View metadata, citation and similar papers at core.ac.uk brought to you by ;i CORE

provided by Digital.CSIC

PHYSICAL REVIEW E, VOLUME 65, 036123
Highly clustered scale-free networks
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We propose a model for growing networks based on a finite memory of the nodes. The model shows stylized
features of real-world networks: power-law distribution of degree, linear preferential attachment of new links,
and a negative correlation between the age of a node and its link attachment rate. Notably, the degree distri-
bution is conserved even though only the most recently grown part of the network is considered. As the
network grows, the clustering reaches an asymptotic value larger than that for regular lattices of the same
average connectivity and similar to the one observed in the networks of movie actors, coauthorship in science,
and word synonyms. These highly clustered scale-free networks indicate that memory effects are crucial for a
correct description of the dynamics of growing networks.
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[. INTRODUCTION than nodes added to the network more recently. Second, mo-
tivated by this finding, we introduce a model of network
Social networks, the Internet, food webs, distribution net-self-organization that accounts for the three empirical fea-
works, metabolic and protein networks, the networks of airtures mentioned beforg1) power-law distribution for the
line routes, scientific collaboration networks, and citationdegree(2) preferential attachment, artd) negative correla-
networks are some examples of systems that can be repréon between age and attachment rate. The clustering of the
sented by networkisl—5]. Recently it has been observed that generated networks is higher than in corresponding regular
a variety of networks exhibit topological properties that de-lattices, justifying the namaighly clustered scale-free net-
viate from those predicted by random grapgts?]. For in-  Works
stance, real networks displajusteringhigher than that ex-
pected for random networkg,5]. Also, it has been found
that many large networks aseale free Their degree distri-
bution decays as a power law that cannot be accounted for by The earliest and most basic model generating scale-free
the Poisson distribution of random gragdiés, being of great  networks has been introduced by Barsiband Albert[11],
importance for the functionality of the netwofK]. Beside henceforth we use the acronym BA model. This model ex-
the degree distribution, other features of the growth dynameplicitly incorporates the preferential attachment in the dy-
ics of real-world networks are currently under investigation.namical rules. At each time step a new node is added to the
For citation networks, the Internet, and collaboration netnetwork and new links are attached from this new node to
works of scientists and actors, it has been sh¢@8] that  old nodes. The probability that a node obtains an additional
the probability for a node to obtain a new link is an increas-link is proportional to its current degree. It can be interpreted
ing function of the number of links the node already has.as an application of Simon’s growth model in the context of
This feature of the dynamics is callgueferential attach- networks[12,13, readily explaining the emergent scaling in
ment Furthermore, the aging of nodes is of particular interesthe degree distribution. For the sake of clarity, in the remain-
[2,10]. In the network of scientific collaborations, every nodeing part of the paper we will refer to the BA model as a
stops receiving links a finite time after it has been added tavell-established model of growing scale-free networks.
the network, since scientists have a finite time span of being Real-world networks have properties that cannot be ac-
active. Similarly, in citation networks, papers cease to recounted for by the BA model. We find a discrepancy with
ceive links(citations, because their contents are outdated orrespect to empirical data in the correlation between a node’s
summarized in review papers, which are then cited insteachge and its rate of acquiring links. For the network of scien-
Whether a paper is still cited or not, depends on a collectiveific citations this correlation is negative: the mean rate of
memorycontaining the popularity of the paper. citations a paper receives decreases with increasing age. This
In the current paper, we address the study of growings supported by citation rate data of the years 1987-1998,
complex networks from the perspective of the memory of theshown in Fig. 1. Except for the three first years prior to the
nodes. First, we present empirical evidence for the age depublication year, the citation rate decreases with[dgé In
pendence of the growth dynamics of the network of scientificcontradiction to this empirical result, in the BA model the
citations. We find that old nodes are less likely to obtain linksmean attachment rate is positively correlated with age. Here
the attachment rate is proportional to the degree, being larg-
est for the oldest nodes since these began accumulating links
*Email address: klemm@nbi.dk earliest. A further consequence of this feature is a strong
"Email address: victor@imedea.uib.dk positive correlation between the age of a node and its degree.
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‘ ‘ ‘ ‘ initial condition we use a network consisting of active,

| o——o papers/ 10° published in year x - _
& - - & citations / 10?from year 1998 to x completely connected nodes. Then the dynamics runs as fol

=—a citations in 1998 per paper published in x

lows. (1) Add a new nodeé to the network. The new node is
disconnected at first, sk=0 at this point.(2) Attach m

_ outgoing links to the new node Each nodg of them active
nodes receives exactly one incoming link, therdgy-k;
+1. (3) Activate the new nodé. (4) Deactivate one of the
active nodes. The probability that the ngde deactivated is
given by

0 . 0 Il Il Il Il Il _ 1
1998 1996 1994 1992 1990 1988 1986 P( kj )= _‘)/ ,
publication year x a+k;

@

FIG. 1. Data on the network formed by scientific publications wherea>0 is a constant bias and the normalization factor is
(node$ and citations(directed links. Circles, number of papers defined asy—1=[3,_41l/(a+ kl)]*l_ The summation runs
published in a given year from 1987 to 1998; triangles, total numbegyer the setd of the currently active node€s) Resume at 1.
of citations made in papers published in 1998 and referring to paThe average connectivity of the network is given by the
pers published in a given yegt4]; filled squares, the average num- umbper of outgoing links per node. It is worth noting that
ber of citations(incoming linkg a paper received in 1998 as a a node receives incoming links during the lifetirfieit is
function of the paper’s publication year. The values are obtained ctive, and once inactive it will not receive links any longer.

the ratio between the values of the two curves in the upper pane hus for each nodethe timeT, spent in the active state and
Considering only papers more than three years(pltblished be- . :
the in-degre&; are the same.

f 1995 th te of obtaini itati d ith . A : . -
ore 9 the rate of obtaining new citations decreases with age The deactivation mechanism strongly simplifies the dy-
This kind of correlation has not been found in the networkn@mics of growing networks. Neither gradual aging nor pos-

formed by the hyperlinks of the World Wide Wét5]. We sible reactivation are taken into account. For instance, in the

also notice that if the oldest nodes are disregarded, the netontext of citation networks, the model does not consider the

works generated by the BA model are not scale free any[edlscovery of “forgotten” papers. Moreover, the functional

more. However, real-world networks have shown to be scald2™ Of the deactivation probability might well differ from

free even though they are truncated, i.e., the major part of thEd- (). However, we will shc_)w that the model reproduces
oldest nodes is disregarded. several features of real growing networks.

lIl. GROWTH AND DEACTIVATION MODEL IV. DEGREE DISTRIBUTION

The shortcomings indicated in the preceding paragraph The distributionN(k) of the in-degreek can be obtained
motivated our attempt to model self-organization of scale-2nalytically for the model defined above, considering the
free networks. The approach presented here is based on th ntinuous ||m|t ofk. Let us flrSt. derive the d.IStrIbutlon
degree-dependent deactivation dynamics of the nodes. Prétt’(k) of the in-degree of the active nodes at titndor k
erential attachment and the convergence to a power-law dez0, the time evolution is determined by the following mas-
gree distribution are shown to be emergent properties of thter equation:

dynamics. (t+1) (t)
The model describes the growth dynamics of a network pt (k+1)=[1-P(k)]p* (k)
with directed links. Byk; we denote the in-degree of node y—1
i.e., the number of links pointing to nodeEach node of the = ( 1- ——|p®(k), 2
network can be in two different states: active or inactive. A atk

new node added to the network is always in &utive state
first. It receives links from subsequently generated nodes u ) .
til it is deactivated. Then the node does not receive links' "€ Poundary valup(0) is a constant reflecting the constant
anymore. The transition of a node from the active to the'ate of new nodes with 'n't'dtz_o' L
inactive state can be interpreted as a collective “forgetting” ASSuming that the fluctuations of the normalizatign

of the node since new nodes do not connect to it anymore. L @€ small enough, such thatmay be treated as a con-

For the construction of the model we assume that the probStant, the stationary cagé'" (k) =p®(k) of Eq. (2) yields
ability rate P of deactivation decreases with the in-degree of
the node. Considering, for instance, the case of citation net- p(k+1)—p(k)=— —
works, this means that the more often a paper has been cited, atk
the less likely it is forgotten. Specifically, we make the as- _ ) )
sumption that the deactivation probability can be written asfreatingk as continuous, we write
Px(k+a) !, wherea>0 is a constant bias.

At any step of the time-discrete dynamiesnodes in the dp y—1 @)
network are active, all the other nodes are inactive. As the dk a+k

vherea andy are defined in stef?) of the model definition.

-1
(k). @3
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and obtain the solution

10°
p(k)=b(a+k)~7"1, (5
=
[$]
with appropriate normalization constalnt In case the total 8 102
numbern of nodes in the network is large compared with the &
numberm of active nodes, the overall degree distribution ¢
N(k) can be approximated by considering the inactive nodes 8 o |
only. ThusN(k) can be calculated as the rate of change of §
the degree distributiop(k) of the active nodes. We find °
dp 107 0 ] 3 'i x 5 3 4
= "= -y 10° 10" 10® 10 10' 10° 10° 10
N(k) k c(a+k)™?, 6) total degree k total degree K
with c=(y—1)a*" 1. The exponenty is obtained from a ()
self-consistency condition obtained from the average con- 10000 ' '
nectivity
- Kk 1000 |
m=c f dk, (7) A e
0 (a+k)? g e
< —
100 | = ,
which gives \\\
a 10 . . \
y=2+ . 8 107 107 10" 10°
truncation ratio A
Thus the exponeny depends only on the rat@/m. Similar FIG. 2. Comparison of the degree distribution obtained for the

expressions have been obtained for a version of the BAndirected networks following the B&lashed lingand the growth
model with directed link$13]. Although the growth and de- and deactivation modekolid line). In (a) the complete networks
activation model has been formulated for directed networksare considered after’510* time steps. In contrast, ifb) only the
it can be easily applied also to generate undirected networkaetwork formed by the newest nodes and their links is taken into
Figure Za) shows the cumulative distribution of the total account. In(c) we plot the maximum degrele, ., observed in the
degreek’ = (m+k) obtained by simulating the model for 5 truncated network against the truncation rafioln the BA model,
X 10* time steps. We obtain a power-law scaling for severakmaxScales as a power law with. However, the degree distribution
decades, in agreement with the analytical result in @y. in the new model shows a power-law distribution of degree, whose
The exponent found numerically is 1.9, slightly below the cutoff is only slightly affected by the finite size of the truncated
analytical resulty—1=2+a/m—1=2 for the casea=m. network. All curves are averages over 100 independent simulation
The deviation can be explained by the continuous limit usedu"s:

in the theoretical derivation of and the assumption thatis  ynder truncation in time. Figure(® shows the cumulative
a constant. Conducting further simulations for various valuegjegree distributions analogous to Figa2 but now regard-
of manda, we find that the fluctuations of become smaller jng the truncated network where the fractidn=50% of
when increasingn and/ora. Then the discrepancy between oldest nodes and all their links are disregarded. Concerning
analytical and numerical results decreases. Figia @lso  the BA model the effect of truncation is drastic. The trun-
shows corresponding simulation results for the BA modelcated network does not exhibit a scale-free range in the de-
usingm=10 and 5<10* time steps as well. In the range gree distribution. This is different for the growth and deacti-
k’ <1000 we obtain almost the same distribution as for thevation model. The influence of the truncation on the degree
growth and deactivation model. However, the main differ-distribution is a slight shift of the cutoff for higk’. In order
ence between both models is the presence of a cutoff at @ view systematically the effect of truncation, we consider
lower value for the BA model. the largest degrek;,,,, occurring in the truncated network,
Up to this point we have considered degree distributiongis a function of the fractioa of disregarded nodes. Accord-
including all nodes of the network. However, in many casesing to Fig. 4c), k., decays as a power lawith an ap-
empirical data contain only those nodes and links of the netproximate exponent of 0.%;/,,,~A %% for the BA model.
work that have been created most recently. For instancé)n the other hand, the new model introduced here exhibits
studies on scientific citation networks6] are restricted to only a weak dependence of the maximum degree on the trun-
papers that are not older than 20 years, thereby ignoring theation.
major part of the initial network. A pronounced power-law
regime is observed in the degree distribution of these- V. LINEAR PREFERENTIAL ATTACHMENT
catednetworks. Therefore, it is important to investigate the  Another relevant dynamical property is the degree-
robustness of the scale-free networks obtained from modeldependent attachment raff(k). It is measured as follows.
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FIG. 3. Age distributiorh(,t) of nodes receiving links. In the § 10"
growth and deactivation model the distributi@olid line) follows a g a
power-law decay with the age of the node. In contrast, in the BA g g‘
model (dashed lingit is the oldest nodes that are most likely to £ 102 =
receive new links. For each of the two models the plotted data have%
been generated as an average over 100 independent simulation ru
lasting 5x 10* time steps.
0 10° 100 10° 107 10° %100 1000 10000
Consider the set of nodes with degrek at a certain time. network size N network size N

Measure the average degriee Ak of the nodes inC at a _ N _
later timet+ At. Then letlI(k) = Ak/At. In recent studies of FIG. 4. Dependence of the clustering coeffici€nn the sizeN
various growing networks, it has been found empirically thatof the network.(a) Growth and deactivation model fon=a=2
I1(k) is an increasing functiof8,9,17. This phenomenon is (_unfllled) andm=a=10 (filled symbolg. C approaches a hl_gh sta-
called preferential attachment. For the Internet and citatioﬁ'd‘?”ary_ Va':Je Cl?SGI :to 0-8h3-\@N0(t)65(thatz)corrg?org)d;nlg( one-
networks the preferential attachment is linddgk) «k. Imensiona’ regular fatices have=1.o(m=2) anat.=o.7m

We can ca?culateﬂ(k) for the model intrO((:iu)ced in the - 10), respectivelyb) BA model for m=2 (unfilled) and m=10
present paper. At a time the network containg nodes (filled symbols. The clustering coefficient strongly decreases as the
tN(K) of thesé have degrde The number of active nodés network grows. The solid line is the proposed decay asNJi\.

. X . B (c) The same data as ib), but plotting (NC)®® as a function oN.
with degreek is mp(k). A time step laterAt=1, each of the This function is a straight line in a log-linear plot, indicating tieat

active nodes has increased its degree by 1, whereas the d@yes as (IN)YN for largeN. Each data point is an average over
gree of the inactive nodes remains unchanged. Thus, accorglpy independent simulation runs. The clustering coefficiéhts
ing to Egs.(5) and(6), the average increase of the degree isgefined as follows. Consider a nodwith total degreek . Between
the k{ nodes that is linked with, at mostk{ (ki —1)/2 links are
(k)= mp(k) «(a+k) 9) possible. LetC; denote the fraction of links that actually exist
~tN(k) ' among the neighbors af The clustering coefficient is the aver-
age ofc; taken over alN nodesi in the network. Note that all links
The model shows linear preferential attachment as aire considered as bidirectional when calculating the clustering co-
emergent property of the degree-dependent deactivatiogfficient.
dynamics.

h(r)=(a+7)~ 7" (10
VI. AGE DISTRIBUTION

For comparison, we calculate the age distribution for the BA
model. Apart from small deviations, the total degree of the
nodei created at time; is [11]

0.5 t
=m| —
t—r

Let us now consider the distribution of the agef nodes
receiving a new link. We define the time-dependent age dis
tribution h(7,t) as the probability that a new link created at
time t attaches to a node of age i.e., to a node created at
time t— 7. For the model defined here, the age distribution k_,:m(t
is easy to obtain. Only active nodes receive links, and for ' t
these nodes their ageand their in degre& have the same
value. Therefore, the probability that the node of ageb-  where the second equality is due to the substitutienr
tains a new link is the same as the probability for a node with—t. The probability of obtaining a new link is proportional
7 links to be active, given by Ed5). It is independent of,  to the total degree, thus we find

05
: (11)
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O-SZE[t(t_ ]-05 12 of the decay can be described 6y~ (In N)%/N [19].
5 :

1 t
D= omiM =

VIIl. CONCLUSIONS
In the BA model the probability of receiving a new link
increases with the age of the node. In sharp contrast, thleel
growth and deactivation model displays a forgetting of old
nodes where the rate of forgetting is a power law, @d).

The analysis of citation networks suggests a negative cor-
ation between the age of a node and its probability to
obtain further links. Older nodes are less likely to increase
) AT their connectivity than those added to the network more re-
Figure 3 shows plots of the age distributions for both mOdeISCentIy. Motivated by this finding, we have proposed and ana-

to b? cqmpared with the empirical deta n Fig. 1. The agqyzed an approach based on nodes with one degree of free-
d|§tr|but|on of the grqvvth and deectwaﬂon model_decaysdom’ amemory indicating the ability of the node to attract
W'thkT' This ??refﬁ V‘;!thtttr;]e empirical :cjtata og|.C|tz:tlon Neturther links. We have found that with the simple setting of
works except for the first three years after publication. the model the degree distribution converges to a power law,
where the exponent can be obtained analytically. As emer-

VIl. CLUSTERING COEFFICIENT gent properties of the mode(l) preferential attachment is

The clustering coefficienE [4] is one of the observables obtained, a feature observed _recently in various real gro_wing
used to characterize the topology of complex networks. It i§'€tWorks, and?2) the correlation between age and linking
a local property measuring the probability with which two probability |s_negat|ve, in agreement aleo with the empirical
neighbors of a node are also neighbors to each dtietes results mentioned above. Unlike previous models, degree
and] are neighbors if there is a link betweeandj). It has and age of nodes are uncorrelated in the model introduced
been found that many real-world networks present a clustefiere. Therefore, the networks retain the power-law distribu-

ing coefficient much larger than the corresponding randonfion ©f the degree even though only the most recent nodes
graph, which scales with the system sipé as C,qng are considered. This agrees with the fact that also truncated

~(K)/N. real-world networks are observed to be scale free. Finally, it

Figure 4a) shows that for the growth and deactivation is worth noting the resemblance of the grown networks to

model the clustering coefficient tends towards an asymptotife9ular lattices. The highly clustered scale-free networks
value (0.83, similar to the movie actor networf0.79), the make a connection between scale-free networks and regular

coauthorship network in neuroscien@76, and the net- Iattice.s. They define a new class _of scale-free networks. In-
work of word synonyms0.7) [5]. The analytical derivation teresting .extensflons of the model include the introduction of
of Cis facilitated by the observation, that the cluster@gof random links, §|m|IarIy to quels of small-world networke.
a node merely depends on the node’s in degred\ detailed We expect to find a connection be_t\_/veen scale-free growing
calculation gives an asymptotic val@=5/6 for the case of networks and the s_ma_ll-w_orl_d transition from regular lattices.
a=m considered herg¢l9]. Thus the model generates net- Research along this line is in progreas)].

works with a higher clustering than the corresponding one-
dimensional regular lattice$;,5<<3/4. The large value of
the clustering coefficient and the fact that it does not de- We would like to thank Anthony F. J. van Raan for pro-
crease with network size is in qualitative agreement withviding us with the age-distribution data in Fig. 1.V.M.E. ac-
recent data on the Interngt8]. For the sake of comparison, knowledges financial support from the Danish Natural Sci-
in Fig. 4(b) the clustering coefficient of the BA model is ence Research Council. We are grateful to Preben /Aistro
plotted for several network sizel. Here the clustering Emilio Hernandez-Gara, and Kristian Schaadt for useful
clearly decays with increasiny. The quantitative behavior comments on the manuscript.
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