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Theory of Main Resonances in Directly Modulated
Diode Lasers

Catalina Mayol, Raúl Toral, Claudio R. Mirasso, Sergei I. Turovets, and Luis Pesquera

Abstract—Domains of existence of the main resonances in di-
rectly modulated semiconductor lasers are obtained by application
of quasi-conservative theory. The predictions are compared with
numerical results coming from a direct integration of the model
equations and with experimental observations reported by other
groups. In both cases we find a qualitative good agreement. We
consider a model that contains explicitly the gain saturation and
spontaneous emission terms. We find that the spontaneous emis-
sion strongly modifies the qualitative behavior of the instabilities
boundaries, while the gain saturation leads to a simple quantita-
tive shift of boundaries.

We also find that modulation of the pump or loss produce equiv-
alent results if the respective modulation amplitudes are conve-
niently rescaled.

Index Terms—Diode lasers, loss modulation, main resonances,
pump modulation.

I. INTRODUCTION

H IGH-SPEED modulation of diode lasers is an important
area of study due to the possible applications of these sys-

tems. Laser diodes in such circumstances clearly exhibit various
kinds of nonlinear behavior, i.e., harmonic distortion, multi-
pulse response on the time scale of one modulation period, pe-
riod doubling, amplitude and/or pulse position bistability, and
chaos [1]. Usually, these complicated dynamical phenomena
are considered as harmful to practical applications and should
be avoided. Nevertheless, there have been some experimental
demonstrations of feasibility of using a resonance period dou-
bling regime and pulse position bistability for realizing high-
speed optical logic elements [2].

Large capacity information transmission and ultrafast optical
processing systems [3], [4], [33] are representative of the pos-
sible applications of these systems. Recently, a great deal of in-
terest has been generated by the potential to use lasers running in
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a chaotic regime as the carriers of information in secure chaotic
communication schemes [5]. In addition to the optical feedback
and saturable absorption effects, chaos in laser diodes induced
by modulation in the pump current is another option for building
transmitters for encoded optical communications.

Before Liu and Ngai [3] succeeded in observing chaos on a
1.55- m InGaAsP DFB bulk laser, followed by the report of
a similar observation in 1.55-m MQW lasers [6], there had
been some controversy in earlier theoretical predictions [7] and
experimental results [8], [9]. Specifically, chaotic and high pe-
riodic regimes had not been experimentally observed in con-
trast to numerical predictions based on the rate equations. It is
well known [10] that the gain saturation factor contributes to
the damping of relaxation oscillations and might be the reason
for eliminating chaos. The presence of spontaneous emission in
the cavity and the Auger recombination factor have also been
numerically examined as being one cause of the suppression of
chaos [11]. The importance of noise terms is again under con-
sideration at this moment [12]. Now it is largely accepted that a
single-mode laser diode with relatively small gain saturation and
spontaneous emission parameters might undergo a period dou-
bling route to chaos under current modulation. From the analyt-
ical side, such an impact of these parameters was explained in
the framework of the small signal analysis showing an increase
of the system damping with increase of the mentioned parame-
ters [13]. In addition, Horiet al.[14] suggested that, in the large
signal-modulation regime, the spontaneous emission term, be-
sides contributing into a linear damping of the system, leads to
an additional nonlinear damping. This effect would change the
representation of the Toda oscillator potential topology for the
laser and would be also responsible for suppression of chaos.
Nevertheless, specific mechanisms of these effects in the large
signal regime are not yet fully understood. To the best of our
knowledge, a detailed study of the role of spontaneous emission
and gain saturation on nonlinear dynamics in the large signal
regime is still lacking even in the framework of the simple rate
equation model.

In the present work, we have mainly undertaken analytical
calculations in the framework of the single mode rate equa-
tion model with the aim of clarifying the parameter domains
of the basic instabilities involved and to relate them to the re-
ported experiments with 1.55 -m InGaAs DFB lasers [3]. We
will restrict ourselves to the study of main resonances since
little attention has been paid to them in previous works. Let
us take as a response variable the maximum intensity in the
optical-power output. As a main resonance, we understand the
maximum response of the system to the external perturbation
when the modulation frequency of the external perturbation is
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varied. Although main resonances were considered for conven-
tional class lasers1 theoretically and numerically [15]–[19]
and also experimentally [20], [21], the impact of large gain sat-
uration and spontaneous emission terms, which are typical for
diode lasesrs, is not yet fully understood, and the aim of our
work is to go deeper into this context.

By using the asymptotic quasiconservative theory (QCT)
[15], [22] with an appropriate Lyapunov potential2 describing
the laser dynamics [23], we have computed the domains of
existence for the resonance periodic responses in arbitrarily
large amplitude modulated laser diodes. For this particular
kind of nonlinearity, these resonant curves are associated to the
so-called primary saddle-node bifurcations3 and are often con-
fused in experiments with the multiperiodic windows in chaos.
When considering gain saturation and spontaneous emission
terms on the dynamics, we find that, besides increasing the
damping of relaxation oscillations, these parameters change the
topology of the Lyapunov potential, increasing the thresholds
of instabilities in the system. The theory is substantiated by
numerical results. The estimations for primary saddle-node
bifurcations in strongly modulated laser diodes create the
basis for a systematic search fora priori wanted regimes in
simulations or experiment and also naturally explain pulse
position multistability [2], [20].

The paper is organized as follows. In Section II, we de-
scribe qualitatively the response obtained for a laser diode,
as described by a single-mode rate equation model, in the
presence of pump modulation. In Section III, the equations
for the laser are rewritten as a relaxational dynamics with a
Lyapunov function and modulation terms. The QCT is used
to obtain relations that allow the calculation of the primary
saddle-node bifurcations, both for the case of modulation
in the pump or in the losses. In Section IV, the theoretical
estimates are compared with numerical results coming from a
direct integration of the model equations. The effects of gain
saturation and spontaneous emission terms in these bifurcations
are explored in detail. In Section V, we compare our results to
previous experimental works reported by other groups. Finally,
in Section VI, we summarize the main results.

II. DYNAMICAL BEHAVIOR

The dynamics of a single mode semiconductor laser can be
described in the simplest way by two evolution equations: one
for the slowly varying complex amplitude of the electric field
inside the laser cavity, , and the other for the carriers number

(or electron-hole pairs) [4], [33]. We consider the electric

1For classB lasers, of which semiconductor lasers are an example, the po-
larization decays toward the steady state much faster than the field and carrier
number, and it can be adiabatically eliminated. They are then described by just
two rate equations.

2The Lyapunov function, also called Lyapunov potential, is a potential de-
scription of the system and it is, in some cases, useful to describe its dynamics
(in this case the laser). The usefulness of Lyapunov functions lies on the fact that
they allow an easy determination of the fixed points of a dynamical (determin-
istic) system as the extrema of the Lyapunov function, as well as determining
the stability of these fixed points.

3In a saddle-node bifurcation, two fixed points of the dynamical system col-
lide in the phase space when some parameters are varied. The saddle-node con-
dition is given when one of the eigenvalues of the Jacobian of the transformation
is zero.

TABLE I
DEFINITIONS AND TYPICAL VALUES OF THE PARAMETERS FOR

SEMICONDUCTORLASERS

field to be normalized in such a way that its modulus square
is equal to the number of photons inside the cavity.

The equation for the electric field can be written in terms of its
optical intensity and the phase by defining . For
simplicity, we retain the mean power of the spontaneous emis-
sion but neglect the explicit fluctuations terms. As the evolution
equations for and do not depend on the phase, we can
concentrate only on the evolution of the former variables. The
equations read

(1)

(2)

where is the material gain.
While the first term of the right-hand-side of (1) accounts for the
stimulated emission and losses, the last one () accounts for
the mean value of the spontaneous emission in the lasing mode.
This form for the spontaneous emission term has been largely
used in the literature [4], [24]. Equations (1) and (2) are written
in the reference frame in which the frequency is zero at threshold
when spontaneous emission noise is neglected. The definition
of the parameters and typical values appears in Table I. The
threshold value for ( ) is given by , where

. The dynamics of these equations for con-
stant is such that both and relax to their steady
states by performing damped oscillations [4], [23]. The fre-
quency of these oscillations close to the steady state can be
calculated linearizing the equations of motion. For the simplest
case ( ), one obtains
ns ( GHz) for the previous parameter values
and .

The purpose of this work is to study the dynamics of (1) and
(2) under modulation. In particular, we will consider modula-
tions mainly in the pump current, but also in the losses,
which would be an option in DBR or multisection lasers. A
detailed description of the qualitative features of the behavior
when the pump is modulated in the form

(3)

where is a fixed value of the current (bias current), such that
, can be found in [25]. When becomes time depen-

dent, a very rich dynamical structure can appear depending on
the values of the amplitude, ( to satisfy the physical
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constraint that the total current has to be positive), and the fre-
quency, , of the modulation. For small values ofand for

smaller than the 3 dB modulation bandwidth, the system
behaves almost as a linear oscillator with damping terms: it pe-
riodically oscillates with the frequency of the input current.
Moreover, the response (maximum value of the optical in-
tensity) has a maximum at the relaxation oscillation frequency

(linear resonance [26]).
In large amplitude modulation, strong nonlinear effects ap-

pear. In addition to a response at the same frequency of modula-
tion (with a maximum shifted to a smaller frequency), other
frequencies can be excited for sufficiently high modulation am-
plitudes . This gives rise to a more complex behavior for the
response of the system, leading even to multistability (several
stable responses for the same value of the input parameters).
The possible responses can be classified as, where and
are integer numbers with no common factors, such that the re-
sponse frequency is . The responses are also called

-periodic responses because the period of the resulting signal
is times larger than , where is the period of
the external modulation. The existence of these responses can be
visualized by plotting the amplitude of the stable re-
sponses (whenever they exist) versus the modulation frequency

for fixed value of the modulation amplitude. The resulting
curves strongly depend on.

— For very small , the response is the only response
present for all values of .

— Increasing [solid line of Fig. 1(a)], a decrease of the
modulation frequency generates a bistable region
in which two different responses are possible.

— After a further increase of, the response appears
continuously, when decreasing (starting from big
values of ), as a period doubling bifurcation of the

response (see [25, Fig. 2] for temporal trajectories).
The response around is also known
as a parametric resonance [26].

— For larger values of [Fig. 1(b)], other responses
with appear. Each of these responses exist
for a given range of values of and are uncon-
nected to the previous and responses. At both
ends of its frequency range, they disappear through
saddle-node bifurcations.

Besides this general framework, all the existing responses
can, at a given value of the modulation amplitude, suffer dif-
ferent types of period doubling bifurcations which, following
the Feigenbaum route, can eventually lead to chaotic behavior
[see dashed line in Fig. 1(b)].

For fixed modulation amplitude, each response has its
maximum at a given value of the modulation frequency. This
maximum is called the resonance. In this work, we are
mainly interested in the resonances (or resonances)
because they usually yield the maximum output power. In the
literature, they are also known asmain resonancesor primary
saddle-node resonancesbecause they coincide very accurately
with some of the saddle-node bifurcations described before.
These resonances are indicated by the solid dot symbols in
Fig. 1.

Fig. 1. Responses (I ) versus the normalized external frequency! for
different values of the modulation pump amplitude in the caseJ = 1:23J ,
� = 0, � = 0. Other parameters are as indicated in the text. (a)� = 0:1.
(b) � = 0:3. The2 and3 responses correspond to further period doubling
bifurcations.

The curves in the plane joining the points at which
resonances occur are called theskeletoncurves for the

resonances (in our case, the nonlinear oscillator given by the
rate equations belongs to the class ofsoft spring oscillators).
Our main effort will be directed to finding the skeleton lines for
each main resonance of the type. This description can be of
interest for the experimentalists to determine the resonance fre-
quency at which the maximum response is obtained for a given
external amplitude of the injection current.

III. QUASI-CONSERVATIVE THEORY

Equations (1) and (2) can be reduced to a set of dimensionless
equations by performing the following change of variables

, , , such that the equations
become

(4)

(5)

with new parameters defined as

(6)
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These evolution equations can be cast in the form

(7)

(8)

with the followingpotentialfunction [23]:

(9)

where we have defined the functions

(10)

(11)

and the coefficients

(12)

The form of the equations (and the fact that ) proves
that is a Lyapunov potential, i.e., it is a function that
decreases monotonically along trajectories . This
potential reduces to the one found for a Toda oscillator when
the gain saturation parameterand the spontaneous emission
rate are both equal to zero [27]. In the case where these two
terms are different from zero, the potential is both quantitatively
and qualitatively different from the Toda potential, mainly due
to the effect of the spontaneous emission term.

The decrease of the Lyapunov potential is due to the func-
tion appearing in the evolution equation (8). There-
fore, in the dynamical equations, we can identify the conserva-
tive terms (those proportional to ) and the dissipative ones
(those proportional to ). If the dissipative terms were not
present, i.e., if , the potential would take a constant
value and we would have a conservative system
with periodic orbits. The frequency, , of such an orbit
of the conservative system is a function of the potential, i.e.,

, that can be obtained, using standard methods of
mechanics, as [23]

(13)
where are the values of that cancel the denominator
of the integrand. Notice that the periodic orbits, that we write as

, depend on an initial time and
on the value of the Lyapunov potential.

A. Pump Modulation

We now include the modulation terms. We first consider the
case of modulation in the pump as given in (3). In terms of the
rescaled variables, (8) becomes

(14)

with

(15)

We look for responses, i.e., periodic solutions
of (7) and (14) with a frequency

or, equivalently, with a period . In this
case, the potential function is no longer a constant of
motion. However, for a periodic orbit, it is still true that the
integral of over a period
is equal to zero. By using this property and after replacing in
the previous expressionand coming from (7) and (14), we
obtain that the periodic solutions must satisfy the condition

(16)

where stands for . The quasi-conservative theory
assumes that the periodic orbits can be
approximated, near the resonance, by conservative orbits

,
corresponding to the value of the potential that yields the
desired frequency . Substitution of this ansatz in
the above equation leads to

(17)

By defining by

(18)

we arrive at

(19)

According to this equation, for given and , there exist
at most different orbits of period . They correspond
to the functions for the
values of , and
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. It turns out that of these
solutions are unstable, while the remaining stable ones corre-
spond, in fact, to trivial translations by a time amount of
the same basic solution (pulse position multistability [2], [20]).
Therefore, for a given value of and , there is just one
corresponding stable orbit of the conservative system. Alterna-
tively, we can look at the previous equation as a condition for the
existence of periodic orbits. For a given modulation frequency

, there will exist periodic orbits of period if the am-
plitude of the modulation verifies . Since reso-
nances almost coincide in this case with the limit of existence
of periodic orbits (see Fig. 1 and the discussion of the previous
section), this criterion implies that the skeleton curves for the

resonance are

(20)

In practice, it is difficult to find solutions of the conservative
motion analytically and one performs a
numerical integration of the conservative system in order to find
the quantities , . However, in the simple case of and

, (17) can be simplified by replacing with help of (7)
and yielding

(21)

where , is the steady-state value of
in the absence of modulation, and is a periodic function of

frequency that can be written as a Fourier series in the form:
.

Using this expression, and after simple algebra, the integrals of
(22) can be performed, giving rise to

(22)

As discussed earlier, the resonances are obtained for
, i.e.,

(23)

This expression has the advantage that the contribution of each
coefficient in the Fourier series of appears explicitly. In par-
ticular, it is seen that resonance may be excited by a finite
amplitude of the external modulation only if theth harmonic
of the conservative solution is nontrivial. Therefore, this effect
can be considered as harmonic locking of the fundamental re-
laxation oscillation by an external modulation.

In the case and it is still possible to use a se-
ries expansion for the variable, and to obtain an expression in
terms of the Fourier coefficients. However, the resulting expres-
sion is so complicated, in the sense that in the denominator dif-
ferent coefficients of the Fourier expansion contribute, that we

find simpler instead to use (20) to obtain the theoretical skeleton
curve.

B. Loss Modulation

Let us turn now to loss modulation. We consider (1) and (2)
with a fixed value of the current but modulated loss term4

(24)

The reduced equations for, (7), can be written as

(25)

while (8) remains unchanged. It is straightforward now to ex-
tend the QCT to this case. Proceeding as in the case of pump
modulation, we arrive at

(26)

where is given by (18) and is

stands for . The skeleton
curves are then given by

(27)

In the case and , an expression in terms of Fourier
series, similar to (23), can be derived as follows:

(28)

This expression is equivalent to the one obtained in [16], where
a laser with periodic modulation of losses, but neglecting the
spontaneous emission and gain saturation terms, is studied in
detail. Again for and different from zero, we need to solve
(27) numerically.

IV. RESULTS

Intensive numerical simulations have been performed in [25]
in order to obtain the maximum responses of the system for dif-
ferent and in order to compare with the analytical expres-
sions derived in the previous section. In principle, for a given,
one should find the value of that maximizes the response at
each resonance. However, this is a very lengthy procedure
that can be avoided by finding, instead, the value of where
a saddle-node bifurcation is born, since we have observed that
the maximum response appears just before the solution becomes
unstable. This allows us to identify the position of the maximum
response in the plane with the position of the bifur-
cation. The procedure of finding such bifurcations is easier to
implement using nonlinear dynamical tools than to perform the

4Cavity loss in lasers can be modulated in practice by different ways, for
example by using a variable reflector or in a two-section laser when modulating
periodically the passive section.
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Fig. 2. Maxima of main resonances in the plane (! =! , �) for pump
modulation. Effect of�. Analytical results (20):� = 0 (solid line),� = 6�10

(dotted line),� = 3�10 (dashed line). Numerical results:� = 0 (triangles),
� = 6 � 10 (squares),� = 3 � 10 (circles).� = 0. Other parameters
as in Fig. 1.

Fig. 3. Maxima of main resonances in the plane (! =! , �) for
pump modulation. Effect of�. Analytical results (20):� = 0 (solid
line), � = 6:2 � 10 ps (dotted line),� = 2:2 � 10 ps
(dashed line). Numerical results (19):� = 6:2 � 10 ps (squares),
� = 2:2� 10 ps (circles).� = 0. Other parameters as in Fig. 1. Marked
with an arrow the cut-off value! .

whole simulations of the rate equations [28]. The comparison
has been performed using the typical values for the parameters
explained in Section II. Similar results hold for other parameter
values.

We compare in Figs. 2 and 3 the predictions of the QCT in the
case of pump modulation, as given by (20), with the numerical
simulations. In order to perform this comparison, the skeleton
curves have been plotted in terms of the original variablesand

by using (6) and (15). Fig. 2 gives evidence that the the-
oretical predictions coincide with the numerical results with a
great degree of accuracy in the case and . This
figure also shows that a similar agreement between the theory
and simulations can be observed for the case of , but
still. In this case, the role of the gain saturation parameteris
such that, for a fixed value of the frequency , a larger value of
modulation amplitude is needed to obtain the optimal periodic

Fig. 4. Maxima of main resonances in the plane (! =! , �) for pump
modulation. Combined effect of� and�. Analytical results (20):� = 0, � = 0

(solid line),� = 6:2�10 ps , � = 0 (dotted line),� = 6:2�10 ps ,
� = 6� 10 (dashed line). Numerical results (19):� = 6:2� 10 ps ,
� = 6� 10 (circles). Other parameters are as in Fig. 1.

response for each main resonance. The effect is quantitatively
more important for higher order resonances, . Qualita-
tively, we can understand this effect as a result of the increase
in dissipation produced by the increase of the saturation term.

More dramatic is the effect of the spontaneous emission term
. In Fig. 3, we can see that small values of the noise rate

strongly modify the skeleton curves for modulation frequencies
smaller than a cut-off value (marked with an arrow in the

figure), whereas they remain basically unchanged for .
For small , the effect of is such that much larger values of
the modulation amplitude are needed in order to find the op-
timal response for a given value of the modulation frequency

. In the absence of spontaneous emission , the ten-
dency to decrease the main resonance frequency with increasing
amplitude of modulation can be understood by noticing that the
number of photons is not limited from below. On the contrary,
when , a spontaneous emission background is created and,
during the modulation period, the number of photons cannot be
smaller than this value and, consequently, the response is main-
tained basically unchanged at any smaller frequency. In this
case, a nonresonant regime of gain switching dominates.

The theoretical prediction behaves qualitatively in the same
way and predicts correctly the cut-off frequency. However, it
predicts a much sharper increase of the optimal modulation am-
plitude. This could be explained as follows: while the period
of the conservative solutions always increases when the energy
increases in the absence of spontaneous emission terms, as it
can be seen from (13), the presence of the spontaneous emis-
sion noise terms introduces a maximum in the resulting expres-
sion of the period as function of the energy. This fact forbids
the conservative orbits with a frequency smaller than the cut-off
frequency. This means that the conservative orbit we are using
can be very different from the orbit followed by the modulated
system. For smaller values of, the boundary approaches to the
one for the case , as expected. Finally, in Fig. 4, the com-
bined effect of and is shown. The same qualitative effect that
was already explained also appears for other values of the bias
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Fig. 5. Maxima of main resonances in the plane (! =! , �) for loss
modulation. Effect of �. Analytical results (27):� = 0 (solid line),
� = 6 � 10 (dotted line),� = 3 � 10 (dashed line). Numerical results
(20): � = 0 (triangles),� = 6 � 10 (squares),� = 3 � 10 (circles).
� = 0. Other parameters are as in Fig. 1.

Fig. 6. Maxima of main resonances in the plane (! =! , �) for
loss modulation. Effect of�. Analytical results (27):� = 0 (solid
line), � = 6:2 � 10 ps (dotted line),� = 2:2 � 10 ps
(dashed line). Numerical results (19):� = 6:2 � 10 ps (squares),
� = 2:2� 10 ps (circles).� = 0. Other parameters are as in Fig. 1.

current . For , the same boundaries appear but
for larger values of . This effect was experimentally reported
in [3], where it is indicated that higher order bifurcations are
more likely to occur for smaller DC bias levels than for higher
ones.

For the case of loss modulation, the analytical and numerical
results coincide for and , and for the case and

, analogously to that of the pump modulation case (see
Fig. 5). However, when the spontaneous emission term is intro-
duced, the boundaries obtained numerically also depart from the
analytical predictions (see Figs. 6 and 7).

We have observed that it is possible to obtain an interesting
relationship between the effect produced by loss modulation and
pump modulation. The relation can be obtained more clearly if
we write the evolution equation for the variable ,
defined in terms of the stationary value of the variable in

Fig. 7. Maxima of main resonances in the plane (! =! , �) for loss
modulation. Combined effect of� and�. Analytical results (27):� = 0, � = 0

(solid line),� = 6:2�10 ps , � = 0 (dotted line),� = 6:2�10 ps ,
� = 6� 10 (dashed line). Numerical results (19):� = 6:2� 10 ps ,
� = 6� 10 (circles). Other parameters are as in Fig. 1.

the absence of modulation. For small, , it is . It
turns out that the resulting equations in the case of modulation in
the pump or in the losses take basically the same form, namely

(29)

where , , and are given functions of whose
detailed expressions are not needed here. The only difference is
in the right-hand side of this equation which, for the case of
modulation in the pump, is

(30)

while in the case of modulation in the losses, it is

(31)

It is easy to see that the term containing is negligible com-
pared to the first contribution to . In fact, if we con-
sider the value of in the steady state in the absence of modula-
tion , we obtain . A typical value is ,
while the product is of order 1 for . If we now
replace by its steady-state value , approximate the
term , and neglect the term proportional to, we
arrive at

(32)

(33)
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Fig. 8. Maxima of main resonances in the plane (! =! , �). Numerical
results. Pump modulation:� = 0 (solid line) (equivalent to theoretical results),
� = 3 � 10 (filled circles). Loss modulation multiplied by factor of (34):
� = 0 (triangles),� = 3� 10 (circles).� = 0, J = 1:23J .

Fig. 9. Maxima of main resonances in the plane (! =! , �). Numerical
results. Pump modulation:� = 0 (solid line),� = 2:2 � 10 ps (filled
circles). Loss modulation multiplied by factor of (34):� = 2:2� 10 ps
(circles).� = 0, J = 1:23J .

Therefore, we conclude that the role of the modulation in the
pump is equivalent to the modulation in the losses, besides a
trivial phase shift, if . In terms of the physical
parameters, this is equivalent to

(34)

This result shows that modulation in the pump or in the losses
produces equivalent results if the respective modulation ampli-
tudes are conveniently rescaled. It is possible to arrive at this
result directly, in the case , by comparing the expres-
sions in terms of Fourier coefficients (23) and (28). The validity
of this equivalence of modulation in the pump and in the losses
is shown in Figs. 8 and 9, where we compare, for typical values
of and , the skeleton lines in the case of pump and loss mod-
ulation after the latter have been rescaled according to (34). It is
clear from these figures that the proposed equivalence after pa-
rameter rescaling works well in the cases that have been shown.

A similar agreement is observed for other boundaries and values
of the parameters.

Since relation (34) implies, for typical values of the parame-
ters that , we recover the known results that loss modula-
tion is more efficient to get bifurcations and chaos. This relation
can be applied in the large-modulation signal regime (nonlinear
regime), and hence it can be considered as an extension of pre-
vious analytical results in the case of the linear regime [29].

V. COMPARISON TOEXPERIMENTS

The fingerprint of resonance regimes, which distinguish
them from nonresonance periodic windows in chaos, is a
dominant component in microwave spectra. In particular,
the component in microwave spectra was dominating in
the observations of [3] and [6], pointing out the resonance
regime, that in the time domain leads to sharp spikes (no inter-
mediate spikes at interval ). A direct example of the reso-
nant regime observation and possible applications to all-op-
tical clock division can be found in [30].

According to our predictions, resonant regimes with
also exist in the system. However, they are dynamical isolates
that cannot be observed with smooth sweeping of modulation
parameters, besides the special cases of pulse excitation [18],
[20], [21] or chaotic crisis on the basic periodic branch
leading to switching to a branch as it was observed in [3]
and explained in [31], [32].

Particularly relevant to our work is the paper by Liu and Ngai
[3], where the response of a single-mode DFB laser subjected
to current modulation is considered. We summarize the observa-
tions they obtain when changing the modulation frequency and
amplitude of the RF signal and compare them to our results, as
follows.

1) For small modulation frequency, there is only aperiod
response for any signal amplitude. It was visualized in our
system, in Fig. 2, for , for .

2) For intermediate modulation frequency, there is a transi-
tion from to responses when increasing the mod-
ulation amplitude. This fact is seen in Fig. 2 in the region

, for the corresponding values of.
3) and solutions appear for large enough modulation

frequency and amplitude. We find these solutions also in
the case of sufficiently large values of the modulation
frequency and amplitude (see Figs. 2–4). Thesolu-
tion would appear for larger values of the amplitude not
plotted in the figure. We have checked that, for and

, the corresponding boundary for pump mod-
ulation would have its minimum value at
and . However, identification of the branch
observed in [3] is still hard to make as resonant due to the
fact that the microwave spectra gives a dominate modula-
tion component at , but not at the subharmonic
as it might be expected for a purely resonant regime.

VI. CONCLUSIONS

We have undertaken an analytical study to identify the op-
timal responses of a semiconductor laser subjected to an ex-
ternal periodic modulation in the pump of relative amplitude
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and frequency . We have computed the lines in the
plane that give a maximum response for each type ofreso-
nance (skeleton lines) and compared them to the numerical re-
sults reported in our previous paper [33]. The influence of sat-
uration and spontaneous emission terms on the dynamics has
also been examined. We have found that these specific laser
diode parameters increase the thresholds of instabilities in the
system, a fact that can be interpreted as an effect of the increase
in the damping of relaxation oscillations. A qualitative compar-
ison with experiments has also been performed. The analytical
results we have obtained by an application of the quasiconser-
vative theory allow us to explain satisfactorily the effect of the
saturation term. The role of the gain saturation parameter is such
that, for a fixed value of the frequency , a larger value of
modulation amplitude is needed to obtain the optimal peri-
odic response for each main resonance. This effect is more im-
portant for higher order resonances. However, the effect of the
spontaneous emission term in the skeleton lines has not been
completely explained by the analytical results and the discrep-
ancy between the numerical and analytical results is due to the
form of the conservative solution.

Loss modulation has also been considered and analytical and
numerical results are in reasonable agreement. Furthermore, we
have obtained a relation that shows the equivalence between
pump and loss modulation. This equivalence relation, having a
large validity for the numerical boundaries, allows the boundary
limits for pump (or loss) modulation to be computed if the loss
(pump) boundaries are known. We have recovered the known
results that loss modulation is more efficient to get bifurcations
and chaos than pump modulation.
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