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c Dpto. F́ısicaTeórica-UV and IFIC-CSIC, Edificio Institutos Investigación,
Apt 22805, E-46071 Valencia, Spain

Abstract

We explore realizations of minimal flavour violation (MFV) for the lepton
sector. We find that it can be realized within those seesaw models where a
separation of the lepton number and lepton flavour violating scales can be
achieved, such as scalar mediated (type II) and inverse seesaw models. We
present in particular a simple implementation of the MFV hypothesis which
differs in nature from those previously discussed. It allows to reconstruct the
flavour structure of the model from the values of the light neutrino masses
and mixing parameters, even in the presence of CP-violating phases. Exper-
imentally reachable predictions for rare processes such as µ → eγ are given.
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1 Introduction

Neutrino masses constitute the first evidence of physics beyond the Standard Model
(SM). This new physics is likely to shed new light in the flavour puzzle, and could
possibly be the seed of the matter-antimatter asymmetry in the Universe. One of
the most interesting questions is therefore whether this new physics can be tested
through low-energy observables beyond neutrino oscillations, such as direct searches
for the new particles involved, rare decays or precision electroweak measurements.
These effects are however expected to be undetectable if the new physics scale is
orders of magnitude above the TeV, as is generally assumed.

In contrast, the possibility that the new physics scale is not too far beyond the
electroweak scale opens new possibilities to test the origin of neutrino masses in
future experiments. In this context, however, the explanation of neutrino masses
requires some symmetry principle to ensure their smallness as compared to the
masses of other fermions. As it is well known, in the absence of new light degrees of
freedom, the simplest symmetry principle that can ensure this suppression is global
lepton number, which would forbid the Weinberg’s effective operator responsible
for light Majorana neutrino masses. It is therefore conceivable that new dynamics
exists that induces lepton flavour violation (LFV) at a scale ΛFL, which could be
as low as the TeV, while total lepton number (LN) is an approximate symmetry at
this scale. The breaking of lepton number would result from subtler effects, which
could be suppressed if they originate from a still higher energy scale ΛLN or if they
are mediated by small couplings in a theory with only one scale. We will see that
these two possibilities can be quite different with respect to naturalness, but for
the time being we will not distinguish between them: as long as those new scales
are larger than the electroweak one, a model-independent representation is given in
both cases by an effective theory of the type

L = LSM +
αd=5

ΛLN
Od=5 +

∑

i

αd=6
i

Λ2
FL

Od=6
i + ... (1)

In this expansion, the only operator of dimension five (d = 5) is Weinberg’s [1].
The dimensionless couplings αd=5, αd=6

i , ... may be assumed to be of O(1), while the
effective scales ΛFL, ΛLN , take care of the suppressions of each type of contribution,
with ΛLN ≫ ΛFL as required to obtain tiny neutrino masses. Therefore, all the
effective couplings that break LN, such as Weinbergs’s, are more suppressed than
those that preserve lepton flavour symmetry, e.g. those of d = 6.

The phenomenology of the d = 6 operators associated to neutrino masses has
been extensively studied in the literature [2, 3, 4, 8, 6]. Rare processes such as
µ → eγ can be generically quite large if the scale ΛFL is of O(TeV), but it is not
possible to predict the strength of these processes in a model-independent way, since
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the flavour structure of the corresponding couplings, αd=6
i , is in general unrelated

to that in neutrino masses, αd=5.
A class of models where a relation can be established are those incorporating

Minimal Flavour Violation (MFV) [4]. The Standard Model Lagrangian, LSM ,
would respect a large flavour symmetry group where it not for the presence of
Yukawa couplings, Yu, Yd (note that the presence of both types of coupling is nec-
essary to induce physical flavour mixing in the quark sector) and Ye. MFV is the
assumption that the only source of flavour violation in the full effective theory is
the same as in LSM : ie. the Yukawa couplings, which therefore should be included
in the effective theory as flavour spurions.

This hypothesis was first introduced in the context of the quark flavour sector
[7], and there it implies that the effective theory must be constructed with the SM
fields and the quark Yukawa couplings in order to satisfy the full flavour symmetry
group of LSM . More precisely, the coefficients of the effective d ≥ 6 operators are
specific combinations of the Yukawa couplings, which thus determine the flavour
structure. As a result, the theory avoids potentially too large flavour-violating
effects and is very predictive in the realm of flavour-violating processes.

The same hypothesis in the lepton sector [4, 5] is more subtle, because strictly
speaking the only breaking of lepton flavour in LSM is due to the charged-lepton
Yukawa couplings Ye that induce no flavour-changing effects by themselves (that
is, in the absence of neutrino masses). The additional flavour spurions needed to
induce lepton mixing are necessarily model dependent, since they must appear in
the couplings of the lepton doublets to new fields. The authors of Ref. [4] considered
two such possibilities in seesaw scenarios:

• Minimal case: the flavour spurions are the couplings of Weinberg’s opera-
tor, i.e. αd=5 in eq. (1). As a consequence, qualitatively speaking αd=6 ∝
αd=5†αd=5.

• Extended case: there are very massive right-handed Majorana neutrinos (as in
type I seesaw) and their Yukawa couplings to the lepton doublets provides the
basic flavour spurions. In the absence of CP-violating phases, αd=6 ∝ αd=5.

Both assumptions imply interesting relations between the flavour structure of d = 5
and d = 6 couplings, or in other words between neutrino masses and rare processes
such as lα → lβγ. The precise connection is different for the two cases.

The setup developed in Ref. [4] assumes two fundamental -a priori unrelated-
conditions to hold:

a) Hierarchy between the operators that break and preserve lepton number or, in
other words, a large hierarchy between the corresponding scales, ΛFL ≪ ΛLN .
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b) Flavour structure of the d = 6 operator coefficients fixed by that of the d = 5
one.

This setup rises however several fundamental questions. In both extended and
minimal MFV models, flavour spurions are introduced which are coupled to the
physical fields responsible for the LN scale. How exactly can these spurions remain
coupled, for example in the d = 6 operator coefficients, after the large scale ΛLN

is integrated out? In order to fulfill conditions a) and b), is it necessary to have
two distinct scales, ΛLN and ΛFL. Do these scales correspond to physical particle
masses? Would this imply a naturalness problem [9, 6]? How general are the
relations found in Ref. [4] between d = 5 and d = 6 operators in the extended case?

In this paper we address these questions by considering simple explicit seesaw
models that satisfy criteria a) and b).

Given that we consider explicit models and not just some generic effective theory,
we can distinguish two situations. Either condition b) is satisfied by the intrinsic
structure of the model, or it is a consequence of a restrictive MFV hypothesis.
Obviously the former case is more interesting and we will show a couple of examples
of this type (in sections 2 and 4), where the whole lepton flavour structure of the
model can be extracted from the light neutrino mass matrix. Furthermore, we will
present a very simple model in section 4 that satisfies conditions a) and b), but in
which the relation between d = 5 and d = 6 operators is none of the kind considered
in Ref. [4]. For this model, no particular requirement about CP conservation is
necessary.

2 MFV in scalar mediated (type-II) seesaw mod-

els

We are interested in explicit models fulfilling the two criteria a) and b) mentioned in
the Introduction. In this section we stress that the type-II seesaw model is nothing
but a MFV model of the minimal type (that is, where the basic flavour spurion is
the coefficient of Weinberg’s operator). It is the simplest example of such minimal
MFV model.

As it is well known, the type-II seesaw model [10] in its basic form only adds
to the SM fields one scalar hypercharge 2 scalar triplet field (δ++, δ+, δ0). Writing
this triplet as ( 1√

2
(δ1 − iδ2), δ3,

1√
2
(δ1 + iδ2) ), the most general Lagrangian can be

easily written in terms of ∆ ≡ (δ1, δ2, δ3):

L∆ = (Dµ∆)† (Dµ∆) +
(
ℓ̃LY∆(τ · ∆)ℓL + µ∆φ̃†(τ · ∆)†φ + h.c.

)
− ∆†M∆

2∆

− λ2

2

(
∆†∆

)2 − λ3

(
φ†φ
) (

∆†∆
)
− λ4

2

(
∆†T i∆

)2 − λ5

(
∆†T i∆

)
φ†τ iφ , (2)
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with φ ≡ (φ+φ0)T , Ti being the three-dimensional representation of the SU(2)
generators (as defined in Ref. [6]) and τi the Pauli matrices. In the absence of
charged-lepton Yukawa couplings and Y∆, the leptonic Lagrangian exhibits a global
flavour symmetry group SU(3)L⊗SU(3)E . The coexistence of Y∆ and µ∆ explicitly
breaks lepton number, inducing at low energies the Weinberg operator:

δLd=5 = cd=5
αβ

(
ℓc
Lαφ̃∗

)(
φ̃† ℓLβ

)
+ h.c. , (3)

with
cd=5
αβ = 2Y∆αβ

µ∆

M2
∆

, (4)

which yields a light neutrino Majorana mass matrix of the form (v = 246 GeV)

mναβ = −2Y∆αβ v2 µ∆

M2
∆

. (5)

The coefficient of the d = 5 operator is therefore proportional to Y∆, which is the
only flavour spurion of the model. As for the generated d = 6 operators, there is
only one at tree level which involves leptons [6]1:

δLd=6 = cd=6
αβγδ

(
ℓLβγµℓLδ

) (
ℓLαγµℓLγ

)
, (6)

with

cd=6
αβγδ = − 1

M2
∆

Y∆
†
αβY∆δγ . (7)

Note that the structure of cd=6 is the generic one for d = 6 leptonic operator
coefficients in all seesaw models, cd=6 ∼ (M−1Y )†M−1Y , where Y and M denote
new Yukawas and scales, respectively [6]. The comparison of eqs. (4) and (7) shows
that, in addition, the flavour structure of the type II seesaw d = 6 leptonic coupling
goes basically like the square of that of the d = 5 coupling, as in the minimal MFV of
Ref. [4]. In other words, in the type-II seesaw model if we know the flavour structure
of the d = 5 coefficient we know that of the d = 6 ones. This is a well-known fact.

In this framework, while the d = 5 operator coefficient is proportional to µ∆, the
d = 6 coefficient is not. Therefore the decoupling in size of d = 5 and d = 6 couplings
is automatic. With small enough µ∆, a tiny neutrino mass doesn’t require large
M∆ and/or small Yukawa couplings Y∆, hence the d = 6 couplings can be sizeable.
The only limit to this pattern is given by the rare decay constraints, as studied
e.g. in Ref. [6]. For example if M∆ ∼ 1 TeV, Y∆ ∼ 10−1, µ∆ ∼ 10−10 GeV, one gets
neutrino masses of order 10−1 eV and saturates the experimental upper bound on

1As shown in Ref. [6], this model generates also two other d = 6 operators involving scalar
Higgs doublets and gauge bosons and no fermions, hence less interesting for our purpose since
they do not carry any flavour structure.

4



the µ → eee rate. The latter gives the most stringent constraint as l → 3l′ decays
are induced at tree level by the d = 6 operator.

The phenomenological consequences of the relation cd=6
αβγδ ∝ cd=5†

αβ cd=5
γβ have been

studied in Ref. [11]. Note that the fact that the operator in eq. (6) could emerge
in the context of MFV theories has been raised in Ref. [8], independently of the
type-II seesaw model.

The flavour breaking scale ΛFL is well defined in this case: it is the mass of
the triplet. The lepton number violating scale ΛLN is instead more subtly defined:
a large lepton number scale has been traded by a small µ∆ one, which does not
correspond to the mass of any new physical particle. The ΛLN scale in eq. (1)
would rather correspond now to the combination ΛLN ∼ M2

∆/µ∆. As the µ∆ term
explicitly breaks lepton number (in conjunction with the dimensionless Yukawa
coupling Y∆), its small value is stable because µ∆ = 0 restores the lepton number
symmetry. Therefore µ∆ does not necessarily require any large new physics scale to
generate it. Alternatively, µ∆ could come from the spontaneous breaking of lepton
number, i.e. from the vev vS of an extra scalar field. It could then be small owing to
a seesaw-type mechanism i.e. µ∆ ∼ v2

S/Λ′ (in which case the scale of the new physics
responsible for the small value of µ∆ could effectively be a large scale ΛLN = Λ′), or
because vS is small and µ∆ = c · vS (with c a dimensionless coefficient). Problems
of stability of the scale vS are nevertheless to be expected in this framework with
spontaneous breaking of lepton number, as discussed in Appendix A, unless the
smallness of µ∆ is due to the smallness of the dimensionless coefficient c rather
than to the smallness of vS.

In summary, the type-II seesaw model satisfies both criteria a) and b) above
and to our knowledge there is no simpler model which satisfies them in a minimal–
content minimal–flavour way.

3 Two-scale fermionic mediated seesaw models

(type-I and type-III)

In general all type I seesaw models are described by the following Lagrangian:

L = LSM + iN̄α 6 ∂Nα −
[
λαb

N N̄αφ̃†ℓb
L +

Mαβ

2
N̄αNβc + h.c.

]
, (8)

giving rise to a neutrino mass matrix with the following block structure:

Mν =

(
0 λT

Nv/
√

2

λNv/
√

2 M

)
, (9)
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where λN is in general a N × 3 matrix and M is N × N , with N the number of
sterile Weyl species. The lepton symmetry can be ensured for particular choices of
the λN and M matrices.

In its minimal version [12], there is only one new scale encoded within the heavy
right-handed neutrino mass matrix M , and since lepton number is violated by the
simultaneous presence of M and λN , we can identify it with ΛLN . The flavour
spurions, which in this case are the leptonic Yukawa couplings λN , would decouple
when the heavy LN scale goes to infinity. It thus fails in satisfying condition a),
which would require two distinct scales, and it is not a valid model of MFV.

In order to achieve a successful MFV fermionic-mediated seesaw theory, some
extra flavour dynamics at a lower scale, ΛFL, is needed 2. Moreover, it is also
necessary to identify the basic flavour spurions −if there is more than one possible
choice − and to guarantee that in the limit ΛLN → ∞ they remain coupled to the
degrees of freedom active at the lower scale ΛFL.

Type-I seesaw models with two scales built in do exist. It is well known that
type I seesaw models with suppressed d = 5 and unsuppressed d = 6 interactions
can be built, through the assumption of an approximately conserved lepton number
U(1)LN symmetry [14, 15] (see Refs. [18, 19, 6] for a recent discussion)3. The basic
mechanism is to have a number of Weyl species such that those with opposite
U(1)LN charges pair up into Dirac fermions, while one or several charged species
remain unpaired and therefore massless. The massless neutrinos only get masses
when symmetry breaking interactions are included. The two scales are therefore
related to the typical Dirac masses (ΛFL) and the typical lepton number breaking
scale (ΛLN). At least two generic types of flavour structures which do not decouple
in the limit of LN conservation, ΛLN → ∞, can be identified:

• Type A: λN and M have the following block structures:

λT
N =

(
Y T

N 0
)
, M =

(
0 ΛT

Λ 0

)
, (10)

In this case the N = 2n sterile species divide in two groups with opposite
lepton number charges, which we will denote by N and N ′. The corresponding

2 For instance, this happens in type-I seesaw models with two scales built in. Recall as well that
the scalar mediated type-II seesaw model in the previous section naturally encoded two distinct
scales.

3Seesaw models of type III [13] with unsuppressed d = 6 operators can be constructed analo-
gously [6]. Since the phenomenology of flavour violating decays will be very similar, we restrict
the explicit analysis to models with singlet fermions.
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Lagrangian would read:

LA = LSM + iN̄α 6 ∂Nα + iN̄ ′α 6 ∂N ′α

−
[
Y αb

N N̄αφ̃†ℓb
L +

Λαβ

2

(
N̄ ′αNβc

+ N̄βN ′αc)
+ h.c.

]
.

(11)

Models of this type include those in Refs. [14, 16, 17], often denominated
inverse or multiple seesaw models. The lepton number assignments are LN =
−LN ′ = LℓL

= 1. The pairs (Nα, N ′α) combine into n massive Dirac fermions,
while the 3 neutrinos remain massless for any n.

• Type B: λN and M have the following block structures:

λN =
(

Y T
N 0 0

)
, M =




0 ΛT 0
Λ 0 0
0 0 Λ′


 , (12)

in which M includes two distinct scales Λ and Λ′ even in the lepton number
conserving limit under discussion. The Lagrangian is then

LB = LSM + iN̄α /∂Nα + iN̄ ′α/∂N ′α + iN̄ ′′α/∂N ′′α

−
[
Y αb

N N̄αφ̃†ℓb
L +

Λαβ

2

(
N̄ ′αNβc + N̄βN ′αc

)
+

Λ′
αβ

2
N̄ ′′αN ′′βc + h.c.

]
,

(13)

and the lepton number assignments are LN = −LN ′ = LℓL
= 1 and LN ′′ = 0.

In this case therefore N = 3n, where 2n of the sterile species have opposite
charges combining into n massive Dirac fermions, as in model of Type A. The
third group of n massive Majorana singlets, N ′′, is decoupled again in the
lepton number conserving limit, leaving behind 3 massless neutrinos. It should
be noted that the simplest example of type B model in eq. (12) corresponds
to n = 1. In this case, Y T

N is a three-dimensional vector and Λ and Λ′ are just
numbers. This model has been recently discussed in Refs. [19, 6], and it also
corresponds to the structure of the models considered earlier in Refs. [15, 18].

Obviously there could be generalizations of the above to more species, but we will
discuss MFV in the context of these two possibilities.

The Lagrangian in eq. (11) leads (for all n) to n quasi Dirac fermions of masses
∼ Λ ≫ v and three massless neutrinos that can get masses only if lepton number
breaking entries are switched on. Let us next consider how it can be implemented.
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4 The simplest MFV type-I seesaw model

We will now present the simplest possibility satisfying conditions a) and b), which
will turn out to be a model of type A with n = 1.

Consider type A models above for general n. In order to obtain neutrino masses,
it is necessary to break the U(1)LN symmetry, lifting the zeros in eq. (10). By
naturalness arguments we should therefore lift all zeros at once. Let us then consider
the matrix

Mν =




0 Y T
N v ǫY ′T

N v
YNv µ′ ΛT

ǫY ′
Nv Λ µ


 , (14)

where ǫ is a flavour-blind constant. ǫ, µ and µ′ are “small parameters”, that is, the
scales in µ, µ′ are much smaller than those in Λ and v, and ǫ ≪ 1, to ensure an
approximate U(1)LN symmetry.

The entry in the 22 element in eq. (14) does not modify cd=5 at tree level, and
we will obviate it in what follows, while entries in either the 13 or 33 elements do.
When the n quasi Dirac neutrinos are integrated out, they give rise to both d = 5
and d = 6 effective operators (as expected in all type I seesaw models [2, 6]):

δLd=5 = cd=5
αβ

(
ℓc
Lαφ̃∗

)(
φ̃†ℓLβ

)
, (15)

δLd=6 = cd=6
αβ ℓ̄L

α
φ̃i/∂

(
φ̃†ℓβ

L

)
, (16)

with coefficients 4

cd=5
αβ ≡ ǫ

(
Y ′

N
T 1

ΛT
YN + Y T

N

1

Λ
Y ′

N

)

αβ

−
(

Y T
N

1

Λ
µ

1

ΛT
YN

)

αβ

, (17)

cd=6
αβ ≡

(
Y †

N

1

Λ†Λ
YN

)

αβ

+ O(ǫ) . (18)

Note that in general there is no relation between cd=5 and cd=6. However, we will see
below that a direct connection does exists in the case n = 1. In this case, YN and
Y ′

N are three dimensional complex column vectors, while Λ, µ and µ′ are in general
complex numbers. This model gives rise to just one massless neutrino, which is a
viable possibility.

In order to prove the connection between cd=5 and cd=6, we will start by showing
that in the case µ = µ′ = 0, we can reconstruct the Yukawa vectors YN and Y ′

N (up

4 As recalled in the previous section, the leptonic cd=6 coefficients are expected to depend on
(Λ−1YN )†(Λ−1YN ), (Λ−1ǫY ′

N )†(Λ−1YN ) and (Λ−1ǫY ′
N )†(Λ−1ǫY ′

N ), and the last two contribu-
tions can thus be neglected at leading order in ǫ.
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to a global normalization) from cd=5, and therefore we can fully predict the flavour
structure of cd=6. We will then show that the general case, eq. (14) for n = 1, can
be treated similarly.

Let us then first consider the mass matrix

Mν =




0 Y T
N v ǫY ′T

N v
YNv 0 ΛT

ǫY ′
Nv Λ 0


 . (19)

The d = 5 and d = 6 operator coefficients are then given by

cd=5
αβ ≡ ǫ

(
Y ′

N
T 1

ΛT
YN + Y T

N

1

Λ
Y ′

N

)

αβ

, cd=6
αβ ≡

(
Y †

N

1

Λ†Λ
YN

)

αβ

+ O(ǫ) . (20)

The texture in eq. (19) has been considered previously in Ref. [20] for n = 3. In that
texture, lepton number is broken due to the simultaneous presence of all three types
of terms, and light neutrino masses are then expected to depend on YN , Y ′

N and Λ.
The flavour breaking in this model stems from both YN , Y ′

N , and in consequence
there is flavour violation even in the lepton-number conserving ǫ → 0 limit, as YN

remains active in that limit: non-trivial leptonic flavour physics can thus affect
processes other than neutrino masses.

The structure of the effective Lagrangian in eq. (1) is therefore recovered if
one identifies ΛFL → Λ and ΛLN → Λ/

√
ǫ. The separation of scales is achieved

by having a small ǫ, which is technically natural since ǫ = 0 restores the lepton
number symmetry. The ΛLN scale does not correspond to any particle mass at this
level, while ΛFL corresponds to the Dirac heavy right-handed neutrino mass scale,
as expected.

We will show that in this case the coefficient cd=5
αβ contains sufficient information

to reconstruct both Yukawa vectors, up to a global normalization, and therefore
also the flavour structure of cd=6

αβ up to a global normalization. Furthermore, this
statement is valid even in the presence of CP violation, up to discrete degeneracies
in the Majorana phases.

It is easy to see how the number of real and imaginary parameters in the complete
model actually matches those present in the effective operator coefficient cd=5. In
particular, the number of physical phases in the light neutrino mass matrix is two,
given that one neutrino is massless. The fact that there are only two physical
phases in the model is easy to see: the fundamental Lagrangian has seven phases,
three in YN , three in Y ′

N and one in Λ, and a rotation of the N , N ′ fields and the
three lepton doublets gets rid of five of them. Only two physical phases remain and
this also means that in the complete neutrino mass matrix there are only three yet
unknown parameters: the angle θ13, the CKM type CP-violating phase “δ” and a
unique Majorana phase “α”. Furthermore, there is then a certain freedom in the
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choice of basis for the complete theory, for instance it is possible to take real Λ and
YN and also get rid of one of the 3 phases in Y ′

N . In what follows we will work in a
basis in which Λ is real while both YN and Y ′

N may be taken as complex.
Let us explicitly reconstruct the Yukawa couplings from the neutrino mass ma-

trix. It is useful to introduce the notations:

Y T
N ≡ yu Y ′

N
T ≡ y′v, (21)

where y and y′ are real numbers and u and v are three complex vectors with unit
norm. That is

〈u,u〉 = 〈v,v〉 = 1, (22)

where the scalar product is between complex vectors 〈u,v〉 ≡ u† · v.
The coefficient cd=5 in eq. (15) can be rewritten as

cd=5 =
ǫyy′

Λ

(
uvT + vuT

)
≡ ǫyy′

Λ
Ô, (23)

cd=6 =
y2

Λ2

(
uu†)+ O(ǫ2) . (24)

Note that cd=5 is symmetric in the exchange u ↔ v. This will result in discrete
degeneracies of the Majorana phase α, which cannot be resolved by the measurement
of neutrino masses and mixing parameters.

Ô is a symmetric complex matrix and can therefore be diagonalized by a trans-
formation of the form:

ǫyy′v2

Λ
UT ÔU =

ǫyy′v2

Λ
Ôd ≡ −




m1 0 0
0 m2 0
0 0 m3



 , (25)

where mi denote the mass eigenvalues, which are taken real, and U is the unitary
PMNS matrix.

We can determine the mass eigenvalues and the entries of the U matrix diago-
nalizing the hermitian matrix Ô†Ô, since

U †Ô†ÔU = Ô2
d. (26)

The three eigenvalues and eigenvectors of the matrix Ô†Ô read:

µ0 = 0 , e0 =
u× v√

1 − |u · v|2
, (27)

µ± = (1 ± ρ)2 e± =
1√

2(1 ± ρ)

(
e−iθ/2u∗ ± eiθ/2v∗) , (28)
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where
〈u,v〉 = 〈v,u〉∗ = ρeiθ. (29)

The PMNS matrix U is now given by the matrix whose columns are precisely
these eigenvectors 5. Aside from discrete degeneracies in α, the measurement of the
neutrino masses and mixing parameters fully fixes then the eigenvectors and allows
to reconstruct the vectors u and v since:

u∗ =
eiθ/2

√
2

(√
1 + ρ e+ +

√
1 − ρ e−

)
, (30)

v∗ =
e−iθ/2

√
2

(√
1 + ρ e+ −

√
1 − ρ e−

)
, (31)

while the ratio of the two mass splittings fixes ρ (it quantitatively depends on the
neutrino hierarchy). The phase θ is not physical since it can be reabsorbed by

rephasing the N field by ei θ
2 and N ′ by e−i θ

2 (leaving Λ real) and therefore we set
it to zero for simplicity.

In order to do this matching precisely, we have to distinguish the cases of the
two possible neutrino hierarchies.

Normal hierarchy

In this case the ordering of the neutrino mass eigenstates is:

m1 = 0 , |m2| =
ǫyy′v2

Λ
(1 − ρ) , |m3| =

ǫyy′v2

Λ
(1 + ρ) , (32)

and therefore the columns of U are ordered as (e0, e−, e+). From the ratio of the
two neutrino splittings we can fix ρ:

r ≡ |∆m2
solar|

|∆m2
atmos|

=
|∆m2

12|
|∆m2

23|
, ρ =

√
1 + r −√

r√
1 + r +

√
r

. (33)

Reading the columns of the PMNS matrix, one obtains

YNi =
y√
2

(√
1 + ρ U∗

i3 +
√

1 − ρ U∗
i2

)
, (34)

Y ′
Ni =

y′
√

2

(√
1 + ρ U∗

i3 −
√

1 − ρ U∗
i2

)
. (35)

5 Note that one mass is negative in our convention. That sign can be reabsorbed in a shift of
the Majorana phase.
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We will use the standard angular parametrization of the PMNS matrix:

U =




c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13



Uph (36)

where Uph contains the Majorana phases and can be parametrized in our case as:

Uph =




e−iα

eiα

1



 . (37)

Up to terms of O(
√

r, s13), we find

Y T
N ≃ y




eiδs13 + e−iαs12r
1/4

s23

(
1 −

√
r

2

)
+ e−iαr1/4c12c23

c23

(
1 −

√
r

2

)
− e−iαr1/4c12s23


 . (38)

Since the lightest neutrino is massless, from the central values of the atmospheric
and solar parameters [21], we can also fix the combination

∣∣∣
ǫyy′v2

Λ

∣∣∣ ∼ 0.029 eV →
∣∣∣
ǫyy′

Λ

∣∣∣ ∼ 4.9 × 10−13 TeV−1. (39)

Inverted hierarchy

In this case the ordering of the neutrino mass eigenstates is:

m3 = 0 , |m1| =
ǫyy′v2

Λ
(1 − ρ) , |m2| =

ǫyy′v2

Λ
(1 + ρ), (40)

and therefore the columns of U are ordered as (e−, e+, e0). We find:

r =
|∆m2

12|
|∆m2

13|
, ρ =

√
1 + r − 1√
1 + r + 1

. (41)

and

YNi =
y√
2

(√
1 + ρ U∗

i2 +
√

1 − ρ U∗
i1

)
, (42)

Y ′
Ni =

y′
√

2

(√
1 + ρ U∗

i2 −
√

1 − ρ U∗
i1

)
. (43)
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Figure 1: Normal hierarchy. Left: Ratio Beµ/Beτ for different values of the CP
phase δ = 0 (solid) and δ = π/2 (dashed), with the two pairs of curves corresponding
to α = 0 and α = π/4 as denoted. Right: the same for the ratio Beµ/Bµτ .

For the explicit parametrization of the PMNS matrix U , we will use that in eq. (36).
Again, up to terms of O(

√
r, s13) we find

Y T
N ≃ y√

2




c12e
iα + s12e

−iα

c12

(
c23e

−iα − s23s13e
i(α−δ)

)
− s12

(
c23e

iα + s23s13e
−i(α+δ)

)

−c12

(
s23e

−iα + c23s13e
i(α−δ)

)
+ s12

(
s23e

iα − c23s13e
−i(α+δ)

)


 . (44)

From the central values of the atmospheric and solar parameters [21], for the
inverted hierarchy under study it follows that

∣∣∣
ǫyy′v2

Λ

∣∣∣ ∼ 0.049 eV →
∣∣∣
ǫyy′

Λ

∣∣∣ ∼ 8.1 × 10−13 TeV−1. (45)

Having reconstructed the full Yukawa vectors, it is now possible to make predic-
tions for other lepton flavour violating processes. It is interesting to estimate the
rate for li → ljγ processes and establish how do they depend on the unique free
real parameter, θ13, and on the neutrino mass hierarchy. We will analyze the ratios

Bji ≡
Γ(li → ljγ)

Γ(li → ljνiν̄j)
∼ |u∗

i uj|2 =
1

y2
|YNi

YNj
|2 . (46)

In Figs. 1 and 2 we show the results for the ratios Beµ/Beτ and Beµ/Bµτ as a
function of θ13, for the normal and inverted hierarchies. The most striking feature
is the strong dependence on the Majorana phase α of one of these ratios for both
hierarchies: Beµ/Beτ in the case of normal hierarchy, and Beµ/Bµτ for inverted
hierarchy. In fact, within the ranges of δ and θ13 studied, the following prediction

13
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Figure 2: Inverted hierarchy. Left: Ratio Beµ/Beτ for different values of the CP
phase δ = 0 (solid) and δ = π/2 (dashed), with the two pairs of curves corresponding
to α = 0 and α = π/4 as denoted. Right: the same for the ratio Beµ/Bµτ .

holds for the normal hierarchy:

Beµ ≃ 9

2
Beτ α = 0,

Beµ ≃ 5

2
Beτ α = π/4,

Beµ ≃ Beτ α = π/2 . (47)

while Bµτ > Beµ. In contrast, a mild dependence on the δ phase holds for any θ13

value within the allowed range.
A different situation is found for the inverse hierarchy where, i.e. for vanishing

θ13 = 0,

Beµ ≫ Bµτ α = 0 ,

Beµ ≃ 2Bµτ α = π/4,

Beµ ≪ Bµτ α = π/2 , (48)

while Beµ = Beτ holds. A significant dependence on δ may also develop for θ13 6= 0
for the two ratios considered depending on the value of the Majorana phase α

The α-dependence of the ratios considered has been plotted in Fig. 3 for both
hierarchies, for δ = 0, s13 = 0.2.

Note that the absolute normalization of the branching ratios is unconstrained,
since neutrino masses only fix the combination yy′v2/Λ, while the branching ratios
depend on y2v2/Λ2. Λ not far from the TeV scale is thus a viable possibility, and
these branching ratios could therefore be measurable, provided y′ is small enough
to account for the tiny neutrino masses.
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Figure 3: Left: Ratio Beµ/Beτ for the normal hierarchy (solid) and the inverse
hierarchy (dashed) as a function of α for (δ, s13) = (0, 0.2). Right: the same for the
ratio Beµ/Bµτ .
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Figure 4: Left: |mee|(eV ) for the normal hierarchy as a function of sin θ13 and for
(δ, α) = (0, 0) (solid), (0, π/4) (dotted) and (π/2, 0) (dashed). Right: the same for
the inverse hierarchy.
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Figure 5: mee as a function of α for the normal (solid) and inverted (dashed)
hierarchies, for (δ, s13) = (0, 0.2).

In Figs. 4 and 5 we show the expected value of |mee| to be measured in neu-
trinoless beta decay, for the normal and inverse hierarchies and for the central
experimental values of the known parameters as a function of s13 and α. Note that
these figures show degeneracies in the value of α that can be resolved from the
measurement of the cd=6 couplings, i.e. from the radiative decays discussed above.
As expected, the value of |mee| is of O(10−3eV ) for the normal hierarchy and one
order of magnitude above for the inverse one. Expanding in the small parameters
s13 and r1/2, the following approximate expressions result (taking the central values
for s23 and s23 ≃ c23):

|mee|NH ≃ 0.058 eV
∣∣s2

13e
2iδ − s2

12e
−2iα

√
r(1 −

√
r)
∣∣

|mee|IH ≃ 0.049 eV
∣∣s2

12e
−2iα − c2

12e
2iα
∣∣ + O(r, s2

13) . (49)

The inverse hierarchy case is in consequence approximately independent of s13 and
therefore of the CKM-like phase δ, but very sensitive to the Majorana phase α.
In the normal hierarchy case, the dependence on all the parameters is significant.
In both cases, it is important to stress that the measurement of |mee|, together
with that of the neutrino mixing parameters in future neutrino oscillation exper-
iments can in principle fix all the parameters of the model, except the absolute
normalization of the d = 6 operator 6.

Let us now turn to the more general case when µ, µ′ 6= 0 in eq. (14). It turns out
that all the results previously derived in this section hold as well for this general

6 Note also that the relation between the d = 6 and d = 5 flavour structures obtained above
is not of the “minimal” or “extended” MFV types and is not based on the assumption of an
underlying flavour symmetry (such as a O(n) symmetry enforced in Ref. [4] to have a right-handed
neutrino mass matrix proportional to the identity).
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case. This can be easily seen by noting that, for the corresponding cd=5 coefficient
in eq. (17),

cd=5
αβ = ǫ

(
Y ′T

N

1

ΛT
YN + Y T

N

1

Λ
Y ′

N

)

αβ

−
(

Y T
N

1

Λ
µ

1

ΛT
YN

)

αβ

= ǫ

[(
Y ′

N − k

2
YN

)T
1

ΛT
YN + Y T

N

1

Λ

(
Y ′

N − k

2
YN

)]

αβ

, (50)

with

k ≡ 1

ǫ
µ

1

ΛT
. (51)

Therefore cd=5 has the same structure of that in eq. (20) with the substitution

Y ′
N −→ Y ′

N − k

2
YN . (52)

We can consequently reconstruct YN and the combination in eq. (52) from the
neutrino mass matrix, that is from cd=5, exactly as we did before. From these
two combinations, we cannot reconstruct Y ′

N in eq. (14) , because the factor k is a
new free parameter. Nevertheless, all the flavour violating processes induced by cd=6

depend only on YN , at leading order in the lepton-number violation parameters, and
are therefore the same. In other words, the structure in eq. (14) is as predictive as
that in eq. (19). The low-energy physics (i.e. the relation between flavour violation
transitions and the neutrino mass matrix) is the same in both models.

A nice feature of the model considered in this section, eq. (14), is its naturalness
characteristics. It does not contribute significantly to the electroweak hierarchy
problem for Λ values near the TeV scale, as all loop corrections relevant to Higgs
physics are proportional to small parameters.

Finally, given the predictivity of the model, it would be interesting to explore
whether it leads to successful leptogenesis. At low scale, a small mass splitting
between the right-handed neutrinos is necessary in order to have a large resonant
enhancement of the CP-asymmetry. This indeed happens in the model discussed
here, eq. (14), which induces a tiny mass difference of order of the size of the U(1)LN

breaking, and hence leads to a large resonant enhancement (with however e.g. large
washout effects from inverse decays and ∆L = 2 scatterings for large values of the
YN couplings). This has been analyzed in ref. [17] for the case where the 22 and 33
entries in eq. (14) dominate the mass splitting. Successful leptogenesis appears to
be achievable in this case, although only for relatively small values of all Yukawa
couplings, which in turn leads to suppressed flavour changing d = 6 effects, even for
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a mass splitting at the resonance peak. The case with negligible 22 and 33 entries,
eq. (19), is yet to be analyzed.

We will consider next an alternative class of candidate MFV models: those in
which lepton number violation results from lifting the zeros in the diagonal entries
of the Mν matrix, with no 13 entry and n > 1. These are the well known inverse
seesaw models [14].

5 MFV in type-I inverse seesaw models

This section deals, as did the previous one, with models of type A, see eq. (10). We
consider now the case in which light neutrino masses result from lifting the zeros
in the diagonal entries of Mν . In contrast to the case with only off-diagonal lepton-
violating entries, eq. (19), the diagonal entries are soft-breaking terms and therefore
would not induce by themselves off-diagonal terms. The fundamental neutrino mass
matrix is of the form:

Mν =




0 Y T
N v/

√
2 0

YNv/
√

2 µ′ ΛT

0 Λ µ


 . (53)

For n = 1 however it leads to two massless neutrinos and in consequence is of no
physical interest. n ≥ 2 is needed to get at least 2 massive neutrinos [14]. The
simultaneous presence of YN , Λ and the Majorana couplings µ and/or µ′ breaks
lepton number. As explained before the µ′ scale does not play any role at low-
energies at tree level.

The tree-level exchange of the heavy species gives rise to the same d = 5 and
d = 6 effective operators in eqs. (15)-(16) with coefficients

cd=5
αβ ≡ −

(
Y T

N

1

Λ
µ

1

ΛT
YN

)

αβ

, cd=6
αβ ≡

(
Y †

N

1

Λ†Λ
YN

)

αβ

. (54)

The structure of the effective Lagrangian in eq. (1) is therefore recovered if one
identifies ΛFL → Λ and ΛLN → Λ2/µ. The separation of scales is achieved by
having a small µ, which is technically natural since µ = 0 restores the lepton
number symmetry.

Concerning the flavour structure of the d = 5 and d = 6 operators in eq. (54),
they are, in general, unrelated. That is, unless µ ∼ In×n, which amounts to saying
that the term preserves an additional O(n) symmetry. Obviously this symmetry is
broken by the YN and Λ couplings, and in consequence it can be argued that there
is a priori no justification for this choice, which will not be stable under radiative
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corrections. Nevertheless, this choice is equivalent to the assumption or hypothesis
of MFV: that the only sources of flavour violation are encoded in the charged lepton
Yukawa coupling, Ye, in YN and maybe also in Λ. If these three couplings were zero,
then the lepton sector would have a symmetry group:

SU(3)ℓL
× SU(3)E × SU(n)N × O(n)N ′. (55)

Alternatively, the option λE = YN = 0 with Λ proportional to the identity would
imply that the flavour symmetry group is

SU(3)ℓL
× SU(3)E × O(n)N,N ′. (56)

In the former case the neutrino sector spurions are YN ∼ (3̄, 1, n, 1) and Λ ∼
(1, 1, n, n) , while in the latter YN ∼ (3̄, 1, n). In both cases, the exact connection
of d = 5 and d = 6 couplings only holds up to CP phases. Indeed, in the absence of
CP violation it follows that

cd=5
αβ = −µ cd=6

αβ , (57)

and the flavour processes induced by the d = 6 operator are fixed, up to a global
normalization, by the neutrino mass matrix. This model with diagonal µ is therefore
the simplest example of the extended class of models defined in Ref. [4].

In Refs. [4, 8], the implications for flavour-violating processes li → ljγ as well as
µe conversion in extended models of MFV have been discussed and should apply as
well to the model discussed here. However, it turns out that the d = 6 Lagrangian
at tree level contains just one operator, eq. (16), which is none of those appearing in
the basis considered in Ref. [4]. It can obviously be rewritten in terms of operators
in that list:

δLd=6 = cd=6
αβ ℓ̄L

α
φ̃i/∂

(
φ̃†ℓβ

L

)
=

cd=6
αβ

2

(
ℓ̄L

α
γµℓ

β
L φ†iDµφ − ℓ̄α

Lτγµℓ
β
L φ†τiDµφ

)
. (58)

The combination is however a blind direction: li → ljγ and µ → e do not take place
at tree level, as it happens separately for any of the two operators on the right
-hand side of eq. (58), but only at one loop. In consequence, the bounds derived
from these processes in Refs. [4, 8] are further suppressed by an additional loop
factor, roughly 1/(4π)2 ∼ 10−2. The flavour structure is however the same. Similar
plots to those shown in Figs. 1, 2 can be found in Ref. [4], which should be strictly
applicable to our case. They found the pattern Bµτ ≫ Beµ ∼ Beτ , which is to be
contrasted with the findings in the previous section.

Also in this case it is necessary to justify the presence of the µ, µ′ terms and
no other U(1)LN breaking term, such as for instance a 13 entry in eq. (53) as in
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the model in previous section. The symmetry pattern shown in eq. (55) could
justify it. Alternatively, such a choice could be justified if the U(1)LN symmetry is
spontaneously broken by the vacuum expectation value (vev) of a scalar singlet S
with charge -2, leading to a Lagrangian of the form:

LA = LSM + iN̄ 6 ∂N + iN̄ ′ 6 ∂N ′ −
[
YNN̄φ̃†ℓL +

Λ

2

(
N̄ ′N c + N̄N ′c)

+
gS

2
N̄ ′N ′c +

g′S†

2
N̄N c + h.c.

]
+ V (S, φ). (59)

A vev of the singlet would induce the µ and µ′ couplings µ = g〈S〉, µ′ = g′〈S†〉.
Nevertheless, this possibility results in a naturalness problem, that is, of the stability
of the separation of scales at the quantum level. We discuss it briefly in appendix
A.

6 MFV in type-I seesaw models of type B

The models of type B, e.g. with 3n sterile species, also satisfy an exact global
U(1)LN symmetry, which ensures the presence of three massless neutrinos for any
value of n. In order to lift their masses it is necessary to have some entries in the
mass matrix that violate the symmetry. There are several possibilities with different
implications in what respects MFV. One possibility is to include some small entries
in the zeros of M . The modification of only the diagonal entries in M reduces the
model to one of type A, since the N ′′ fields would remain decoupled in this case.
The modification instead of only the off-diagonal entries induces a neutrino mass
matrix of the form:

Mν =




0 YNv/
√

2 0 0

Y T
N v/

√
2 0 Λ µ2

0 ΛT 0 µ1

0 µ2 µ1 Λ′


 . (60)

The main interest of these models, in comparison with models of type A, is that it
is no longer necessary to assume that µ1 and µ2 are very small scales. Even more,
in the limit in which Λ′ is much larger than all the other scales present, it reduces
to a Type A model. In other words, type B models can be seen as an ultraviolet
completion of type A scenarios, whose small scales are then explained in terms of
large ones in the fundamental theory. Let us discuss this point in detail.

The separation of scales, that is, the implementation of criterium a) in the Intro-
duction, can be achieved through a hierarchy of scales: Λ′ ≫ Λ, µ1, µ2. In principle
µ1 and µ2 could be roughly ∼ Λ, because the U(1)LN symmetry is recovered when
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the scale Λ′ decouples, no matter how large are the other scales. Indeed, integrating
out the scale Λ′, the effective theory at energies below Λ′ is:

LB ≃ LSM + iN̄ 6 ∂N + iN̄ ′ /∂N ′ −
[
YNN̄φ̃†ℓL +

1

2

(
Λ + µ2

1

Λ′µ
T
1

)(
N̄ ′N c + N̄N ′c)

+
1

2
µ2

1

Λ′µ
T
2 N̄N c +

1

2
µ1

1

Λ′µ
T
1 N̄ ′N ′c + h.c.

]
. (61)

This is nothing but a model of type A, with symmetry-breaking entries of the µ,
µ′ type, in eq. (53) suppressed by the large scale Λ′. The scale of lepton number
violation can be simply identified with ΛLN ∼ Λ′, which corresponds to the mass of
the heavy Majorana neutrinos, while the scale of lepton flavour violation would be
ΛFL ∼ Λ. This pattern is close to that of the extended models of Ref. [4].

When the scale Λ is sufficiently above the electroweak scale, it can be integrated
out, resulting in the same d=5 and d=6 operators than in eq. (54), with µ given
now by µ1

1
Λ′

µT
1 . The effective theory at scales much lower than Λ is therefore:

LB ≃ LSM −
(

Y T
N

1

Λ
µ1

1

Λ′µ
T
1

1

ΛT
YN

)

αβ

(
ℓc
Lαφ̃∗

)(
φ̃†ℓLβ

)

+

(
Y †

N

1

Λ†
1

Λ
YN

)

αβ

ℓ̄L
α
φ̃i 6∂

(
φ̃†ℓβ

L

)
+ O

(
1

Λ′2 ,
1

Λ2Λ′

)
, (62)

to be compared with the typical structure of inverse seesaw models, eq. (54). The
cd=6 ∝ cd=5 relation between the flavour structures of d=5 and d=6 operators
discussed in section 4 holds (up to CP phases), provided we assume that the flavour
symmetry group is

SU(3)ℓL
× SU(3)E × SU(n)N × O(n)N ′,N ′′ , (63)

and is only broken by the spurions YN ∼ (3̄, 1, n, 1) and Λ ∼ (1, 1, n, n), while
both Λ′ and µ1 are invariant under O(n) rotations of the N ′′ and N ′ fields. In this
situation, µ2 ∼ (1, 1, n, n) ∼ Λ. Would Λ be instead proportional to the identity
and YN the only spurion, then the symmetry group would be

SU(3)ℓL
× SU(3)E × O(n)N,N ′,N ′′, (64)

and µ2 would also be proportional to the identity.
Concerning the justification of the zeros in eq. (60), we note that the flavour

symmetries just described are not enough to forbid, for example, a 33 entry in the
case of eq. (63), or 13 and 14 entries (proportional to YN) in the case of eq. (64).
However , it is easy to justify a breaking of the U(1)LN symmetry only through the
µ1 and µ2 terms, if we assume that the symmetry has been spontaneously broken
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through the vev of a singlet scalar S with lepton number LS = +1. The only
possible renormalizable couplings of the scalar to fermions would then be precisely
those giving rise to the µ1 and µ2 terms, see eq. (76) in Appendix A. As in the type
A models with spontaneous symmetry breaking, questions of naturalness may arise
though, as we briefly discuss in that appendix.

As in the case of type A models, an alternative to break the global symmetry is
to lift the zeros in λN , that is the 13 or 14 entries in the neutrino matrix in eq. (60).
A 13 entry would reduce the model at low energies to that discussed in section 3.
On the contrary, a 14 entry would be qualitatively different:

Mν =




0 YNv/
√

2 0 Y ′
Nv/

√
2

Y T
N v/

√
2 0 Λ 0

0 ΛT 0 0

Y ′T
N v/

√
2 0 0 Λ′


 , (65)

with Y ′
N and YN being distinct spurions, since the quantum numbers of Nα and N ′′

α

are different. The approximate U(1)LN symmetry is ensured in this case not by a
suppressed Y ′

N , but rather by a large hierarchy Λ′ ≫ Λ. The integration of the scale
Λ′ and Λ in this case gives now rise to the d=5 and d=6 operators with coefficient
matrices given by:

cd=5
αβ ≡ ǫ

(
Y ′T

N

1

Λ′Y
′
N

)

αβ

, cd=6
αβ ≡

(
Y †

N

1

Λ†Λ
YN

)

αβ

+ O
(

1

Λ′

)
. (66)

Therefore, their flavour structures are completely unrelated and condition b) is not
satisfied for these models. Also, in contrast with type A models, the simplest case
with n = 1 does not lead here to a phenomenologically viable model since there is
only one massive neutrino, and at least n = 2 should have to be explored.

A possibility to enforce MFV in this case would be to have both Λ and Λ′

proportional to the identity matrix, and YN ∝ Y ′
N . This might be justified assuming

for instance the flavour symmetry in eq. (64). This would not forbid however a 13
entry in eq. (65) proportional to the YN spurion, and additional small parameters
would thus be required to ensure suppressed neutrino masses in this case. Note
also that a spontaneously broken symmetry pattern cannot generate any 14 entry
in eq. (65) at the renormalizable level.

Finally, note that leptogenesis has been studied in some models of type B in
Ref. [22], and in the “extended MFV” framework in Ref. [23].

In summary, the models of type B are interesting in particular as ultraviolet
completions of MFV neutrino mass models of type A. They involve two physical
scales, associated to the masses of extra heavy fermions -SM singlets or triplets-
and in them the approximate U(1)LN symmetry is recovered in the limit of large
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ΛLN , characteristic of some heavy fermion mass, and not by introducing very small
mass terms or couplings. Although physically more appealing, the presence of two
distinct mass scales is not stable under radiative corrections (unless some couplings
are small), which is nothing but the standard naturalness problem.

7 Conclusions

There are in the literature many minimal models which lead to predictions for the
leptonic cd=5 flavour structure, assuming that some of the entries of the Yukawa
coupling matrices and/or right-handed neutrino mass matrix vanish or are negli-
gibly small [24]. However, as these models typically lead to very suppressed cd=6

coefficients, they are not experimentally verifiable: in the seesaw model with three
(two) right-handed neutrinos there is a nine(four)-dimensional space of parameters
which can lead to the same neutrino mass matrix. In order to be established, a
model must lead to measurable effects other than neutrino masses and mixings.
The working hypothesis is that neutrino masses are generated by some new physics
which decouples at low energies, leaving behind also a tower of d ≥ 6 effective op-
erators. Particularly interesting and predictive models of this kind are the MFV
models where not only the d = 6 couplings are large, but can be determined from
the neutrino mass matrix, up to an overall normalization scale.

We have explored various realizations of the MFV hypothesis in the lepton sector
[4]. We have argued that it requires two a priori unrelated conditions. The first is
the existence of some approximate U(1)LN lepton number symmetry implying two
distinct scales, ΛLN ≫ ΛFL: the first scale suppresses all operators violating lepton
number, such as the d = 5 Weinberg’s operator, and the second one suppresses
to a lesser extent flavour violating but lepton number conserving processes, such
as li → ljγ, mediated by d = 6 effective operators. The second requirement is
the existence of a relation between the flavoured coefficients of the corresponding
effective operators.

We did find explicit realizations of these hypotheses in the context of seesaw
scenarios. First, type II seesaw models (that is, scalar mediated) are of the type
classified as minimal in Ref.[4], in which the coefficient cd=5 of Weinberg’s operator
is the basic and only flavour spurion in the model. The coefficients of the d =
6 effective operators are then quadratic in this basic spurion. Second, we have
considered seesaw models of type I -i.e. mediated by singlet or triplet fermions-
with an approximate U(1)LN symmetry [14]. Among them, some of the so-called
inverse seesaw models fall in the category of the extended models defined in Ref. [4],
in which the d = 5 and d = 6 operators have identical flavour structure in the
absence of CP violation.

The most interesting result of this work is that we have identified the simplest
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model (involving just two extra singlet or triplet fermions), which automatically
satisfies the hypotheses of MFV. It is a seesaw model in which the assumption of an
approximate lepton number U(1)LN symmetry directly implies a relation between
the flavour structures of the d = 5 and the d = 6 effective couplings. The light
neutrino mass matrix involves in this model only one Majorana phase. The flavour
violating rates induced by the d = 6 couplings can be reconstructed - including
CP phases - from the parameters in the light neutrino mass matrix, except for: 1)
a global normalization and 2) discrete degeneracies in the Majorana phase. The
relation between the d = 5 and the d = 6 operator coefficients in this case differs
in nature from those previously considered [4]. We presented the phenomenological
implications of this simplest model in what respects the comparison of the li → ljγ
branching ratios and neutrinoless double beta decay. The model is a simple alter-
native for having sufficiently small neutrino masses, with large and fully predictable
flavour violating effects.

It remains to be seen whether it can be successful in explaining the origin of the
matter-antimatter asymmetry.
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A Naturalness

We address here the question of naturalness and the stability of the scales present
in the models considered, which is an issue as they include at least one scale larger
than the electroweak one.

In models of type A as in eqs. (19) and (53), the quantum corrections induced on
the size of the electroweak scale by the presence of Λ of O(TeV ) are not significant,
because they have to be proportional to the small parameters ǫ or µ, µ′.

While the smallness of the ǫ entries in eq. (19) can be technically natural, as
discussed in section 4, a naturalness problem arises instead in the type A models in
eq. (53), when the zeros are justified as due to a conserved global lepton number,
which is then spontaneously broken, i.e. by the vev of a singlet scalar field S with
interactions given in eq. (59). The scalar potential V (S, φ),

V (S, φ) = λφ(φ
†φ)2 + λS(S†S)2 + µ2

φφ
†φ + µ2

SS†S + λ(φ†φ)(S†S) , (67)

leads to

< S >=

√
(λµ2

φ − 2λφµ
2
S)

4λφλS − λ2
. (68)

S

φ

S S

S

S S N

N

S

Figure 6: Loop corrections to mass of the scalar S in type A models with sponta-
neously broken lepton number.

This vev has to be small compared to Λ, as µ = g < S >, µ′ = g′ < S >, see
eqs. (53) and (59). The problem arises because, for instance, µS is destabilized at
one-loop by contributions sensitive to high scales and only weighted by the couplings
g, g′, λS or λ. As an example, the contribution from the three diagrams in Fig. 6
are, respectively,

δµ2
S ∼ λ

(4π)2

[
Λ2

c − m2
φ ln

(
1 +

Λ2
c

m2
φ

)]
, (69)

δµ2
S ∼ 3λS

(4π)2

[
Λ2

c − m2
S ln

(
1 +

Λ2
c

m2
S

)]
, (70)

27



δµ2
S ∼ (g + g′)2

4(4π)2

[
Λ2

c + Λ2 ln

(
1 +

Λc

Λ

)]
, (71)

where Λc is a cutoff scale to be removed by renormalization, after which finite
contributions will still remain proportional to physical scales such as the Higgs
mass mφ, the scalar mass mS or the flavour scale Λ. A fine-tuning is thus necessary
to preserve the desired hierarchy, unless the dimensionless couplings g, g′, λS and
λ turn out to be small.

Type B models involve at least two large scales, represented by Λ and Λ′, typ-
ically with Λ′ ≫ Λ. The class of models in eq. (60) taken by themselves is free
from naturalness problems. To illustrate it, it suffices to take the simpler case
µ1 = µ2 = Λ,

L = LSM + iN̄ /∂N + iN̄ ′ /∂N ′ + iN̄ ′′ /∂N ′′ −
[
YNN̄φ̃†ℓL +

Λ′

2
N̄ ′′N

′′ c +

+
Λ

2

(
N̄N

′′ c + N̄ ′N c + N̄N
′′ c + N̄ ′′N c + N̄ ′′N

′′ c + N̄ ′′N
′ c
)

+ h.c.
]
, (72)

which becomes, in the basis of mass eigenstates denoted N1, N2, N3,

L = LSM + iN̄1/∂N1 + iN̄2 /∂N2 + iN̄3/∂N3 −
[
YN(αN̄1 + βN̄2 + γN̄3)φ̃

†L +

+
Λ

2
(N̄1N

c
1 + ΛN̄2N

c
2) +

Λ′

2
N̄3N

c
3 + h.c.

]
, (73)

where (N1, N2, N3)
T = U (N, N ′, N ′′)T , U being unitary. α, β and γ are functions

of Λ and Λ′ which, up to order Λ
Λ′

, read

α =
i√
2

, β = − 1√
2

, γ =
Λ

Λ′ . (74)

In this basis, it is directly seen that the coupling of the Higgs to the heaviest field N3

is suppressed by the factor Λ
Λ′

, a fact that could already be guessed from eq. (60).
Also, for instance, the amplitude of the loop diagram depicted in Fig. 7, can be
written as

M(p)C
A = i

Y 4

2

Λ2

Λ′

∫
d4l d4k

(2π)8

lµkνσ
µ

AḂ
(σ̄ν)ḂC

l2k2[(l + k − p)2 − Λ′2](p − l)2(p − k)2
, (75)

where p is the incoming momentum and where we have neglected the mass of the
Higgs and the lepton running inside the loop. The integral in eq.(75) yields a
logarithmic contribution of order one, hence the suppression factor γ2 = (Λ/Λ′)2

guarantees no higher order correction to mass of the N1. Furthermore, it is clear
that this type of suppression always appears when the N3 field runs inside a loop,
and no naturalness problem results in this model.
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Figure 7: Two loop correction to the N1 mass on type B model.

The trouble is that the zeros in eq. (60) appear to be an ad hoc constraint.
Again, they can be justified if lepton number is a symmetry of the Lagrangian,
spontaneously broken by the vev of some scalar field(s), i.e. a singlet scalar S, to
induce the entries µ1, µ2 while the null entries remain protected by the symmetry.
This solution rises questions of naturalness, though, as quantum corrections may
push the value of Λ towards that of the higher scale Λ′. We will illustrate it in what
follows.

Let us promote the Lagrangian corresponding to eq. (60) to the lepton number
conserving one

L = LSM + iN̄ /∂N + iN̄ ′ /∂N ′ + iN̄ ′′ /∂N ′′

− V (S, φ) −
[
Λ

2
(N̄ ′N c + N̄N

′′ c +
Λ′

2
N̄ ′′N ′′c+

]

+YNN̄ φ̃†L +
f1

2
S(N̄ ′N ′′c + N̄ ′′N ′c) +

f2

2
S†(N̄N ′′c + N̄ ′′N c) + h.c.

]
, (76)

where S is a new scalar field with charge −1 under lepton number symmetry. Note
that the symmetry is only violated after S acquires a vev, resulting in µ1, µ2 in
eq. (60) given by µ1 ≡ f1 〈S〉 and µ2 ≡ f2 〈S〉. Due to the couplings of the S field
new quantum corrections arise. The diagram in Fig. 8 induces a correction to the

scale Λ given by

δΛ ∼ f1f2

(4π)2
Λ′. (77)

where logarithms of order one have been neglected. This correction could suffice
to destabilize the Λ scale. Note though that it does not need to be the case if
the dimensionless coupling f2, which does not enter in eq. (62), turns out to be
sufficiently small.

In summary, naturalness issues arise in those models in which the justification
of the vanishing or smallness of some couplings calls for a spontaneous breaking
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Figure 8: Loop corrections to mass of N1 in type B models with spontaneously
broken lepton number.

of lepton number symmetry. In the scenarios of this type analyzed, the problem
can be evaded if certain dimensionless new couplings take small values. If this is
the case, although we have not identified a symmetry reason justifying such small
values, the protection of the size of the scales is technically natural.
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