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Highly clustered scale-free networks
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We propose a model for growing networks based on a finite memory of the nodes. The model shows stylized
features of real-world networks: power-law distribution of degree, linear preferential attachment of new links,
and a negative correlation between the age of a node and its link attachment rate. Notably, the degree distri-
bution is conserved even though only the most recently grown part of the network is considered. As the
network grows, the clustering reaches an asymptotic value larger than that for regular lattices of the same
average connectivity and similar to the one observed in the networks of movie actors, coauthorship in science,
and word synonyms. These highly clustered scale-free networks indicate that memory effects are crucial for a
correct description of the dynamics of growing networks.
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I. INTRODUCTION

Social networks, the Internet, food webs, distribution n
works, metabolic and protein networks, the networks of a
line routes, scientific collaboration networks, and citati
networks are some examples of systems that can be re
sented by networks@1–5#. Recently it has been observed th
a variety of networks exhibit topological properties that d
viate from those predicted by random graphs@1,2#. For in-
stance, real networks displayclusteringhigher than that ex-
pected for random networks@4,5#. Also, it has been found
that many large networks arescale free. Their degree distri-
bution decays as a power law that cannot be accounted fo
the Poisson distribution of random graphs@6#, being of great
importance for the functionality of the network@7#. Beside
the degree distribution, other features of the growth dyna
ics of real-world networks are currently under investigatio
For citation networks, the Internet, and collaboration n
works of scientists and actors, it has been shown@8,9# that
the probability for a node to obtain a new link is an increa
ing function of the number of links the node already h
This feature of the dynamics is calledpreferential attach-
ment. Furthermore, the aging of nodes is of particular inter
@2,10#. In the network of scientific collaborations, every no
stops receiving links a finite time after it has been added
the network, since scientists have a finite time span of be
active. Similarly, in citation networks, papers cease to
ceive links~citations!, because their contents are outdated
summarized in review papers, which are then cited inste
Whether a paper is still cited or not, depends on a collec
memorycontaining the popularity of the paper.

In the current paper, we address the study of grow
complex networks from the perspective of the memory of
nodes. First, we present empirical evidence for the age
pendence of the growth dynamics of the network of scient
citations. We find that old nodes are less likely to obtain lin
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than nodes added to the network more recently. Second,
tivated by this finding, we introduce a model of netwo
self-organization that accounts for the three empirical f
tures mentioned before:~1! power-law distribution for the
degree,~2! preferential attachment, and~3! negative correla-
tion between age and attachment rate. The clustering of
generated networks is higher than in corresponding reg
lattices, justifying the namehighly clustered scale-free net
works.

II. PREVIOUS MODELS

The earliest and most basic model generating scale-
networks has been introduced by Baraba´si and Albert@11#,
henceforth we use the acronym BA model. This model
plicitly incorporates the preferential attachment in the d
namical rules. At each time step a new node is added to
network and new links are attached from this new node
old nodes. The probability that a node obtains an additio
link is proportional to its current degree. It can be interpre
as an application of Simon’s growth model in the context
networks@12,13#, readily explaining the emergent scaling
the degree distribution. For the sake of clarity, in the rema
ing part of the paper we will refer to the BA model as
well-established model of growing scale-free networks.

Real-world networks have properties that cannot be
counted for by the BA model. We find a discrepancy w
respect to empirical data in the correlation between a no
age and its rate of acquiring links. For the network of scie
tific citations this correlation is negative: the mean rate
citations a paper receives decreases with increasing age.
is supported by citation rate data of the years 1987–19
shown in Fig. 1. Except for the three first years prior to t
publication year, the citation rate decreases with age@14#. In
contradiction to this empirical result, in the BA model th
mean attachment rate is positively correlated with age. H
the attachment rate is proportional to the degree, being l
est for the oldest nodes since these began accumulating
earliest. A further consequence of this feature is a stro
positive correlation between the age of a node and its deg
©2002 The American Physical Society23-1
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This kind of correlation has not been found in the netwo
formed by the hyperlinks of the World Wide Web@15#. We
also notice that if the oldest nodes are disregarded, the
works generated by the BA model are not scale free a
more. However, real-world networks have shown to be sc
free even though they are truncated, i.e., the major part of
oldest nodes is disregarded.

III. GROWTH AND DEACTIVATION MODEL

The shortcomings indicated in the preceding paragr
motivated our attempt to model self-organization of sca
free networks. The approach presented here is based o
degree-dependent deactivation dynamics of the nodes. P
erential attachment and the convergence to a power-law
gree distribution are shown to be emergent properties of
dynamics.

The model describes the growth dynamics of a netw
with directed links. Byki we denote the in-degree of nodei,
i.e., the number of links pointing to nodei. Each node of the
network can be in two different states: active or inactive
new node added to the network is always in theactivestate
first. It receives links from subsequently generated nodes
til it is deactivated. Then the node does not receive lin
anymore. The transition of a node from the active to
inactive state can be interpreted as a collective ‘‘forgettin
of the node since new nodes do not connect to it anym
For the construction of the model we assume that the p
ability rateP of deactivation decreases with the in-degree
the node. Considering, for instance, the case of citation
works, this means that the more often a paper has been c
the less likely it is forgotten. Specifically, we make the a
sumption that the deactivation probability can be written
P}(k1a)21, wherea.0 is a constant bias.

At any step of the time-discrete dynamicsm nodes in the
network are active, all the other nodes are inactive. As

FIG. 1. Data on the network formed by scientific publicatio
~nodes! and citations~directed links!. Circles, number of paper
published in a given year from 1987 to 1998; triangles, total num
of citations made in papers published in 1998 and referring to
pers published in a given year@14#; filled squares, the average num
ber of citations~incoming links! a paper received in 1998 as
function of the paper’s publication year. The values are obtaine
the ratio between the values of the two curves in the upper pa
Considering only papers more than three years old~published be-
fore 1995! the rate of obtaining new citations decreases with ag
03612
et-
y-
le
e

h
-
the
ef-
e-
e

k

n-
s
e
’’
e.
b-
f
t-

ed,
-
s

e

initial condition we use a network consisting ofm active,
completely connected nodes. Then the dynamics runs as
lows. ~1! Add a new nodei to the network. The new node i
disconnected at first, soki50 at this point.~2! Attach m
outgoing links to the new nodei. Each nodej of them active
nodes receives exactly one incoming link, therebykj→kj
11. ~3! Activate the new nodei. ~4! Deactivate one of the
active nodes. The probability that the nodej is deactivated is
given by

P~kj !5
g21

a1kj
, ~1!

wherea.0 is a constant bias and the normalization facto
defined asg215@( l PA1/(a1kl)#21. The summation runs
over the setA of the currently active nodes.~5! Resume at 1.
The average connectivity of the network is given by t
number of outgoing links per node,m. It is worth noting that
a node receives incoming links during the lifetimeT it is
active, and once inactive it will not receive links any long
Thus for each nodei the timeTi spent in the active state an
the in-degreeki are the same.

The deactivation mechanism strongly simplifies the d
namics of growing networks. Neither gradual aging nor p
sible reactivation are taken into account. For instance, in
context of citation networks, the model does not consider
rediscovery of ‘‘forgotten’’ papers. Moreover, the function
form of the deactivation probability might well differ from
Eq. ~1!. However, we will show that the model reproduc
several features of real growing networks.

IV. DEGREE DISTRIBUTION

The distributionN(k) of the in-degreek can be obtained
analytically for the model defined above, considering t
continuous limit of k. Let us first derive the distribution
p(t)(k) of the in-degree of the active nodes at timet. For k
.0, the time evolution is determined by the following ma
ter equation:

p(t11)~k11!5@12P~k!#p(t)~k!

5S 12
g21

a1k D p(t)~k!, ~2!

wherea andg are defined in step~4! of the model definition.
The boundary valuep(0) is a constant reflecting the consta
rate of new nodes with initialk50.

Assuming that the fluctuations of the normalizationg
21 are small enough, such thatg may be treated as a con
stant, the stationary casep(t11)(k)5p(t)(k) of Eq. ~2! yields

p~k11!2p~k!52
g21

a1k
p~k!. ~3!

Treatingk as continuous, we write

dp

dk
52

g21

a1k
p~k!, ~4!
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and obtain the solution

p~k!5b~a1k!2g11, ~5!

with appropriate normalization constantb. In case the total
numbern of nodes in the network is large compared with t
numberm of active nodes, the overall degree distributi
N(k) can be approximated by considering the inactive no
only. ThusN(k) can be calculated as the rate of change
the degree distributionp(k) of the active nodes. We find

N~k!52
dp

dk
5c~a1k!2g, ~6!

with c5(g21)ag21. The exponentg is obtained from a
self-consistency condition obtained from the average c
nectivity

m5cE
0

` k

~a1k!g
dk, ~7!

which gives

g521
a

m
. ~8!

Thus the exponentg depends only on the ratioa/m. Similar
expressions have been obtained for a version of the
model with directed links@13#. Although the growth and de
activation model has been formulated for directed netwo
it can be easily applied also to generate undirected netwo

Figure 2~a! shows the cumulative distribution of the tot
degreek85(m1k) obtained by simulating the model for
3104 time steps. We obtain a power-law scaling for seve
decades, in agreement with the analytical result in Eq.~6!.
The exponent found numerically is 1.9, slightly below t
analytical resultg21521a/m2152 for the casea5m.
The deviation can be explained by the continuous limit u
in the theoretical derivation ofg and the assumption thatg is
a constant. Conducting further simulations for various val
of m anda, we find that the fluctuations ofg become smaller
when increasingm and/ora. Then the discrepancy betwee
analytical and numerical results decreases. Figure 2~a! also
shows corresponding simulation results for the BA mod
using m510 and 53104 time steps as well. In the rang
k8,1000 we obtain almost the same distribution as for
growth and deactivation model. However, the main diff
ence between both models is the presence of a cutoff
lower value for the BA model.

Up to this point we have considered degree distributio
including all nodes of the network. However, in many cas
empirical data contain only those nodes and links of the n
work that have been created most recently. For insta
studies on scientific citation networks@16# are restricted to
papers that are not older than 20 years, thereby ignoring
major part of the initial network. A pronounced power-la
regime is observed in the degree distribution of thesetrun-
catednetworks. Therefore, it is important to investigate t
robustness of the scale-free networks obtained from mo
03612
s
f

-

A

s,
s.

l

d

s

l,

e
-

a

s
s
t-
e,

he

ls

under truncation in time. Figure 2~b! shows the cumulative
degree distributions analogous to Fig. 2~a!, but now regard-
ing the truncated network where the fractionD550% of
oldest nodes and all their links are disregarded. Concern
the BA model the effect of truncation is drastic. The tru
cated network does not exhibit a scale-free range in the
gree distribution. This is different for the growth and deac
vation model. The influence of the truncation on the deg
distribution is a slight shift of the cutoff for highk8. In order
to view systematically the effect of truncation, we consid
the largest degreekmax8 , occurring in the truncated network
as a function of the fractionD of disregarded nodes. Accord
ing to Fig. 2~c!, kmax8 decays as a power law~with an ap-
proximate exponent of 0.5,kmax8 ;D20.5) for the BA model.
On the other hand, the new model introduced here exhi
only a weak dependence of the maximum degree on the t
cation.

V. LINEAR PREFERENTIAL ATTACHMENT

Another relevant dynamical property is the degre
dependent attachment rateP(k). It is measured as follows

FIG. 2. Comparison of the degree distribution obtained for
undirected networks following the BA~dashed line! and the growth
and deactivation model~solid line!. In ~a! the complete networks
are considered after 53104 time steps. In contrast, in~b! only the
network formed by the newest nodes and their links is taken
account. In~c! we plot the maximum degreekmax observed in the
truncated network against the truncation ratioD. In the BA model,
kmax scales as a power law withD. However, the degree distributio
in the new model shows a power-law distribution of degree, wh
cutoff is only slightly affected by the finite size of the truncate
network. All curves are averages over 100 independent simula
runs.
3-3
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Consider the setK of nodes with degreek at a certain timet.
Measure the average degreek1Dk of the nodes inK at a
later timet1Dt. Then letP(k)5Dk/Dt. In recent studies of
various growing networks, it has been found empirically th
P(k) is an increasing function@8,9,17#. This phenomenon is
called preferential attachment. For the Internet and cita
networks the preferential attachment is linear,P(k)}k.

We can calculateP(k) for the model introduced in the
present paper. At a timet, the network containst nodes.
tN(k) of these have degreek. The number of active node
with degreek is mp(k). A time step later,Dt51, each of the
active nodes has increased its degree by 1, whereas th
gree of the inactive nodes remains unchanged. Thus, acc
ing to Eqs.~5! and~6!, the average increase of the degree

P~k!5
mp~k!

tN~k!
}~a1k!. ~9!

The model shows linear preferential attachment as
emergent property of the degree-dependent deactiva
dynamics.

VI. AGE DISTRIBUTION

Let us now consider the distribution of the aget of nodes
receiving a new link. We define the time-dependent age
tribution h(t,t) as the probability that a new link created
time t attaches to a node of aget, i.e., to a node created a
time t2t. For the model defined here, the age distributionh
is easy to obtain. Only active nodes receive links, and
these nodes their aget and their in degreek have the same
value. Therefore, the probability that the node of aget ob-
tains a new link is the same as the probability for a node w
t links to be active, given by Eq.~5!. It is independent oft,

FIG. 3. Age distributionh(t,t) of nodes receiving links. In the
growth and deactivation model the distribution~solid line! follows a
power-law decay with the age of the node. In contrast, in the
model ~dashed line! it is the oldest nodes that are most likely
receive new links. For each of the two models the plotted data h
been generated as an average over 100 independent simulation
lasting 53104 time steps.
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h~t!}~a1t!2g11. ~10!

For comparison, we calculate the age distribution for the
model. Apart from small deviations, the total degree of t
nodei created at timet i is @11#

ki85mS t

t i
D 0.5

5mS t

t2t D 0.5

, ~11!

where the second equality is due to the substitutiont i5t
2t. The probability of obtaining a new link is proportiona
to the total degree, thus we find

A

ve
uns

FIG. 4. Dependence of the clustering coefficientC on the sizeN
of the network.~a! Growth and deactivation model form5a52
~unfilled! andm5a510 ~filled symbols!. C approaches a high sta
tionary value close to 0.83. Note that corresponding o
dimensional regular lattices haveC50.5(m52) and C50.71(m
510), respectively~b! BA model for m52 ~unfilled! and m510
~filled symbols!. The clustering coefficient strongly decreases as
network grows. The solid line is the proposed decay as (lnN)2/N.
~c! The same data as in~b!, but plotting (NC)0.5 as a function ofN.
This function is a straight line in a log-linear plot, indicating thatC
scales as (lnN)2/N for largeN. Each data point is an average ov
100 independent simulation runs. The clustering coefficient@4# is
defined as follows. Consider a nodei with total degreeki8 . Between
the ki8 nodes thati is linked with, at mostki8(ki821)/2 links are
possible. LetCi denote the fraction of links that actually exis
among the neighbors ofi. The clustering coefficientC is the aver-
age ofci taken over allN nodesi in the network. Note that all links
are considered as bidirectional when calculating the clustering
efficient.
3-4
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h~t,t !5
1

2mt
mS t

t2t D 0.5

5
1

2
@ t~ t2t!#20.5. ~12!

In the BA model the probability of receiving a new lin
increases with the age of the node. In sharp contrast,
growth and deactivation model displays a forgetting of o
nodes where the rate of forgetting is a power law, Eq.~10!.
Figure 3 shows plots of the age distributions for both mode
to be compared with the empirical data in Fig. 1. The a
distribution of the growth and deactivation model deca
with t. This agrees with the empirical data on citation n
works except for the first three years after publication.

VII. CLUSTERING COEFFICIENT

The clustering coefficientC @4# is one of the observable
used to characterize the topology of complex networks. I
a local property measuring the probability with which tw
neighbors of a node are also neighbors to each other~nodesi
and j are neighbors if there is a link betweeni and j ). It has
been found that many real-world networks present a clus
ing coefficient much larger than the corresponding rand
graph, which scales with the system sizeN as Crand
;^k&/N.

Figure 4~a! shows that for the growth and deactivatio
model the clustering coefficient tends towards an asympt
value ~0.83!, similar to the movie actor network~0.79!, the
coauthorship network in neuroscience~0.76!, and the net-
work of word synonyms~0.7! @5#. The analytical derivation
of C is facilitated by the observation, that the clusteringCi of
a node merely depends on the node’s in degreeki . A detailed
calculation gives an asymptotic valueC55/6 for the case of
a5m considered here@19#. Thus the model generates ne
works with a higher clustering than the corresponding o
dimensional regular lattices,C1D,3/4. The large value of
the clustering coefficient and the fact that it does not
crease with network size is in qualitative agreement w
recent data on the Internet@18#. For the sake of comparison
in Fig. 4~b! the clustering coefficient of the BA model i
plotted for several network sizesN. Here the clustering
clearly decays with increasingN. The quantitative behavio
v-
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of the decay can be described byC;(ln N)2/N @19#.

VIII. CONCLUSIONS

The analysis of citation networks suggests a negative co
relation between the age of a node and its probability t
obtain further links. Older nodes are less likely to increas
their connectivity than those added to the network more re
cently. Motivated by this finding, we have proposed and ana
lyzed an approach based on nodes with one degree of fre
dom, amemory, indicating the ability of the node to attract
further links. We have found that with the simple setting o
the model the degree distribution converges to a power law
where the exponent can be obtained analytically. As eme
gent properties of the model,~1! preferential attachment is
obtained, a feature observed recently in various real growin
networks, and~2! the correlation between age and linking
probability is negative, in agreement also with the empirica
results mentioned above. Unlike previous models, degre
and age of nodes are uncorrelated in the model introduce
here. Therefore, the networks retain the power-law distribu
tion of the degree even though only the most recent node
are considered. This agrees with the fact that also truncat
real-world networks are observed to be scale free. Finally,
is worth noting the resemblance of the grown networks t
regular lattices. The highly clustered scale-free network
make a connection between scale-free networks and regu
lattices. They define a new class of scale-free networks. In
teresting extensions of the model include the introduction o
random links, similarly to models of small-world networks.
We expect to find a connection between scale-free growin
networks and the small-world transition from regular lattices
Research along this line is in progress@19#.
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