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Theory of Main Resonances in Directly Modulated
Diode Lasers

Catalina Mayol, Raul Toral, Claudio R. Mirasso, Sergei |. Turovets, and Luis Pesquera

Abstract—Domains of existence of the main resonances in di- a chaotic regime as the carriers of information in secure chaotic
rectly modulated semiconductor lasers are obtained by application communication schemes [5]. In addition to the optical feedback
of quasi-conservative theory. The predictions are compared with 54 saturable absorption effects, chaos in laser diodes induced

numerical results coming from a direct integration of the model b dulation in th ti th tion for buildi
equations and with experimental observations reported by other y moduiation in e pump CUFFENLIS anodtner option iorbuiiding

groups. In both cases we find a qualitative good agreement. We transmitters for encoded optical communications.

consider a model that contains explicitly the gain saturation and ~ Before Liu and Ngai [3] succeeded in observing chaos on a
spontaneous emis_sjon terms. \.Ne.find that Fhe spontaneous gmis-1_55ﬂm InGaAsP DFB bulk laser, followed by the report of
sion strongly modifies the qualitative behavior of the instabilities a similar observation in 1.5m MQW lasers [6], there had

boundaries, while the gain saturation leads to a simple quantita- b t . lier th tical dicti 7 d
tive shift of boundaries. een some controversy In earlier theoretical predictions [ ] an

We also find that modulation of the pump or loss produce equiv- €Xperimental results [8], [9]. Specifically, chaotic and high pe-
alent results if the respective modulation amplitudes are conve- riodic regimes had not been experimentally observed in con-

niently rescaled. trast to numerical predictions based on the rate equations. It is
Index Terms—Diode lasers, loss modulation, main resonances, Well known [10] that the gain saturation factor contributes to
pump modulation. the damping of relaxation oscillations and might be the reason

for eliminating chaos. The presence of spontaneous emission in
the cavity and the Auger recombination factor have also been
numerically examined as being one cause of the suppression of
IGH-SPEED modulation of diode lasers is an importaghaos [11]. The importance of noise terms is again under con-
area of study due to the possible applications of these sgideration at this moment [12]. Now it is largely accepted that a
tems. Laser diodes in such circumstances clearly exhibit variaisgle-mode laser diode with relatively small gain saturation and
kinds of nonlinear behavior, i.e., harmonic distortion, multispontaneous emission parameters might undergo a period dou-
pulse response on the time scale of one modulation period, pHng route to chaos under current modulation. From the analyt-
riod doubling, amplitude and/or pulse position bistability, angal side, such an impact of these parameters was explained in
chaos [1]. Usually, these complicated dynamical phenomet@ framework of the small signal analysis showing an increase
are considered as harmful to practical applications and shoglfcthe system damping with increase of the mentioned parame-
be avoided. Nevertheless, there have been some experimetetal [13]. In addition, Horet al.[14] suggested that, in the large
demonstrations of feasibility of using a resonance period doglgnal-modulation regime, the spontaneous emission term, be-
bling regime and pulse position bistability for realizing highsides contributing into a linear damping of the system, leads to
speed optical logic elements [2]. an additional nonlinear damping. This effect would change the
Large capacity information transmission and ultrafast opticedpresentation of the Toda oscillator potential topology for the
processing systems [3], [4], [33] are representative of the pdaser and would be also responsible for suppression of chaos.
sible applications of these systems. Recently, a great deal oflifevertheless, specific mechanisms of these effects in the large
terest has been generated by the potential to use lasers runnirggnal regime are not yet fully understood. To the best of our
knowledge, a detailed study of the role of spontaneous emission
and gain saturation on nonlinear dynamics in the large signal

regime is still lacking even in the framework of the simple rate
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varied. Although main resonances were considered for conven- TABLE |
tional classB lasers theoretically and numerically [15]-[19] DEFINITIONS AND g;‘&LN\D/SgEi LO:SEQEPARAMETERS FOR
and also experimentally [20], [21], the impact of large gain sat-

uration and spontaneous emission terms, which are typical - PARAMETERS VALUES
diode lasesrs, is not yet fully understood, and the aim of o Injection current (bias current) J > threshold
work is to go deeper into this context. Cavity decay rate vy 0.5ps~"

By using the asymptotic quasiconservative theory (QC1 Carrier decay rate yy 1077 ps:
[15], [22] with an appropriate Lyapunov potentiadescribing Num];).er of carriers at transparency No 15 x 107

. A ifferential gain parameter gy 1.5 x 10~ % ps~!

the laser dynamics [23], we have computed the domains Gain saturation parameter e 0% = 10=7
existence for the resonana& periodic responses in arbitrarily Spontaneous emission rate 8 1017 — —10~%ps~T
large amplitude modulated laser diodes. For this particul Electronic charge ¢ 1.6 x 1071°C

kind of nonlinearity, these resonant curves are associated to the

so-called primary saddle-node bifurcatidramd are often con- ] . .

fused in experiments with the multiperiodic windows in chao&€ld £ to be normalized in such a way that its modulus square
When considering gain saturation and spontaneous emissfor |E? is equal to the number of photons inside the cavity.
terms on the dynamics, we find that, besides increasing t'ﬁ@e_ eq_uat|0n_for the electric field can _b_e written in terms of its
damping of relaxation oscillations, these parameters change fiRgical intensityl and the phase by definings = Vic'¢. For _
topology of the Lyapunov potential, increasing the threshol§4TPplicity, we retain the mean power of the spontaneous emis-
of instabilities in the system. The theory is substantiated 1§D b.ut neglect the explicit fluctuations terms. As the evolution
numerical results. The estimations for primary saddle-no§duations fol and N do not depend on the phage we can
bifurcations in strongly modulated laser diodes create tig@ncentrate only on the evolution of the former variables. The

basis for a systematic search farpriori wanted regimes in €quations read
simulations or experiment and also naturally explain pulse dI

position multistability [2], [20]. i [G(N, I) — ]I + 48N Q)
The paper is organized as follows. In Section Il, we de-

scribe qualitatively the response obtained for a laser diode, aN - J_ AN — G(N, DI 2)

as described by a single-mode rate equation model, in the dt

presence of pump modulation. In Section lll, the equatiowhereG
for the laser are rewritten as a relaxational dynamics with
Lyapunov function and modulation terms. The QCT is useﬁ

to obtain relati_ons th_at allow the calculation of the prima.%e mean value of the spontaneous emission in the lasing mode.
;a?ﬁle-node b'fL.'rC‘;:'or:S’ bOthI fog thtg ca}f/e tﬁf f[?]ocju'"’tl.t'olﬁhis form for the spontaneous emission term has been largely
in the pump or in the fosses. In Section 1V, the Teorelicysq i the |iterature [4], [24]. Equations (1) and (2) are written

g.sumﬁtets aret_com;f)?rr]ed W't: Inumerlt_cal re?_L;]Its Cf? mltng ?O"in he reference frame in which the frequency is zero at threshold
Irect integration of the modet equations. 1he etiects of gy, , spontaneous emission noise is neglected. The definition

saturation and spontaneous emission terms in these bifurcati the parameters and typical values appears in Table I. The

are explored in detail. In Section V, we compare our results Jo .~ (Ju.) is given by Jy, = qynNu., where

revious experimental works reported by other groups. Final . .
51 Section vﬁ we summarize thg main rZsuIts Ioup X, = N, +~/gn. The dynamics of these equations for con-

stantJ > J;; is such that botl and /V relax to their steady
states by performing damped oscillations [4], [23]. The fre-
Il. DYNAMICAL BEHAVIOR quencyw, of these oscillations close to the steady state can be

The dynamics of a single mode semiconductor laser can ggiculated linearizing the equations of motion. For the simplest

described in the simplest way by two evolution equations: 0f@se { = 3 = 0), one obtainsuy = /gn(J — Jin)/q = 25

for the slowly varying complex amplitude of the electric field's™* (fo = wo/27 =~ 4 GHz) for the previous parameter values

inside the laser cavity, and the other for the carriers numbe@nd.J = 1.23J;,. _ _ _

N (or electron-hole pairs) [4], [33]. We consider the electric The purpose of this work is to study the dynamics of (1) and
tror ol | hich § | o (2) under modulation. In particular, we will consider modula-
For classB lasers, of which semiconductor lasers are an example, the A H H H

larization decays toward the steady state much faster than the field and cal:rtﬁi)ops mainly in the pump CF’”e”I' but also_m th,e losses,

number, and it can be adiabatically eliminated. They are then described by }diCh would be an option in DBR or multisection lasers. A

two rate equations. detailed description of the qualitative features of the behavior

°The Lyapunov function, also called Lyapunov potential, is a potential dgyhen the pump is modulated in the form
scription of the system and it is, in some cases, useful to describe its dynamics

(in this case the laser). The usefulness of Lyapunov functions lies on the fact that

(N, I) =gn(N — N,)/(1 + ¢I) is the material gain.
hile the first term of the right-hand-side of (1) accounts for the
mulated emission and losses, the last @&\ accounts for

they allow an easy determination of the fixed points of a dynamical (determin- J = J[1 + 6 cos(wmt)] 3
istic) system as the extrema of the Lyapunov function, as well as determining
the stability of these fixed points. whereJ, is a fixed value of the current (bias current), such that

3In a saddle-node bifurcation, two fixed points of the dynamical system cojrb > .J,,, can be found in [25]. Whed becomes time depen-
lide in the phase space when some parameters are varied. The saddle-node gcon- v ich d ical d di
dition is given when one of the eigenvalues of the Jacobian of the transformat@fift: @ VEry rich dynamical structure can appear depending on

is zero. the values of the amplitudé, (6 < 1 to satisfy the physical
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constraint that the total current has to be positive), and the fre- RO o 90
guency,w,,, of the modulation. For small values 6fand for a)
w,n Smaller than the-3 dB modulation bandwidth, the system b
behaves almost as a linear oscillator with damping terms: it pe-
riodically oscillates with the frequenay,,, of the input current.

Moreover, the respondg,.,. (maximum value of the optical in-

tensity) has a maximum at the relaxation oscillation frequency
wo (linear resonance [26]). 60|

In large amplitude modulation, strong nonlinear effects ap-
pear. In addition to a response at the same frequency of modula.,
tionw,, (with a maximum shifted to a smaller frequency), other
frequencies can be excited for sufficiently high modulation am-
plitudesé. This gives rise to a more complex behavior for the
response of the system, leading even to multistability (several E
stable responses for the same value of the input parameters) 301"
The possible responses can be classified dswheren and! 23
are integer numbers with no common factors, such that the re- . '.|
sponse frequency s, /n. Then/1 responses are also called s b
n-periodic responses because the period of the resulting signa \) VS
is n times larger thaff;,,, whereT,,, = 27 /w,, is the period of J/J
the external modulation. The existence of these responses canb
visualized by plotting the amplitudg,,... of the stable:/! re- oL, .. L ol | L e
sponses (whenever they exist) versus the modulation frequency 0 1 o 0.0 15 30
w,y, for fixed value of the modulation amplitude The resulting W/ W, W/ W
curves strongly depend dn

o

10

L/ 10°
L/ 10°

Fig. 1. Responsed (.x) versus the normalized external frequengy, for
— For very small, the1T response is the only responsedifferent values of the modulation pump amplitude in the chse= 1.23.J .,

e = 0, 8 = 0. Other parameters are as indicated in the textd 0.1.
- Fnrgfee;;;%; ?!O\I%Ililiii c;f;";:'ig 1(a)] a decrease of theg?) 6 = 0.3. The2* ang?)*' responses correspond to further peri(gz doubling
: ) ifurcations.
modulation frequency,,, generates a bistable region
in which two differentl7” responses are possible. . . ) .

—_ After a further increase of, the27 response appears The curves in théw,,, 6) plane joining the points at which
continuously, when decreasing, (starting from big nT resonances occur are called Erlfeletomuryes for _thezT
values ofw,,), as a period doubling bifurcation of the'®Sonances (in our case, the nonlinear 03(_:|Ilat0r given by the
17T response (see [25, Fig. 2] for temporal trajectories??te equations belongs to the classsoft spring oscillators
The 27" response around,,, /wo = 2.0 is also known ur main effort will be directed to flndl_ng the gke_leton lines for
as a parametric resonance [26]. gach main resonance of théF. type. This de'scr|pt|on can be of

— For larger values of [Fig. 1(b)], othernZ" responses interest for th_e experlmentallsts to determ_lne thg resonance fre-
with n > 2 appear. Each of thesel” responses exist AU€NCY at Whl_ch the maximum response is obtained for a given
for a given range of values af,, and are uncon- external amplitude of the injection current.
nected to the previoukl’ and21’ responses. At both

ends of its frequency range, they disappear through [1l. QUASI-CONSERVATIVE THEORY

saddle-node bifurcations. Equations (1) and (2) can be reduced to a set of dimensionless

Besides this general framework, all the existitifj responses €quations by performing the following change of variables
can, at a given value of the modulation amplitude, suffer dign{/v, 2 = gn(N—N,)/v,7 = +t/2, such thatthe equations
ferent types of period doubling bifurcations which, followindPecome

the Feigenbaum route, can eventually lead to chaotic behavior

[see dashed line in Fig. 1(b)]. % = <1 Z_ — 1) y+cz+d 4)
For fixed modulation amplitude, eacty! response has its 4 TS

maximum at a given value of the modulation frequency. This dz —a_ by Y )

maximum is called the./! resonance. In this work, we are dr T 143y

mainly interested in the:/1 resonances (or7’ resonances) ]

because they usually yield the maximum output power. In t§dth new parameters defined as

literature, they are also known asain resonanceer primary 9 J 9 168

saddle-node resonancescause they coincide very accurately ¢ = g;\, <_ - ry,\rN(,) L op=ON =22

with some of the saddle-node bifurcations described before. v q v v

These resonances are indicated by the solid dot symbols in d 1689y N,  _ €y

Fig. 1. =5 3= (6)

¥ 298"
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These evolution equations can be cast in the form

A. Pump Modulation
We now include the modulation terms. We first consider the

dy -D ad 7y case of modulation in the pump as given in (3). In terms of the
12 (7 .
dr 0z rescaled variables, (8) becomes
dz av av
=—Diy— —D dz av av _

= 125, 22 5 (8) 5= —Dis o Dss 5 + A, cos(wp,7) (24)

with the following potentialfunction [23]: with
2Jpbgn _ 2
V(y, 2) = a1y + a2y” + azIn(y) + a_; A = 2 m = = Wme (15)
1 _ (d+cz) ERE 9 We ook for »n7 responses, i.e., periodic solutions
top-1-sy+ @459 O [yo(r), 200(7)] of (7) and (14) with a frequenay,, = @,,/n

where we have defined the functions

4y2

or, equivalently, with a period},, = nT,,, = n2n/w,,. In this
case, the potential functiovi(y, z) is no longer a constant of
motion. However, for a periodic orbit, it is still true that the
integral ofdV = [(0V/dy)y + (8V/82)2] dr over a period

Dialy, 2) = (1+3y)[2y + (1 +3y)] (10) is equal to zero. By using this property and after replacing in
i, the previous expressianandZ coming from (7) and (14), we
Das(y, #) = Wl +25+05)y”" + by +d+ c7] (11) obtain that the periodic solutions must satisfy the condition
) (1+3y)[2y + (1 +359)P ’
and the coefficients Am /0 drVs (y(n) (r), 2 (r )) cos(@,7)
T,
a1 =1/2 — a5/2 + b5 — 5d(1 + U5) /4 — a5°c/4 = /O dr Doy (y(")(T% Z(")(T))
az =5(1+05)/4 2
v (), 2 16
as = —[a — b+ (ac+ bd)s + d/2]/2 [ (y (r), # (T))} (16)
as = (ac + bd)/4. (12) where V, stands fordV/dz. The quasi-conservative theory

assumes that the periodic orbifs™)(7), 2(")(7)] can be
The form of the equations (and the fact tiat, > 0) proves approximated, near the resonance, by conservative orbits
thatV(y, z) is a Lyapunov potential, i.e., it is a function thatfy,(r — 79, E,.), zo(7 — 70, En)] = [yn(T — 70)s 20 (T — 70)],
decreases monotonically along trajectori$/d¢t < 0. This corresponding to the value of the potentig| that yields the
potential reduces to the one found for a Toda oscillator whelesired frequency,, = w(E,). Substitution of this ansatz in
the gain saturation parameteand the spontaneous emissionhe above equation leads to
rate 3 are both equal to zero [27]. In the case where these two
terms are different from zero, the potential is both quantitativelxm

nd’/"/z Yn{T), 2, (7)) cOs(W,, (T + T
and qualitatively different from the Toda potential, mainly due  Jo (1), 2n(7)) cos(@n( )

to the effect of the spontaneous emission térm Tn )

The decrease of the Lyapunov potential is due to the func- ~ /0 A7 D3 (yn (1), 20(T)[V=(Yn(7), 2 ()] (17)
tion Dqs(y, z) appearing in the evolution equation (8). There- o
fore, in the dynamical equations, we can identify the consen@Y defining k.., S,,, 6., by
tive terms (those proportional tB;>) and the dissipative ones T,
(those proportional tds,). If the dissipative terms were not R, = / AT Doz (yn(7), 25(7))
present, i.e., ifD2; = 0, the potential would take a constant 0 )
valueE = V(y, z) and we would have a conservative system [Va(yn(7), 2a(7))]
with periodic orbits. The frequenay, = 2= /T, of such an orbit sin(6,) T, Sin(@,, 7)
of the conservative system is a function of the potential, i.e.,Sn{ 0 } = drV.(ya(7), Zn(T)){ _ }
w = w(F), that can be obtained, using standard methods of cos(6n) 0 cos(@m) 18
mechanics, as [23] (18)

we arrive at
T_/y‘ (1+3y)dy R
vo Y[2(F — a1y — azy? — azln(y) — a4y—1)]1/2 A cos(W, 70 + 0) = S—n (19)

n

(13)
wherey, < y, are the values of that cancel the denominatorAccording to this equation, for given,, andw,,, there exist
of the integrand. Notice that the periodic orbits, that we write @ most2n different orbits of periodw7,,,. They correspond
[yo(T — 70, E), 2z0(T — 10, E)], depend on an initial timegy and  to the functiondyo(r — 70, E,), 20(7 — 70, E,)] for the 2n
on the value of the Lyapunov potenti&l values ofry = («p, + k7)/©m, &k = 0,...,2n — 1 and
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«,, = arccos(R,, /(S,An)) — 6,,. It turns out that: of these find simpler instead to use (20) to obtain the theoretical skeleton
solutions are unstable, while the remaining stable ones corceive.

spond, in fact, to trivial translations by a time amodny, of

the same basic solution (pulse position multistability [2], [20])B- Loss Modulation

Therefore, for a given value od,,, andw,,, there is just one et us turn now to loss modulation. We consider (1) and (2)
corresponding stable orbit of the conservative system. Alterngith a fixed value of the currenf but modulated loss term

tively, we can look at the previous equation as a condition for the

existence of periodic orbits. For a given modulation frequency ¥ = YL + Ym cos(wmt)]. (24)

Wm, there will exist periodic orbits of periodT,, if the am-
plitude of the modulation verifies,,, > R, /S,. Since reso-
nances almost coincide in this case with the limit of existence dy av _

of periodic orbits (see Fig. 1 and the discussion of the previous g = D2 g = 207m cos(@m7) (25)
section), this criterion implies that the skeleton curves for t%h
nI’ resonance are

The reduced equations fgr (7), can be written as

ile (8) remains unchanged. It is straightforward now to ex-
tend the QCT to this case. Proceeding as in the case of pump

Rn - .
A, = = (20) modulation, we arrive at
" R
_ iy _ Rn
In practice, it is difficult to find solutions of the conservative Yin COS(Wmto + 0,,) = S (26)

motion [yo(7, E), zo(7, E)] analytically and one performs a o .
numerical integration of the conservative system in order to fiH&hereR" is given by (18) andb, is

the quantitiesz,,, S,,. However, in the simple case of= 0 and sin(#,) T, Sin(@, 7)
8 =0, (17) can be simplified by replacirig. with help of (7) 5;{ }I —2/ ATy (T)Vy(Yn, 2n { }
0

and yielding cos(6;,) COS(@WpT)
T VW, 2n) stands_ foroV/oy(y,(7), z.(7)). The skeleton
Am/ AT 2, (T) co8(@Wpm (T + 7)) curves are then given by
0
R
Ty -
= [+ et D2 (@1 "= @0
0

Inthe case = 0 and3 = 0, an expression in terms of Fourier

wherexo = In(yo/ys1), ysr = a — bis the steady-state value of o i cimilar to (23), can be derived as follows:

y in the absence of modulation, angis a periodic function of

frequencyw,, that can be written as a Fourier series in the form: nd 5o
20(7) = z0(T, En) = Qo/2 4+ 3252, Qr cos[kwn (7 + )] > Qik
Using this expression, and after simple algebra, the integrals of Vin = a ":127 (28)
(22) can be performed, giving rise to 2 n*Qn
00 This expression is equivalent to the one obtained in [16], where
Z Q3 k2 a laser with periodic modulation of losses, but neglecting the
. a k=1 spontaneous emission and gain saturation terms, is studied in
A sin[nwn(pn = 70)] = 2“0, (22) " Getail. Again fore and 3 different from zero, we need to solve
. . ) (27) numerically.
As discussed earlier, the7 resonances are obtained for
sin[nw, (g, — 10)] = 1, i.€., IV. RESULTS
i 02k Intensive numerical simulations have been performed in [25]
o = k in order to obtain the maximum responses of the system for dif-
Ap = —wp — (23) ferents andw,, in order to compare with the analytical expres-

2 nn sions derived in the previous section. In principle, for a gigen

This expression has the advantage that the contribution of eacte should find the value af,,, that maximizes the response at
coefficient in the Fourier series af, appears explicitly. In par- eachnT’ resonance. However, this is a very lengthy procedure
ticular, it is seen thatT” resonance may be excited by a finitehat can be avoided by finding, instead, the valuasgf where
amplitude of the external modulation only if theh harmonic a saddle-node bifurcation is born, since we have observed that
of the conservative solution is nontrivial. Therefore, this effethe maximum response appears just before the solution becomes
can be considered as harmonic locking of the fundamental tastable. This allows us to identify the position of the maximum
laxation oscillation by an external modulation. response in théw,,, §) plane with the position of the bifur-

In the case: £ 0 and3 # 0 it is still possible to use a se- cation. The procedure of finding such bifurcations is easier to
ries expansion for the variahlg, and to obtain an expression inimplement using nonlinear dynamical tools than to perform the

terms of the Fourier coefficients. However, the resulting expres-, _ _ _ _
4Cavity loss in lasers can be modulated in practice by different ways, for

sionis so C(_)mpllcated, in the _Sense that _'n the de_nommator %'Iémple by using a variable reflector or in a two-section laser when modulating
ferent coefficients of the Fourier expansion contribute, that vperiodically the passive section.
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0.2: 0.2r
0.0! 0.0
0.0 05 1.0 1.5 20 0.0

Fig. 2. Maxima of main resonances in the plang.(wo, 6) for pump Fig. 4. Maxima of main resonances in the plane,(wo, &) for pump
modulation. Effect of. Analytical results (20x = 0 (solid line),e = 6x10—°  modulation. Combined effect gf ande. Analytical results (20)3 = 0,e = 0
(dotted line)e = 3 x 103 (dashed line). Numerical resulis= 0 (triangles), (solidline),3 = 6.2x10~*ps—*, e = 0 (dottedline) 3 = 6.2x 10~ *ps—1,
e = 6 x 109 (squares)s = 3 x 103 (circles).3 = 0. Other parameters € = 6 x 107° (dashed line). Numerical results (1= 6.2 x 10~ ps~1,

as in Fig. 1. e = 6 x 10~? (circles). Other parameters are as in Fig. 1.
0.81 response for each main resonance. The effect is quantitatively
i more important for higher order resonances;> 1. Qualita-
0.6F tively, we can understand this effect as a result of the increase
r in dissipation produced by the increase of the saturation term.
i More dramatic is the effect of the spontaneous emission term
© 04r S. In Fig. 3, we can see that small values of the noise fate
i strongly modify the skeleton curves for modulation frequencies
| w,, Smaller than a cut-off value, (marked with an arrow in the
0.2+ figure), whereas they remain basically unchangedfer> w..
I For smallw,,, the effect of5 is such that much larger values of
i ] the modulation amplitudé are needed in order to find the op-
0.0 : — timal response for a given value of the modulation frequency

00 05 1.0 1.5 20 2 5 wp. In the absence of spontaneous emisgios= 0, the ten-
o /w dency to decrease the main resonance frequency with increasing
m/ =0 amplitude of modulation can be understood by noticing that the
Fig. 3. Maxima of main resonances in the plane..(wo, @) for number of photons is not limited from below. On the contrary,
pump modulation. Effect of3. Analytical results (20):3 = 0 (solid wheng # 0, a spontaneous emission background is created and,
line), 5 = 6.2 x 10~"ps~! (dotted line), 5 = 2.2 x 10=ps™'  qyring the modulation period, the number of photons cannot be
(dashed line). Numerical results (19): = 6.2 x 10~''ps—! (squares), . . .
5 =2.2x 10~ "ps—1 (circles).e = 0. Other parameters as in Fig. 1. MarkeaSMaller than this value and, consequently, the response is main-
with an arrow the cut-off value.. tained basically unchanged at any smaller frequency. In this
case, a nonresonant regime of gain switching dominates.
whole simulations of the rate equations [28]. The comparisonThe theoretical prediction behaves qualitatively in the same
has been performed using the typical values for the parameteesy and predicts correctly the cut-off frequency. However, it
explained in Section II. Similar results hold for other parametgredicts a much sharper increase of the optimal modulation am-
values. plitude. This could be explained as follows: while the period
We compare in Figs. 2 and 3 the predictions of the QCT in thod the conservative solutions always increases when the energy
case of pump modulation, as given by (20), with the numericiaicreases in the absence of spontaneous emission terms, as it
simulations. In order to perform this comparison, the skelet@man be seen from (13), the presence of the spontaneous emis-
curves have been plotted in terms of the original variabl®sd sion noise terms introduces a maximum in the resulting expres-
wm by using (6) and (15). Fig. 2 gives evidence that the theion of the period as function of the energy. This fact forbids
oretical predictions coincide with the numerical results with tine conservative orbits with a frequency smaller than the cut-off
great degree of accuracy in the case- 0 and3 = 0. This frequency. This means that the conservative orbit we are using
figure also shows that a similar agreement between the theoan be very different from the orbit followed by the modulated
and simulations can be observed for the case;60, but3 =0 system. For smaller values 8f the boundary approaches to the
still. In this case, the role of the gain saturation parametisr one for the casg = 0, as expected. Finally, in Fig. 4, the com-
such that, for a fixed value of the frequenagy,, alarger value of bined effect ok andj is shown. The same qualitative effect that
modulation amplitudé is needed to obtain the optimal periodiovas already explained also appears for other values of the bias
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Fig. 5. Maxima of main resonances in the plane,.(wq, 6) for loss
modulation. Effect ofe. Analytical results (27):e = 0 (solid line),
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Fig. 7. Maxima of main resonances in the plane,.(wq, 6) for loss
modulation. Combined effect af ande. Analytical results (27)3 = 0,e =0

e = 6 x 10~ (dotted line),e = 3 x 10—® (dashed line). Numerical results (solidline),3 = 6.2x107*'ps—!, e = 0 (dotted line)3 = 6.2x 1011 ps—1,

(20): ¢ = 0 (triangles),e = 6 x 10~° (squares)s = 3 x 10~® (circles).
3 = 0. Other parameters are as in Fig. 1.
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Fig. 6. Maxima of main resonances in the plane,.(ws, &) for
loss modulation. Effect of3. Analytical results (27):54 = 0 (solid
line), 3 = 6.2 x 107*ps—! (dotted line),3 = 2.2 x 1071%ps—1
(dashed line). Numerical results (19} = 6.2 x 10~''ps—! (squares),
B =2.2x10"1ps~1 (circles).e = 0. Other parameters are as in Fig. 1.

current.J,. For J, > 1.23.J,;, the same boundaries appear but
for larger values ofn. This effect was experimentally reported

in [3], where it is indicated that higher order bifurcations are
more likely to occur for smaller DC bias levels than for higher

ones.

e = 6 x 10~° (dashed line). Numerical results (1®):= 6.2 x 10~ ttps—1,
e = 6 x 10~° (circles). Other parameters are as in Fig. 1.

the absence of modulation. For smélle, itis i, =~ a — b. It
turns out that the resulting equations in the case of modulation in
the pump or in the losses take basically the same form, namely
¥ 422Gy (x) + 2Go(x) 4+ Ga(x) = Fp r(x, 1) (29)
whereGy (), Ga2(z), andG3(x) are given functions of whose
detailed expressions are not needed here. The only difference is

in the right-hand side of this equation which, for the case of
modulation in the pump, is

Fp(zx, 7) = Ap, cos(0,, 7)) F1 ()

r ( ) 2 c
) =
' 14+35yseexp(x)  ysre®

(30)

while in the case of modulation in the losses, it is

FL(xv '7}7 7_)
= 29 W, SIN(W,, T) — 29 cO8(W,, 7) Fo(x, )
FQ(.’L’, .’L’)
Yst exp(x)
1+ Sys: exp(x)
25y2,€2% + c(1 + sy.e*)?
(1 + §ystew)[2ystew + ce?a}(]_ + §ystew)]

+z

(31)

For the case of loss modulation, the analytical and numeridhls easy to see that the term containifig is negligible com-

results coincide foe = 0 andg = 0, and for the case# 0 and

pared to the first contribution 87, (x, &, 7). In fact, if we con-

B = 0, analogously to that of the pump modulation case (seéler the value of’; in the steady state in the absence of modula-
Fig. 5). However, when the spontaneous emission term is intt®n « = ¢ = 0, we obtain/, ~ a. A typical value isa = 0.01,
duced, the boundaries obtained numerically also depart from #heile the producty,,,w,, is of order 1 forw,, ~ wy. If we now

analytical predictions (see Figs. 6 and 7).

replacel’ (x) by its steady-state valug (0), approximate the

We have observed that it is possible to obtain an interestitgym1 + Sy.: ~ 1, and neglect the term proportional ¢gpwe
relationship between the effect produced by loss modulation aadive at
pump modulation. The relation can be obtained more clearly if

we write the evolution equation for the variable= ln(y/ys:),
defined in terms of the stationary valyg of the variabley in

FP ~ 2A7n COS(wrnT)

(32)
(33)

Fr, & 27,0, sin(w,, 7).
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0.8

A similar agreement is observed for other boundaries and values
of the parameters.

Since relation (34) implies, for typical values of the parame-
terstha¥ > ~,,, we recover the known results that loss modula-
tion is more efficient to get bifurcations and chaos. This relation
can be applied in the large-modulation signal regime (nonlinear
regime), and hence it can be considered as an extension of pre-
vious analytical results in the case of the linear regime [29].

0.6
© 04

O.2r V. COMPARISON TOEXPERIMENTS

The fingerprint ofn7” resonance regimes, which distinguish
them from nonresonancé€l’ periodic windows in chaos, is a
dominantw,,,/n component in microwave spectra. In particular,
thew,, /2 component in microwave spectra was dominating in
the observations of [3] and [6], pointing out the resona2ife
Fig. 8. Maxima of main resonances in the plang.(wq, 6). Numerical regw_ne, tha_t in the _tlme domain |e¢’_:ldS to sharp spikes (no inter-
results. Pump modulatior:= 0 (solid line) (equivalent to theoretical results), Mediate spikes at intervall;,,). A direct example of the reso-
€ = 3 x 10~ (filled circles). Loss modulation multiplied by factor of (34): nant2” regime observation and possible applications to all-op-
€ = 0 (triangles)e = 3 x 107 (circles).f = 0, J, = 1.23Jus,. tical clock division can be found in [30].

According to our predictions, resonant regimes with- 2
also exist in the system. However, they are dynamical isolates
that cannot be observed with smooth sweeping of modulation

0.0
0.0

0.81[ T L '

0.6 - parameters, besides the special cases of pulse excitation [18],
r 1 [20], [21] or chaotic crisis on the basitl” periodic branch
i ] leading to switching to &1" branch as it was observed in [3]
©w 04r - and explained in [31], [32].
i ] Particularly relevant to our work is the paper by Liu and Ngai
L | [3], where the response of a single-mode DFB laser subjected
0.2 8 to current modulation is considered. We summarize the observa-
i ] tions they obtain when changing the modulation frequency and
i amplitude of the RF signal and compare them to our results, as
0.0 : B : follows.
0.0 0.5 1.0 1.5 2.0 2.5 1) For small modulation frequency, there is onlyZaperiod
@m/wo response for any signal amplitude. It was visualized in our
system, in Fig. 2, fow,, /we < 0.2, for § < 1.
Fig. 9. Maxima of main resonances in the plang,(w,, §). Numerical 2) For intermediate modulation frequency, there is a transi-

results. Pump modulatiort = 0 (solid line),3 = 2.2 x 10~9ps—1 (filled
circles). Loss modulation multiplied by factor of (34):= 2.2 x 10~ 1%ps—1
(circles).e = 0, J, = 1.23Jy,.

Therefore, we conclude that the role of the modulation in the 3)

pump is equivalent to the modulation in the losses, besides a
trivial phase shift, ifA,,, = vnwm. In terms of the physical
parameters, this is equivalent to

vq

I (34)

6 = ’anwrn
This result shows that modulation in the pump or in the losses
produces equivalent results if the respective modulation ampli-
tudes are conveniently rescaled. It is possible to arrive at this
result directly, in the case= 3 = 0, by comparing the expres-
sions in terms of Fourier coefficients (23) and (28). The validity
of this equivalence of modulation in the pump and in the losses
is shown in Figs. 8 and 9, where we compare, for typical values
of e andg, the skeleton lines in the case of pump and loss mod-

tion from 17" to 21" responses when increasing the mod-
ulation amplitude. This fact is seen in Fig. 2 in the region
0.2 < wy/wp < 2, for the corresponding values 6f

37 and47T solutions appear for large enough modulation
frequency and amplitude. We find these solutions also in
the case of sufficiently large values of the modulation
frequency and amplitude (see Figs. 2—4). Bésolu-
tion would appear for larger values of the amplitude not
plotted in the figure. We have checked that,fet 0 and

£ = 0, the correspondingZ’ boundary for pump mod-
ulation would have its minimum value at,,/wy ~ 2.3
andé ~ 0.4. However, identification of th&7" branch
observed in [3] is still hard to make as resonant due to the
fact that the microwave spectra gives a dominate modula-
tion component at,,,, but not at the subharmonig,, /3

as it might be expected for a purely resonant regime.

VI. CONCLUSIONS

ulation after the latter have been rescaled according to (34). It isVe have undertaken an analytical study to identify the op-
clear from these figures that the proposed equivalence after paral responses of a semiconductor laser subjected to an ex-
rameter rescaling works well in the cases that have been shotennal periodic modulation in the pump of relative amplitéde
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and frequency,,,. We have computed the lines in the,,, )

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 38, NO. 3, MARCH 2002

plane that give a maximum response for each typefofeso-

nance (skeleton lines) and compared them to the numerical @3]

sults reported in our previous paper [33]. The influence of sat-

uration and spontaneous emission terms on the dynamics has
also been examined. We have found that these specific Iasg

diode parameters increase the thresholds of instabilities in thes)
system, a fact that can be interpreted as an effect of the increase
in the damping of relaxation oscillations. A qualitative compar-p 6

ison with experiments has also been performed. The analytical
results we have obtained by an application of the quasiconser-
vative theory allow us to explain satisfactorily the effect of the

saturation term. The role of the gain saturation parameter is sugis]

that, for a fixed value of the frequenay,,, a larger value of
modulation amplituden is needed to obtain the optimal peri-

odic response for each main resonance. This effect is more inft9]

portant for higher order resonances. However, the effect of the
spontaneous emission term in the skeleton lines has not be
completely explained by the analytical results and the discrep-

ancy between the numerical and analytical results is due to the
form of the conservative solution.

Loss modulation has also been considered and analytical anzb]
numerical results are in reasonable agreement. Furthermore, we
have obtained a relation that shows the equivalence betwe%]

pump and loss modulation. This equivalence relation, having a

large validity for the numerical boundaries, allows the boundary24!

limits for pump (or loss) modulation to be computed if the loss
(pump) boundaries are known. We have recovered the known

results that loss modulation is more efficient to get bifurcationd2!

and chaos than pump modulation.
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