced contraction before and after CEC treatment.

The present state of knowledge with respect to CEC-irreversible inactivation of α_1 -adrenoceptor subtypes is that the α_{1A} -subtype is "insensitive," the α_{1B} -subtype is "sensitive," and the α_{1D} -subtype is "partially sensitive" to this alkylating agent. However, it is now clear that CEC is able to inactivate all of the α_1 -adrenoceptors (37), and differences between subtypes may be due to 1) the alkylation rate, which is lower in the α_{1A} -subtype (slowly alkylated) than in the α_{1B} - or α_{1D} -subtypes (rapidly alkylated) according to Xiao and Jeffries (52); and 2) the subcellular localization of subtypes; namely, CEC preferentially alkylates the accessible cell surface of α_1 -adrenoceptors (20, 47). In this way, recent studies have shown major differences in the subcellular distribution of the α_1 -subtypes in that α_{1B} -adrenoceptors are located at the cell membrane and α_{1A} -adrenoceptors are also located (but intracellularly so) at the cell membrane, whereas very little surface expression of the α_{1D} -adrenoceptors was detected, and the main localization of this subtype is in a perinuclear orientation (4, 10, 18, 20, 28, 37, 47).

Table 9. Published antagonist pK_i values calculated by use of measurements with cloned receptor subtypes

		pK _i Values	
Receptor Subtype	Prazosin	BMY-7378	5-Methylurapidil
	9.9, ¹ 9.7, ² 9.5, ³ 9.37, ⁴ 9.72/9.88, ⁵	6.1, ⁸ 6.2, ² 6.54/	9.2, ¹ 8.5, ² 8.6, ³ 8.65, ⁴ 9.12/9, ⁵
α_{1A}	9.9/9.3,6 9.147	6.8, ⁵ 6.57 ⁹	8.5/8.7,6 8.697
	9.9 ¹ 9.6, ² 9.8, ³ 10.44, ⁴ 9.42/10.08, ⁵	$6.2^{8}, 6.7^{2}, 7.36^{4}, 7.36^{4}$	7.7, ¹ 6.8, ² 6.9, ³ 7.22, ⁴ 7/7.5, ⁵
α_{1B}	9.5/9.9,6 9.347	6.24/7.25, ⁵ 6.77 ⁹	6.6/6.5, ⁶ 5.98 ⁷
	9.9, ¹ 9.5, ² 9.6, ³ 10.03, ⁴ 9.46/10.04, ⁵	$8.2,^{8}8.2,^{2}9.00,^{4}$	8.0, ¹ 7.8, ² 7.3, ³ 7.59, ⁴ 7.3/7.92, ⁵
α_{1D}	10.4/10.1,6 8.717	8.16/9.39, ⁵ 8.94 ⁹	7.2/7.1,6 6.307

Values are from ¹Ford et al. (12), ²Kenny et al. (26), ³Michel et al. (29), ⁴Muramatsu et al. (32), ⁵Saussy et al. (39), ⁶Schwinn et al. (40), ⁷Testa et al. (46), ⁸Goetz et al. (17), and ⁹Yang et al. (53).

Fig. 3. Effects of CEC pretreatment on the concentration-response curves of relaxation by the α_1 -adrenoceptor antagonists in different vessels. Arterial rings were incubated with 100 μ mol/l CEC for 30 min, extensively washed out, maximally contracted by phenylephrine, and exposed to cumulative concentrations of each antagonist.

If we are to take both considerations into account, we can understand why α_{1B} -adrenoceptors are the more sensitive subtype to CEC alkylation and α_{1A} -adrenoceptors are the more resistant subtype, and why the α_{1D} -subtype shows a complex pattern of alkylation that leads to the designation of this receptor as "partially sensitive" to CEC depending on the percentage present in the membrane and, therefore, on its accessibility to the alkylating agent.

According to the aforementioned information, we can use CEC in functional studies to analyze the α_1 -adrenoceptor subtype that is responsible for the contractile response of a given vessel. However, great care must be taken with the experimental conditions with regard to the concentration of CEC employed and the time the alkylating procedure lasts. These two parameters determine whether one, two, or three subtypes are affected by the alkylating agent to a greater or lesser extent.

The most commonly used CEC concentration is 100 μ mol/l, and a general agreement on this point exists. Lower concentrations give more confusing results. The alkylation time varies between 20, 30, and 45 min, but a 30-min time is mainly used since data in the literature demonstrate that most of the α_{1B} and α_{1D} -adrenoceptors are destroyed with an alkylation time >30 min, but most of the α_{1A} -adrenoceptors remain functionally active in isolated organ-bath studies (23, 27, 34). CEC at a concentration of 100 μ mol/l for 30 min was used in this study in accordance with these previous data to mainly inactivate the α_{1B} - and α_{1D} -adrenoceptors and to avoid significantly affecting the α_{1A} -subtype.

The major role of α_{1D} -adrenoceptors in rat aorta previously reported (14, 15, 22, 26) is supported in this study by *I*) the

higher levels of mRNA found for this subtype; 2) the highest pEC₅₀ for phenylephrine observed in this tissue, which confirms the higher affinity for this agonist as shown by the α_{1D} -subtype (30); and 3) the fact that the response to phenyl-ephrine dramatically decreased after CEC treatment according to the sensitivity of the α_{1D} -subtype for the alkylating agent.

If the mRNA levels in tail artery and SMAs were considered, the most expressed subtype was α_{1A} -adrenoceptors. The lower phenylephrine potency compared with aorta together with the minor sensitivity of these vessels to CEC treatment confirms the major presence of other subtypes different from α_{1D} -adrenoceptors, although the minor participation of this subtype was suggested by the significant decrease in the phenylephrine potency after CEC treatment. That 5-methylurapidil discriminates for two different sites in the tail artery (pIC₅₀ values of 1 and 2; see Table 5) confirms the main role of α_{1A} -adrenoceptors as other authors and ourselves have proposed (14, 27, 35, 36, 45). Nonetheless, this also suggests a minor role of another subtype, α_{1D} -adrenoceptors, if the results obtained with the agonist are considered. These observations in functional studies correlate well with the levels of mRNA found for each subtype in this vessel, where the mRNA for α_{1A} -adrenoceptors is the most expressed, although a significant level of mRNA for the α_{1D} -subtype was also quantified in this tissue. The participation of the α_{1D} -subtype observed in our experiments is not clearly shown by the classical Schild analysis, and using this analysis, it only becomes evident after reserpine treatment (45).

An interesting observation is that together with the higher mRNA levels for the α_{1A} -subtype that we observed in tail and SMAs, the prazosin potency correlates well with its affinity for

the α_{1L} -adrenoceptor. We can therefore propose that the α_{1L} subtype is mainly responsible for the adrenergic response in both vessels, which is in accordance with the proposal of Ford et al. (12) and Daniels et al. (5) regarding the nature of the α_{1L} -adrenoceptor as a functional isoform of the α_{1A} -subtype. This also confirms the main role of α_{1A}/α_{1L} -adrenoceptors in SMAs as described by other authors (43).

Functional experiments in iliac artery confirm the results obtained by real-time RT-PCR quantification where similar mRNA levels for the α_{1A} - and α_{1D} -subtypes were found that were consistent with previous studies that describe α_{1A} -, α_{1B} -, and α_{1D} -mRNA in this tissue (35). The potency of each antagonist before and after CEC treatment also confirms the participation of α_{1A} - and α_{1D} -adrenoceptors in the functional response of iliac artery and can be summarized as follows: 1) one of the two sites discriminated by 5-methylurapidil in non-CEC-treated tissues disappears after CEC treatment; the site that remains is the one for which 5-methylurapidil shows a higher potency, and this potency correlates well with its affinity for the cloned α_{1A} -subtype; 2) the potency of cyclazosin does not change after CEC treatment; 3) BMY-7378 potency decreases in CEC-treated tissues with respect to nontreated tissues, and it correlates well with its affinity for the α_{1A} - or α_{1B} -subtypes. This could be interpreted as an irreversible alkylation by CEC of the α_{1D} -adrenoceptor population present in the vessel.

Finally, the results obtained in mesenteric artery suggest a main role for the α_{1D} -subtype according to the mRNA levels, although its role is not as significant as in aorta. Furthermore, the α_{1A} -subtype expression is increased with respect to aorta. In functional studies, BMY-7378 potency was different depending on the portion of the vessel considered, and sensitivity to CEC treatment was lower than in aorta. In fact, BMY-7378 and 5-methylurapidil discriminate for two different sites (sites 1 and 2; see Table 7) in mesenteric artery, but BMY-7378 only discriminates for the portion close to aorta, which suggests a predominant but not exclusive role for α_{1D} -adrenoceptors in proximal segments. BMY-7378 potency was lower in the distal portion, which suggests minor α_{1D} -adrenoceptor involvement in the responses of this portion to adrenergic stimulus. The above considerations suggest a mixed population of α_{1A} - and α_{1D} -adrenoceptors in mesenteric artery that changes according to an anatomical pattern related to the proximity to aorta. These results confirm previous studies reported by other authors who used the Schild analysis (1, 22, 49, 51). In this vessel, although differences in mRNA expression for the α_{1A} - and α_{1D} -subtypes were slight with respect to aorta, the functional role of the α_{1A} -subtype is more evident than in aorta. If we consider that α_{1A} -adrenoceptors are efficiently coupled to second-messenger production, whereas α_{1D} - adrenoceptors are poorly coupled to it (14, 40), we can assume that slight increases in α_{1A} adrenoceptor expression together with slight decreases in α_{1D} adrenoceptor levels could have a repercussion for α_{1A} functionality in mesenteric artery. This would account for the lower sensitivity of this vessel to CEC treatment and also for the discrimination of BMY-7378 for two sites in mesenteric artery and not in aorta.

It is interesting to point out that the potency of the different antagonists calculated with our experimental procedure correlated well with the potency found by other authors and ourselves using the Schild plot analysis (we must compare present results to the pA_2 values obtained in previous studies and summarized in Table 10). There is an advantage in that our procedure facilitates the pharmacological analysis of a tissue, since the number of experiments and samples is considerably reduced (about four times) without a decrease in the accuracy of results. Another advantage this methodology offers is that the mathematical analysis of the inhibition curves allows us to statistically compare the adjustment to one- or two-site models, which is additional evidence of the minor participation of other subtypes.

When we applied this methodology, we found that either the α_{1D} - or α_{1A}/α_{1L} -subtypes had a clear functional role in all vessels studied, yet a relevant role for the α_{1B} -subtype was not found in any vessel, thus confirming previous observations (37). In the same way, the mRNA levels for this subtype were significantly lower than the other two in all the vessels. This observation suggests one role of the α_{1B} -subtype as being a modulator of the functionality of the other subtypes as we have previously proposed for native receptors (8) and as other authors have studied in cells coexpressed with either the α_{1B} - and α_{1A} -subtypes (44) or the α_{1B} - and α_{1D} -subtypes (18).

The quantification of the mRNA levels corroborates the main functional role observed by α_{1D} -adrenoceptors in conductance vessels and also by α_{1A} -adrenoceptors in either distributing or resistance vessels. Considering that α_{1D} -adrenoceptors are responsible for the slow appearance and slow disappearance of adrenergic responses, whereas α_{1A} -adrenoceptors provide faster responses (8, 15, 54), the higher expression of α_{1D} -adrenoceptors in poorly innervated conductance vessels avoids abrupt changes in vessel caliber and, consequently, in blood flow in response to the adrenergic stimulus. On the contrary, the higher expression of α_{1A} -adrenoceptors in the densely innervated distributing vessels and particularly in the resistance vessels guarantees a faster contractile response to an adrenergic stimulus that is followed by a faster decrease in

Table 10. Published antagonist pA_2/pK_B values calculated from different rat vessels

		pA_2/pK_B Values	
Artery	Prazosin	5-Methylurapidil	BMY-7378
Aorta	9.8, ¹ 9.85, ² 9.5, ³ 9.9, ⁴ 9.4 ⁵	7.8, ¹ 7.6, ² 6.8, ⁵ 7.8, ⁶ 7.3, ⁷ 7.64, ⁸ 8.6 ⁹	8.3, ⁵ 8.06, ⁷ 8.56, ⁸ 8.6, ⁹ 8.9, ¹⁰ 9.0, ¹¹ 8.5, ¹²
Tail	8.4, ⁵ 8.9, ⁶ 9.3 ⁹	8.0,5 9.06	5.8, ⁵ 6.3, ⁶ 6.5 ¹²
Iliac	9.313	8.7113	$6.62^{13}_{,13}$ $8.4^{14}_{,14}$
Mesenteric	9.9 ⁶	7.9,4 8.05,7 7.712	8.8,4 6.6,7 8.712
Small mesenteric	8.5, ¹⁵ 8.3–8.8 ¹⁶	9.117	6.16 ¹⁶

Values are from ¹Kenny et al. (26), ²Testa et al. (46), ³Saussy et al. (39), ⁴Hussain and Marshall (22), ⁵Gisbert et al. (15), ⁶Lachnit et al. (27), ⁷Dhein et al. (7), ⁸Asbun-Bojalil et al. (3), ⁹Taki et al. (45), ¹⁰Goetz et al. (17), ¹¹Deng et al. (6), ¹²Arevalo-León et al. (1), ¹³Shibano et al. (42) in mouse, ¹⁴Villalobos-Molina et al. (50), ¹⁵Van der Graaf et al. (48), ¹⁶Stam et al. (43), and ¹⁷Ipsen et al. (24).

tone after removal. These observations together with the different sensitivities to agonists exhibited by each subtype (lower for α_{1A}/α_{1L} than for α_{1D}) explain the specific distribution of each subtype through the arterial tree and allow for a fine adjustment of both contractile tone and blood flow to the adrenergic stimulus.

In conclusion, present data show that a combination of quantified mRNA levels along with functional studies including CEC treatment proves to be a useful tool to analyze the exact role of each α_1 -adrenoceptor subtype in a given vessel. In addition, the higher mRNA level for the α_{1A} -subtype that is found in some vessels together with the functional role of α_{1L} -adrenoceptors in these vessels provides additional evidence regarding the proposal that α_{1L} -adrenoceptors are a functional isoform of the α_{1A} -subtype.

GRANTS

This work was supported by Research Grant SAF2001-2656 from the Spanish Comisión Interministerial de Ciencia y Tecnología. D. Martí Canet received a fellowship from Universidad Cardenal Herrera.

REFERENCES

- Arevalo-Leon LE, Gallardo-Ortiz IA, Urquiza-Marin H, and Villalobos-Molina R. Evidence for the role of α_{1D}- and α_{1A}-adrenoceptors in contraction of the rat mesenteric artery. *Vascul Pharmacol* 40: 91–96, 2003.
- Argyle SA and Mcgrath JC. An α1A/α1L-adrenoceptor mediates contraction of canine subcutaneous resistance arteries. J Pharmacol Exp Ther 295: 627–633, 2000.
- Asbun-Bojalil J, Castillo EF, Escalante BA, and Castillo C. Does segmental difference in α₁-adrenoceptor subtype explain contractile difference in rat abdominal and thoracic aortae? *Vascul Pharmacol* 38: 169–175, 2002.
- Chalothorn D, Mccune DF, Edelmann SE, Garcia-Cazarin ML, Tsujimoto G, and Piascik MT. Differences in the cellular localization and agonist-mediated internalisation properties of the α₁-adrenoceptor subtypes. *Mol Pharmacol* 61: 1008–1016, 2002.
- Daniels DV, Gever JR, Jasper JR, Kava MS, Lesnick JD, Meloy TD, Stepan G, Williams TJ, Clarke DE, Chang DJ, and Ford AP. Human cloned α_{1A}-adrenoceptor isoforms display α_{1L}-adrenoceptor pharmacology in functional studies. *Eur J Pharmacol* 370: 337–343, 1999.
- Deng XF, Chemtob S, and Varma DR. Characterization of α_{1D}-adrenoceptor subtype in rat myocardium, aorta and other tissues. *Br J Pharmacol* 119: 269–276, 1996.
- Dhein S, Giessler C, Heinroth-Hoffmann I, Leineweber K, Seyfarth T, and Brodde OE. Changes in α₁-adrenergic vascular reactivity in monocrotaline-treated rats. *Naunyn Schmiedebergs Arch Pharmacol* 365: 87– 95, 2002.
- 8. **D'Ocon P.** Physiological and pathological role of the constitutively active α_{1D} adrenoceptors. In: *Inverse Agonism*, edited by Ijzerman AP. Leiden: Elsevier, 2003, p. 63–74.
- Flavahan NA and Vanhoutte PM. α₁-Adrenoceptor subclassification in vascular smooth muscle. *Trends Pharmacol Sci* 7: 347–349, 1986.
- 10. Fonseca MI, Button DC, and Brown RD. Agonist regulation of α_{1B} -adrenergic receptor subcellular distribution and function. *J Biol Chem* 270: 8902–8909, 1995.
- 11. Ford AP, Arredondo NF, Blue DR Jr, Bonhaus DW, Jasper J, Kava MS, Lesnick J, Pfister JR, Shieh IA, Vimont RL, Williams TJ, McNeal JE, Stamey TA, and Clarke DE. RS-17053(*N*-[2-(2-cyclopropylmethoxy-phenoxy)ethyl]-5-chloro-alpha,alpha-dimethyl-1*H*-indole-3-ethanamine hydrochloride), a selective α_{1A}-adrenoceptor antagonist, displays low affinity for functional α₁-adrenoceptors in human prostate: implications for adrenoceptor classification. *Mol Pharmacol* 49: 209–215, 1996.
- 12. Ford AP, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, and Clarke DE. Pharmacological pleiotropism of the human recombinant α_{1A} -adrenoceptor: implications for α_1 -adrenoceptor classification. *Br J Pharmacol* 121: 1127–1135, 1997.
- Giardina D, Crucianelli M, Melchiorre C, Taddei C, and Testa R. Receptor binding profile of cyclazosin, a new α_{1B}-adrenoceptor antagonist. *Eur J Pharmacol* 287: 13–16, 1995.

- 14. Gisbert R, Madrero Y, Sabino V, Noguera MA, Ivorra MD, and D'Ocon P. Functional characterization of α_1 -adrenoceptor subtypes in vascular tissues using different experimental approaches: a comparative study. *Br J Pharmacol* 138: 359–368, 2003.
- 15. Gisbert R, Noguera MA, Ivorra MD, and D'Ocon P. Functional evidence of a constitutively active population of α_{1D} -adrenoceptors in rat aorta. *J Pharmacol Exp Ther* 295: 810–817, 2000.
- Graham RM, Perez DM, Hwa J, and Piascik MT. α₁-Adrenergic receptor subtypes. Molecular structure, function, and signaling. *Circ Res* 78: 737–749, 1996.
- Goetz AS, King HK, Ward SD, True TA, Rimele TJ, and Saussy DL Jr. BMY 7378 is a selective antagonist of the D subtype of α₁-adrenoceptors. *Eur J Pharmacol* 272: R5–R6, 1995.
- 18. Hague C, Uberti MA, Chen Z, Hall RA, and Minneman KP. Cell surface expression of α_{1D} -adrenergic receptors is controlled by heterodimerization with α_{1B} -adrenergic receptors. *J Biol Chem* 279: 15541–15549, 2004.
- Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, and Ruffolo RR Jr. International Union of Pharmacology. X. Recommendation for nomenclature of α₁-adrenoceptors: consensus update. *Pharmacol Rev* 47: 267–270, 1995.
- 20. Hirasawa A, Sugawara T, Awaji T, Tsumaya K, Ito H, and Tsujimoto G. Subtype-specific differences in subcellular localization of α_1 -adrenoceptors: chlorethylclonidine preferentially alkylates the accessible cell surface α_1 -adrenoceptors irrespective of the subtype. *Mol Pharmacol* 52: 764–770, 1997.
- 21. Hrometz SL, Edelmann SE, Mccune DF, Olges JR, Hadley RW, Perez DM, and Piascik MT. Expression of multiple α_1 -adrenoceptors on vascular smooth muscle: correlation with the regulation of contraction. *J Pharmacol Exp Ther* 290: 452–463, 1999.
- Hussain MB and Marshall I. Characterization of α₁-adrenoceptor subtypes mediating contractions to phenylephrine in rat thoracic aorta, mesenteric artery and pulmonary artery. *Br J Pharmacol* 122: 849–858, 1997.
- 23. **Ibarra M, Pardo JP, Lopez-Guerrero JJ, and Villalobos-Molina R.** Differential response to chloroethylclonidine in blood vessels of normotensive and spontaneously hypertensive rats: role of α_{1D} - and α_{1A} adrenoceptors in contraction. *Br J Pharmacol* 129: 653–660, 2000.
- 24. **Ipsen M, Zhang YY, Dragsted N, Han CD, and Mulvany MJ.** The antipsychotic drug sertindole is a specific inhibitor of α_{1A} -adrenoceptors in rat mesenteric small arteries. *Eur J Pharmacol* 336: 29–35, 1997.
- Kava MS, Blue DR Jr, Vimont RL, Clarke DE, and Ford AP. α_{1L}-Adrenoceptor mediation of smooth muscle contraction in rabbit bladder neck: a model for lower urinary tract tissues of man. *Br J Pharmacol* 123: 1359–1366, 1998.
- Kenny BA, Chalmers DH, Philpott PC, and Naylor AM. Characterization of an α_{1D}-adrenoceptor mediating the contractile response of rat aorta to noradrenaline. *Br J Pharmacol* 115: 981–986, 1995.
- 27. Lachnit WG, Tran AM, Clarke DE, and Ford AP. Pharmacological characterization of an α_{1A} -adrenoceptor mediating contractile responses to noradrenaline in isolated caudal artery of rat. *Br J Pharmacol* 120: 819–826, 1997.
- McCune DF, Edelmann SE, Olges JR, Post GR, Waldrop BA, Waugh DJ, Perez DM, and Piascik MT. Regulation of the cellular localization and signaling properties of the α_{1B}- and α_{1D}-adrenoceptors by agonists and inverse agonists. *Mol Pharmacol* 57: 659–666, 2000.
- Michel MC, Kenny B, and Schwinn DA. Classification of α₁-adrenoceptor subtypes. *Naunyn Schmiedebergs Arch Pharmacol* 352: 1–10, 1995.
- Minneman KP, Theroux TL, Hollinger S, Han C, and Esbenshade TA. Selectivity of agonists for cloned α₁-adrenergic receptor subtypes. *Mol Pharmacol* 46: 929–936, 1994.
- Mulvany MJ and Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. *Circ Res* 41: 19–26, 1977.
- 32. Muramatsu I, Murata S, Isaka M, Piao HL, Zhu J, Suzuki F, Miyamoto S, Oshita M, Watanabe Y, and Taniguchi T. α₁-Adrenoceptor subtypes and two receptor systems in vascular tissues. *Life Sci* 62: 1461–1465, 1998.
- Muramatsu I, Ohmura T, Kigoshi S, Hashimoto S, and Oshita M. Pharmacological subclassification of α₁-adrenoceptors in vascular smooth muscle. *Br J Pharmacol* 99: 197–201, 1990.
- O'Rourke M, Kearns S, and Docherty J. Investigation of the actions of chloroethylclonidine in rat aorta. *Br J Pharmacol* 115: 1399–1406, 1995.

CHARACTERIZATION OF α_1 -ADRENOCEPTOR SUBTYPES

- 35. Piascik MT, Guarino RD, Smith MS, Soltis EE, Saussy DL Jr, and Perez DM. The specific contribution of the novel α_{1D}-adrenoceptor to the contraction of vascular smooth muscle. *J Pharmacol Exp Ther* 275: 1583–1589, 1995.
- 36. **Piascik MT, Hrometz SL, Edelmann SE, Guarino RD, Hadley RW, and Brown RD.** Immunocytochemical localization of the α_{1B} -adrenergic receptor and the contribution of this and the other subtypes to vascular smooth muscle contraction: analysis with selective ligands and antisense oligonucleotides. *J Pharmacol Exp Ther* 283: 854–868, 1997.
- 37. **Piascik MT and Perez DM.** α_1 -Adrenergic receptors: new insights and directions. *J Pharmacol Exp Ther* 298: 403–410, 2001.
- Pruitt KD and Maglott DR. RefSeq and LocusLink: NCBI gene-centered resources. *Nucleic Acids Res* 29: 137–140, 2001.
- 39. Saussy DL Jr, Goetz AS, Queen KL, King HK, Lutz MW, and Rimele TJ. Structure activity relationships of a series of buspirone analogs at α_1 -adrenoceptors: further evidence that rat aorta α_1 -adrenoceptors are of the α_{1D} -subtype. *J Pharmacol Exp Ther* 278: 136–144, 1996.
- 40. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, and Parry-Smith DJ. Cloning and pharmacological characterization of human α₁-adrenergic receptors: sequence corrections and direct comparison with other species homologues. *J Pharmacol Exp Ther* 272: 134–142, 1995.
- 41. Scofield MA, Liu F, Abel PW, and Jeffries WB. Quantification of steady state expression of mRNA for α₁-adrenergic receptor subtypes using reverse transcription and a competitive polymerase chain reaction. *J Pharmacol Exp Ther* 275: 1035–1042, 1995.
- 42. Shibano M, Yamamoto Y, Horinouchi T, Tanaka Y, and Koike K. Pharmacological characterization of α_1 -adrenoceptor in mouse iliac artery. *Eur J Pharmacol* 456: 77–79, 2002.
- 43. Stam WB, Van der Graaf PH, and Saxena PR. Analysis of α1Ladrenoceptor pharmacology in rat small mesenteric artery. *Br J Pharmacol* 127: 661–670, 1999.
- 44. **Stanasila L, Perez JB, Vogel H, and Cotecchia S.** Oligomerization of the α_{1A} and α_{1B} -adrenergic receptor subtypes. Potential implications in receptor internalization. *J Biol Chem* 278: 40239–40251, 2003.

- 45. Taki N, Tanaka T, Zhang L, Suzuki F, Israilova M, Taniguchi T, Hiraizumi-Hiraoka Y, Shinozuka K, Kunitomo M, and Muramatsu I. α_{1D}-Adrenoceptors are involved in reserpine-induced supersensitivity of rat tail artery. *Br J Pharmacol* 142: 647–656, 2004.
- 46. Testa R, Guarneri L, Angelico P, Poggesi E, Taddei C, Sironi G, Colombo D, Sulpizio AC, Naselsky DP, Hieble JP, and Leonardi A. Pharmacological characterization of the uroselective α_1 antagonist Rec 15/2739 (SB 216469): role of the α_{1L} -adrenoceptor in tissue selectivity. Part II. J Pharmacol Exp Ther 281: 1284–1293, 1997.
- Tsujimoto G, Hirasawa A, Sugawara T, and Awaji T. Subtype-specific differences in subcellular localization and chlorethylclonidine inactivation of α₁-adrenoceptors. *Life Sci* 62: 1567–1571, 1998.
- 48. Van der Graaf PH, Shankley NP, and Black JW. Analysis of the effects of α₁-adrenoceptor antagonists on noradrenaline-mediated contraction of rat small mesenteric artery. Br J Pharmacol 118: 1308–1316, 1996.
- 49. Villalobos-Molina R and Ibarra M. α_1 -Adrenoceptors mediating contraction in arteries of normotensive and spontaneously hypertensive rats are of the α_{1D} or α_{1A} subtypes. *Eur J Pharmacol* 298: 257–263, 1996.
- 50. Villalobos-Molina R, Lopez-Guerrero JJ, and Ibarra M. α_{1D} And α_{1A} -adrenoceptors mediate contraction in rat renal artery. *Eur J Pharmacol* 322: 225–227, 1997.
- Villalobos-Molina R, López-Guerrero JJ, and Ibarra M. Functional evidence of α_{1D}-adrenoceptors in the vasculature of young and adult spontaneously hypertensive rats. *Br J Pharmacol* 126: 1534–1536, 1999.
- 52. Xiao L and Jeffries WB. Kinetics of alkylation of cloned rat α_1 adrenoceptor subtypes by chloroethylclonidine. *Eur J Pharmacol* 347: 319–327, 1998.
- Yang M, Verfurth F, Buscher R, and Michel MC. Is α_{1D}-adrenoceptor protein detectable in rat tissues? *Naunyn Schmiedebergs Arch Pharmacol* 355: 438-446, 1997.
- 54. Ziani K, Gisbert R, Noguera MA, Ivorra MD, and D'Ocon P. Modulatory role of a constitutively active population of α_{1D}-adrenoceptors in conductance arteries. *Am J Physiol Heart Circ Physiol* 282: H475–H481, 2002.

H1932