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Abstract

A low energy non-unitary leptonic mixing matrix is a generic feature of many extensions of the

Standard Model. In such a case, the task of future precision neutrino oscillation experiments is

more ambitious than measuring the three mixing angles and the leptonic (Dirac) CP-phase, i.e.,

the accessible parameters of a unitary leptonic mixing matrix. A non-unitary mixing matrix has 13

parameters that affect neutrino oscillations, out of which four are CP-violating. In the scheme of

Minimal Unitarity Violation (MUV) we analyse the potential of a Neutrino Factory for determining

or constraining the parameters of the non-unitary leptonic mixing matrix, thereby testing the origin

of CP-violation in the lepton sector.
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I. INTRODUCTION

There are several indications from particle physics, as well as from cosmology, for the

existence of physics beyond the Standard Model (SM). For example, the gauge hierarchy

problem suggests that new physics exists at energies close to the electroweak scale in order

to stabilise it against large quantum corrections. In cosmology, the evidence for dark matter

in the Universe requires the extension of the SM particle content. Last, but not least, the

discovery that neutrinos are massive provides the first clear particle physics evidence that

the SM has to be extended.

In general, extensions of the SM will also affect the physics relevant at neutrino oscillation

experiments. New physics effects on neutrino oscillations are particularly relevant for the

next generation of precision neutrino oscillation facilities such as Neutrino Factories [1, 2],

which aim at measuring the unknown leptonic mixing angle θ13, the neutrino mass hierarchy

(i.e., sgn(∆m2
31)), as well as the Dirac phase δ, which can induce CP-violation in neutrino

oscillations. In most phenomenological studies regarding the sensitivities of future neutrino

oscillation facilities, the leptonic mixing matrix is assumed to be unitary.

In contrast to this common practice, it is well known that one generic feature of new

physics in the lepton sector is the non-unitarity of the low energy leptonic mixing matrix.

This non-unitarity appears whenever additional heavy particles mix with the light neutrinos

or their charged lepton partners [3]. After integrating the heavy states out of the theory,

the 3 × 3 submatrix of the light neutrinos remains as an effective mixing matrix. This low

energy leptonic mixing matrix is, in general, not unitary.

While there are many models of physics beyond the SM which induce non-unitarity, an ex-

tension of the SM featuring a non-unitary leptonic mixing can be described in a minimal way

through an effective theory, the so-called Minimal Unitarity Violation (MUV) scheme [4].

It contains the relevant low-energy information for neutrino oscillation experiments and is

minimal in the sense that only three light neutrinos are considered and that new physics

is introduced in the neutrino sector only. It provides an effective description of all models

where additional heavy singlets mix with three light neutrinos.1

1 Other possibilities to introduce non-unitary leptonic mixing are, e.g., via an additional vector-like lepton

generation or via fermionic SU(2)L triplets, which are beyond MUV. Non-unitarity in these schemes turns

out to be significantly more constrained by non-oscillation experiments than in MUV (see, e.g., Ref. [5]).
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In MUV, the charged- and neutral-current interactions of the neutrinos (i.e., their cou-

plings to the W and Z bosons) are modified. The non-unitary leptonic mixing matrix N ,

which appears in the charged-current interaction, contains the only additional degrees of

freedom, since the neutral-current interaction of the neutrinos is proportional to N †N while

the neutral-current interaction of the charged leptons is unchanged. Thus, instead of the

three mixing angles and three CP-phases of a unitary leptonic mixing matrix (with only one

affecting neutrino oscillations), the non-unitary mixing matrix N contains 15 parameters,

out of which six are CP-violating phases (including two Majorana phases, which do not

affect neutrino oscillations).

In this study, we investigate the potential of a Neutrino Factory for determining or con-

straining the parameters of the non-unitary leptonic mixing matrix, thereby testing the

origin of CP-violation in the lepton sector.

II. GENERAL INTRODUCTION TO UNITARITY VIOLATION

As motivated in the introduction, non-unitarity of the leptonic mixing matrix is a generic

manifestation of new physics in the lepton sector. The MUV scheme provides an effective

field theory extension of the SM and is minimal in the sense that only three light neutrinos

are considered and that new physics is only introduced in the neutrino sector. Notice that

this assumption is conservative, since new physics affecting other sectors, such as that of

the charged leptons, will lead to stronger signals than the ones discussed here. The MUV

scheme thus describes the relevant effects on neutrino oscillations in the various types of

models where the SM is extended by heavy singlet fermions (where “heavy” refers to large

masses compared to the energies of the neutrino oscillation experiments) which mix with

the light neutrinos.

In the MUV scheme, the Lagrange density of the SM is extended by two effective

operators, one of mass dimension five and one of mass dimension six. The dimen-

sion five operator is the ubiquitous lepton number violating Weinberg operator δLd=5 =

1

2
cd=5
αβ

(

Lc
αφ̃∗
)(

φ̃† Lβ

)

+H.c., the lowest dimensional effective operator for generating neu-

trino masses using the field content of the SM. The coefficient matrix cd=5
αβ is of O(1/M)

and related to the low energy neutrino mass matrix by mν = v2
EWcd=5, where vEW is the

vacuum expectation value of the SM Higgs field φ, which breaks the electroweak symmetry,
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and φ̃ = iτ2φ
∗. The SM neutrinos are contained in the lepton doublets Lα, with α = e, µ, τ

running over the three families.

The effective dimension six operator cd=6
αβ

(

Lαφ̃
)

i��∂
(

φ̃†Lβ

)

conserves lepton number2

and, after electroweak symmetry breaking, contributes to the kinetic terms of the neutrinos.

After their canonical normalisation, they generate a non-unitary leptonic mixing matrix N ,

as well as non-universal couplings of the neutrinos to the Z boson proportional to N †N .

The modified part of the Lagrange density in MUV is given by

Leff =
1

2
(ν̄ii ∂/ νi − νc

imi νi + H.c.) − g

2
√

2
(W+

µ l̄α γµ (1 − γ5) Nαi νi + H.c.)

− g

2 cos θW
(Zµ ν̄i γ

µ (1 − γ5) (N †N)ij νj + H.c.) . (1)

We note that the MUV scheme is also minimal in the sense that all new physics effects depend

on the non-unitary leptonic mixing matrix N . Regarding neutrino oscillation experiments,

the non-unitarity of N affects the processes at the source and the detector as well as neutrino

propagation in matter.

To parametrise N , we use the fact that a general matrix can be written as the product

of a Hermitian matrix times a unitary matrix. Decomposing the Hermitian matrix as 1+ ε

(with ε = ε†) and denoting the unitary matrix by U , we can write [6]

N = (1+ ε) U . (2)

For the complex off-diagonal elements of the matrix ε, we use the notation εαβ = |εαβ|eiφαβ .

Notice that, due to the Hermiticity of ε, |εαβ| = |εβα| and φαβ = −φβα. The diagonal

elements are real and no further parametrisation is required. Constraints on the εαβ can

also be derived from the experimental data on electroweak decays [7, 8]. The present 90 % CL

bounds are |εµe| < 3.5·10−5, |ετe| < 8.0·10−3, |ετµ| < 5.1·10−3 [4] and |εee| < 2.0·10−3, |εµµ| <

8.0 ·10−4, |εττ | < 2.7 ·10−3 [9]. In our analysis, we will consider unitarity violation consistent

with the present bounds. Analytic expressions for the neutrino oscillation probabilities in

terms of U and ε can be found in App. A.

Finally, we would like to comment on other possible parametrisations of a non-unitary

leptonic mixing matrix. In Refs. [10, 11, 12, 13], a different parametrisation is advocated, in

2 We note that since the dimension six operator conserves lepton number, it is not necessarily suppressed

by the smallness of the neutrino masses.
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which the deviations from unitarity of the mixing matrix involving the three light neutrinos

is related to the mixing between these light neutrinos and the heavy singlets in seesaw type

theories. The mixing matrix in a seesaw scenario is the unitary matrix that diagonalises the

extended neutrino mass matrix:

UT
6×6





0 mD

mT
D MN



U6×6 =





m 0

0 M



 , (3)

where mD and MN are the neutrino’s Dirac and Majorana mass matrices, respectively. In

the case of only one neutrino family, the unitary matrix is just a rotation of angle θ ≃ mD/M .

The extension to three or more families is straightforward, performing the diagonalisation

in two steps: first a block-diagonalisation and then two unitary rotations to diagonalize the

mass matrices of the light and heavy neutrinos, i.e.,

U6×6 =





A B

C D









U 0

0 V



 , (4)

where U and V are unitary matrices. Without loss of generality, we can choose a basis for the

heavy singlets such that V = I. Analogously to the one family example, when performing

the block diagonalisation, the mixing between the light and heavy neutrinos is suppressed

so that

B ≃ Θ = mDM−1

N . (5)

This suppression is exploited in Refs. [12, 13], where the block diagonalising matrix is writ-

ten as the product of the 9 possible rotations mixing the light and heavy states and then

expanded up to second order in the small mixing angles. This results in

A = 1 −











1

2
(s2

14 + s2
15 + s2

16) 0 0

ŝ14ŝ
∗
24 + ŝ15ŝ

∗
25 + ŝ16ŝ

∗
26

1

2
(s2

24 + s2
25 + s2

26) 0

ŝ14ŝ
∗
34 + ŝ15ŝ

∗
35 + ŝ16ŝ

∗
36 ŝ24ŝ

∗
34 + ŝ25ŝ

∗
35 + ŝ26ŝ

∗
36

1

2
(s2

34 + s2
35 + s2

36)











+ O(θ4
ij) ,

B =











ŝ∗14 ŝ∗15 ŝ∗16

ŝ∗24 ŝ∗25 ŝ∗26

ŝ∗34 ŝ∗35 ŝ∗36











+ O(θ3
ij) , (6)

where ŝij = sij exp(iδij) and sij = sin(θij). Notice that the mixing matrix of the three light

neutrinos is given by N = AU . Thus, the deviation from unitarity, encoded in A, is directly
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related to the mixing B between the heavy and light neutrinos. We argue that this is also

the case with the Hermitian unitarity deviation adopted in Eq. (2). Indeed, we can exploit

the suppression of Eq. (5) to write the unitary block diagonalisation as the exponential

expansion of an anti-Hermitian matrix:





A B

C D



 = exp





0 Θ

−Θ† 0



 =





1 − 1

2
ΘΘ† Θ

−Θ† 1 − 1

2
Θ†Θ



 + O(Θ3). (7)

Thus, the Hermitian deviation from unitarity defined in Eq. (2) is just ε = −ΘΘ†/2 and its

relation to the mixing between light and heavy neutrinos in a seesaw scenario is straight-

forward.3 Furthermore, notice that the deviation from unitary mixing parametrised as in

Eq. (6) can only be applied to the specific case of the mixing between three light and three

heavy neutrinos while the product of an Hermitian and a unitary matrix is a completely

general matrix and thus suitable to take into account more general scenarios. In addition,

the unitarity deviation ε is given by the coefficient of the d = 6 operator (ε = −cd=6/2)

that modifies the neutrino kinetic terms, introduced in the MUV scheme and obtained in

the effective theory of the seesaw mechanism after integrating out the heavy singlets (see,

e.g., Ref. [14]).

III. NUMERICAL SIMULATION AND RESULTS

We will now discuss the sensitivity of future neutrino oscillation experiments to the

different parameters of the MUV scheme. In particular, we study the Neutrino Factory

setup proposed in the International Design Study (IDS) [15, 16], which consists of νe and

νµ beams from 5 · 1020 muon decays per year per baseline. We consider a setting where the

experiment is assumed to run for five years in each polarity. The parent muons are assumed

to have an energy of 25 GeV. The beams are detected at two far sites, the first located at

4000 km with a 50 kton Magnetised Iron Neutrino Detector (MIND) [17] and a 10 kton

Emulsion Cloud Chamber (ECC) for τ detection [18, 19], and the second located close to

the magic baseline [20, 21] at 7500 km with an iron detector identical to the one at 4000 km.

A clean signal of a non-unitary mixing is the presence of “zero-distance effects” stemming

3 The anti-Hermitian part can be reabsorbed in the unitary rotation, and is thus related to using different

parametrisations.
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from the non-orthogonality of the flavour states. Indeed, if the flavour basis is not orthog-

onal, a neutrino of flavour α can be detected with flavour β without the need of flavour

conversion in the propagation. This translates to a baseline-independent term in the oscil-

lation probabilities, which is best probed at short distances, since the flux is larger and it

cannot be hidden by the standard oscillations. For short baselines, this term is (α 6= β)

Pαβ(L = 0) = 4|εαβ|2 + O(ε3). (8)

The oscillation probabilities for longer baselines up to second order in the small parameters

are derived in App. A. Near detectors are thus excellent for probing the zero-distance effect,

in particular τ detectors are of importance, since the present bounds on εµe and εµµ are

rather strong. We will therefore study the impact of near τ detectors of different sizes

located at 1 km from the beam source. In particular, we will present all the results for

near detector sizes of 100 ton, 1 kton, and 10 kton, as well as the results without any

near τ detector. Notice that 10 kton is the detector mass discussed for the ECC detector

located at 4000 km. However, we have seen no improvement adding such a detector at

that baseline while the gain in sensitivity that a near detector capable of τ detection can

provide is significant, as we will discuss below. Therefore, we also considered the larger

mass to show what could be achieved with the planned 10 kton detector located at 1 km

instead of 4000 km. To simulate the near detector, we use the point-source and far-distance

approximations. These assumptions are reasonable, although somewhat optimistic in the

high-energy region, as can be seen in Fig. 12 of Ref. [22]. However, the loss of flux at higher

energies, which corresponds to the on-axis neutrinos, may be recovered by using rather

elongated geometries of the near detector. These are precisely the kind of geometries that

are being discussed for a magnetized version of the ECC (MECC). Such a detector would

be limited in size by the above mentioned geometrical considerations and is not likely to be

larger than 4 kton. On the other hand, all the decay channels of the τ could be studied in

the magnetized version, which would translate into an increase of the efficiency by a factor

5 with respect to the ECC search for τ decays into µ considered here. The impact of near

µ detectors is still essentially to normalise the neutrino flux and cross-sections, since the

bounds on εµµ and εµe from the unitarity of the CKM matrix and µ → eγ are particularly

strong [4, 9].

In our simulations, we will study the “golden” [23] νe → νµ and νµ disappearance channels
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in the MIND detectors and the “silver” [18, 19] νe → ντ and “discovery” [24] νµ → ντ chan-

nels at the ECC detectors, both near and far. For the detector efficiencies and backgrounds,

we follow the study in Ref. [17] of the MIND detector exposed to the Neutrino Factory beam.

The efficiencies and backgrounds for the silver channel with an ECC detector are carefully

discussed in Ref. [19] and we follow the results of that reference. Lacking an analogous study

for the discovery channel, we assume the same efficiencies and backgrounds as the ones for

the silver channel described in Ref. [19].

For our numerical simulations, we scan the complete MUV parameter space, adding nine

unitarity violating parameters to the six standard neutrino oscillation parameters. The scan

is performed using the MonteCUBES software [25, 26], which allows to perform Markov

Chain Monte Carlo (MCMC) simulations with GLoBES [27, 28]. For the implementation

of the unitarity deviations in the neutrino oscillation probabilities, we use the NonUnitarity

Engine (NUE) distributed along with the MonteCUBES package. Using the MCMC tech-

nique allows the study of possible parameter correlations in the full parameter space without

restricting the search to varying only a small subset of the parameters. This is due to the

fact that the number of evaluations required by Monte Carlo techniques increases at most

polynomially with the number of parameters, while a scan based on grids in the parameter

space would require to evaluate the event rates and likelihoods at a number of points that

grows exponentially. For all of our figures, we have used simulations with four MCMC chains

containing 2× 106 samples each. In addition, we have checked that the chains have reached

proper convergence, in all cases better than R − 1 = 10−2 [29]. It is also important to note

that, unlike in the standard usage of the GLoBES software, the use of MCMC techniques

is based on Bayesian rather than frequentist parameter estimation and, as such, the result

depends on the adopted priors. As priors, we will consider the current bounds on both

the standard and the unitarity violating parameters, except for parameters to which the

Neutrino Factory has superior sensitivity, for which we use flat priors.

Before discussing the more detailed studies, let us comment on some of the general results

from the simulations. First of all, one of the most remarkable features is that the results do

not contain significant correlations between any of the unitarity violating parameters, nor

are the unitarity violating parameters significantly correlated with the standard neutrino

oscillation parameters. The only exception are some mild correlations between θ13, δ and

the modulus and phase of ετe in the absence of near τ detectors which, however, do not
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lead to new degeneracies between these parameters or spoil the determination of θ13 and δ

at the Neutrino Factory. Furthermore, the addition of a near τ detector of only 100 ton is

enough to almost completely erase these correlations. This implies that the Neutrino Factory

setup considered here has enough sensitivity to distinguish the effects induced by unitarity

violation from changes in the standard parameters. Second, the sensitivities of the Neutrino

Factory to the diagonal parameters of the ε matrix, as well as to εµe, do not improve with

respect to the bounds derived from electroweak decays, which are too stringent to allow for

observable effects at the Neutrino Factory. Notice that none of the oscillation probabilities

studied here depend on εee, as shown in App. A.

We will thus concentrate on the sensitivities to ετµ and ετe in the next subsections,

even though the other unitarity violating parameters and standard oscillation parameters

are allowed to vary in the simulations. As an example of the sensitivities and correlations

to all the 15 parameters considered, the 105 projections to the different two-dimensional

subspaces and the marginalized regions for the 15 parameters can be studied in a triangle

plot at Ref. [26] for the case of no near τ detector. The input values chosen for the unknown

parameters in this example were θ13 = 5◦, δ = 0, |ετe| = 0.005 and φτe = π/4, the input

for the rest of the non-unitary parameters was set to zero. In all our simulations we assume

[30, 31] θ12 = 33◦, θ23 = 45◦, ∆m2
21 = 8 · 10−5 eV2 and ∆m2

31 = 2.6 · 10−3 eV2. We also

assumed 4 % priors on θ12 and ∆m2
21 at 1σ, flat priors were used for the rest of the standard

oscillation parameters. For the unitarity violating parameters, we consider Gaussian priors

given by the ranges mentioned in Sec. II.

A. Sensitivity to ετµ

In the left panel of Fig. 1, we show the sensitivity to the ετµ parameter for the four different

sizes considered for the near ECC. The input values for all the non-unitarity parameters and

θ13 were set to zero to derive these curves. We have checked that the results do not depend

strongly on this assumption. The most remarkable feature of this figure is the extreme

sensitivity to the real part of ετµ which is present already without any near detector. This

sensitivity mainly originates from the matter effect on the disappearance channel, where the
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FIG. 1: The 90 % confidence level sensitivity of the IDS Neutrino Factory to the unitarity violating

parameters ετµ (left) and ετe (right). The different curves correspond to different sizes of the near

τ detector, from left to right, 10 kton, 1 kton, 100 ton, no near detector.

leading non-unitarity correction to the oscillation probability is given by

P̂µµ = P SM
µµ − 2 Re(εµτ )AL sin

(

∆m2
31L

2E

)

+ O(εµµ), (9)

where A =
√

2GF ne, the terms we have omitted here can be found in App. A. Notice that

the discovery channel also depends linearly on ετµ and that the dependence is CP-violating.

On the other hand, the mass and efficiency of the ECC detector are much smaller compared

to those of the MIND detectors for the νµ disappearance channel and therefore the sensitivity

is dominated by the latter. As can be seen in the figure, a near τ detector will determine the

modulus of εµτ through the zero-distance effect. This would translate into a vertical band in

the left panel of Fig. 1 and thus the increase of the mass of the near detector improves the

measurement of the imaginary part. However, given the linear dependence due to the matter

effects on propagation, the bound on the real part from the disappearance channel remains

stronger. We can also see that the bound on the modulus does not require a very large near

detector, the bound on the imaginary part is essentially only improved by approximately

30 % in moving from a 1 kton to a 10 kton ECC detector.

Another important question is how well the Neutrino Factory would be able to measure

the unitarity violating parameters if they are non-zero. For this reason, in Fig. 2, we show

the sensitivity to ετµ assuming that |ετµ| = 3.2 · 10−3 as well as φτµ = 45◦ and −90◦,

respectively, which is disfavoured at only 1σ by current bounds. Thus, this gives a flavour of
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FIG. 2: The sensitivity of the IDS Neutrino Factory to the unitarity violating parameter ετµ,

assuming that it takes the value ετµ = 3.2 · 10−3 exp(iπ/4) (left) and ετµ = −i 3.2 · 10−3 (right).

The different curves correspond to different sizes of the near τ detector, from inner to outer curves,

10 kton, 1 kton, 100 ton, no near detector.

the best possible situation for actually discovering unitarity violation and a new source of CP-

violation. Again, we can see that the sensitivity without the near detector is only to the real

part of ετµ. In this setting, there is a degeneracy extending essentially as |ετµ| ∝ 1/ cos(φτµ),

along which the real part of ετµ is constant and the imaginary part is changing. For the case

with purely imaginary ετµ in the right panel of Fig. 2, it is also no surprise that the results

without the near detector are compatible with ετµ = 0. The introduction of near detectors

results in an effective measurement of |ετµ|, i.e., a vertical band in the plot, which intersects

the far detector measurement giving rise to two degenerate solutions, one for positive and

one for negative imaginary part. Again, the actual size of the near detector is not crucial

and no significant gain is seen beyond 1 kton.

These figures also show the strong complementarity between the near and far detectors

when it comes to measuring the phase of the unitarity violating parameter, and thus also

a non-standard source of CP-violation. Neither the near nor the far detectors alone can

establish a CP-violating phase by themselves. However, combining the two results excludes

CP-conservation at 90 % confidence level.

Note that the slight widening of the allowed region when including the near detector

results from the use of Bayesian statistics. Since the near detectors discard a large range
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of allowed values for φτµ when |ετµ| is close to zero, a slightly larger region in φτµ close

to the correct absolute value of ετµ is needed in order to include 90 % of the probability

distribution.

B. Sensitivity to ετe

The right panel of Fig. 1 shows the sensitivity to the unitarity violation parameter ετe

when the input values for θ13 and all the unitarity violating parameters are set to zero.

Analogously to the sensitivity to ετµ, the setup with only the far detectors is more sensitive

to the real part of the parameter, although the difference is not as pronounced. Furthermore,

as can be seen in the oscillation probabilities in App. A, the probabilities that depend on

ετe are only the golden, silver and discovery channels, where the dependence is quadratic

rather than linear, which translates into a weaker bound. Thus, the inclusion of the near

τ detector has a major impact also on the bound which is placed on the real part of ετe.

Indeed, for a 1 kton near τ detector, the sensitivity is essentially flat as a function of φτe

and is dominated by the near detector.

Again, the larger mass and efficiency of the MIND detector compared to the ECC trans-

lates into the golden rather than the silver or the discovery channels dominating the sensi-

tivity to ετe from the far detectors alone. However, unlike the νµ disappearance channel, the

golden channel is strongly dependent on the unknown parameters θ13 and δ and the input

values assumed for them will influence the expected sensitivity to ετe. Indeed, the νe → νµ

probability in presence of non-unitarity is modified to:

P̂eµ = P SM
eµ + |εeτ |2 sin2

(

E3L

2

)

+ Im

{

εeτ

[

1

2

E2

A
sin(2θ12) +

E3s13e
iδ

A − E3

]}

sin

(

AL

2

)

sin

(

E3L

2

)

sin

(

E3 − A

2
L

)

+ Re

{

εeτ

[

1√
2

E2

A
sin(2θ12) sin

(

AL

2

)

cos

(

E3 − A

2
L

)

− 2
√

2E3s13e
iδ

A − E3

cos

(

AL

2

)

sin

(

E3 − A

2
L

)

]}

sin

(

E3L

2

)

+O
(

ε3
)

. (10)

where Ei = ∆m2
i1/(2E). It is then clear that the relative importance of the real and

imaginary parts of ετe in this probability strongly depends on the actual values of θ13 and

12



|ετ e
|

φ τ 
e

0 1 2 3 4 5

x 10
−3

−180

−90

0

90

180

|ετ e
|

φ τ 
e

0 1 2 3 4 5

x 10
−3

−180

−90

0

90

180

FIG. 3: The 90 % confidence level sensitivity of the IDS Neutrino Factory to the unitarity violating

parameter ετe with θ13 = 5◦ as well as δ = π/4 (left) and δ = 0 (right). The different curves

correspond to different sizes of the near τ detector, from left to right, 10 kton, 1 kton, 100 ton, no

near detector.

δ. As an example of this dependence, in Fig. 3, we again show the sensitivity to ετe, but for

input values of θ13 = 5◦ as well as for δ = π/4 (left panel) and δ = 0 (right panel). Notice

that while for δ = π/4 the far MIND detectors are more sensitive to the imaginary part of

ετe the situation is reversed for δ = 0. However, the addition of the near τ detector for the

silver channel dominates the bound and the curves incorporating the near detectors forecast

the same sensitivity regardless of the true values of θ13 and δ.

In Fig. 4, we show the analogue of Fig. 2 for ǫτe. In this case, we assume |ετe| = 5.0 ·10−3

and φτe = 45◦ and −90◦, which again corresponds to the 1σ disfavoured region. For this

example, CP-violation would not be discovered for the φτe = 45◦ case (left panel) at the

90 % CL, but it would be constrained around its true value already by the far detectors. In

addition, the inclusion of a near τ detector would again constrain the modulus and therefore

be complementary to the far detector result. For the φτe = −90◦ case (right panel), the

complementarity of the near and far detectors is able to exclude CP-conservation at the

90 % CL.
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FIG. 4: The sensitivity of the IDS Neutrino Factory to the unitarity violating parameter ετe,

assuming that it takes the value ετe = 5.0 · 10−3 exp(iπ/4) (left) and ετµ = −i 5.0 · 10−3 (right).

The different curves correspond to different sizes of the near τ detector, from inner to outer curves,

10 kton, 1 kton, 100 ton, no near detector.

IV. SUMMARY AND DISCUSSION

We have considered the sensitivity of the IDS Neutrino Factory setup to minimal uni-

tarity violation (MUV) by using the Markov Chain Monte Carlo methods implemented in

MonteCUBES to explore the full parameter space, consisting of the six standard neutrino

oscillation parameters and nine additional parameters describing the deviation from uni-

tarity. Our simulations were performed with several different near ECC τ detector setups,

ranging from no near detector to near detector masses up to 10 kton.

Our results imply that the Neutrino Factory will be excellent for probing some of the

unitarity violating parameters. In particular, a sensitivity of O(10−4) to the real part of

the unitarity violating parameter ετµ is found. This is mainly due to the matter effects

in the νµ disappearance channel at the far detectors, for which the oscillation probability

is only linearly suppressed in Re(ετµ). On the other hand, we find that a near τ detector

with a mass as small as 100 ton would dominate the sensitivity to ετe, as well as that to

the imaginary part of ετµ, through the measurement of the zero-distance effect, providing

sensitivities down to O(10−3). For the other unitarity violating parameters, we recover the

priors of our simulation, which were set to the current experimental bounds. The setup
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studied here will therefore not improve our present knowledge of them.

Furthermore, we find no degeneracies neither among the different unitarity violating pa-

rameters, nor between the unitarity violating parameters and the small standard neutrino

oscillation parameters, such as θ13. This means that the sensitivities to the standard oscil-

lation parameters are robust even in presence of unitarity violation.

Regarding the prospects of an actual detection of unitarity violation, and especially CP-

violation stemming from non-unitary mixing, we find that the near and far detectors play a

very complementary role. In the case of ετµ, the far detectors are only sensitive to the real

part of the unitarity violating parameter while the near detector can measure its modulus,

neither is sensitive to unitarity violating CP-violation by themselves. However, it can be

effectively probed by considering the combination of the two, as illustrated in Fig. 2.

We would like to stress that, while the sensitivity to unitarity violation at a Neutrino

Factory has been studied before [6, 32, 33, 34, 35], the sensitivity to the real part of ετµ due

to matter effects has not been discussed (however, a similar term in the νµ disappearance

channel is present in and has been studied for the case of oscillations into sterile neutri-

nos [24]). Furthermore, these studies have not systematically scanned the parameter space

while keeping all parameters free within their prior values. Thus, the observation that

there are no extended degeneracies, neither between the standard and unitarity violating

parameters, nor among the unitarity violating parameters themselves, is also new.

We conclude that a Neutrino Factory would provide powerful tool for probing unitarity

violation in the leptonic mixing matrix. For the parameters to which it is most sensitive, the

sensitivity is an order of magnitude better than the current experimental bounds. Finally,

the interplay between the near and far detectors would allow to test new sources of CP-

violation in the lepton sector.
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APPENDIX A: OSCILLATION PROBABILITIES IN THE PRESENCE OF UNI-

TARITY VIOLATION

In this Appendix, we derive the probabilities Pαβ in matter assuming constant density.

In order to perform the calculation, we will use the Kimura–Takamura–Yokomura (KTY)

formalism [36, 37], which has already been applied to the MUV scheme in the Appendix of

Ref. [6]. Since the constraint on εeµ is strong enough to safely neglect εeµ in the oscillation

probabilities, we will not consider it below. However, it has been considered in the numerical

analysis presented in the main part of this paper. The effective flavour eigenstates are given

by:

|να〉 =
(1 + ε∗)αβU∗

βi

[1 + 2εαα + (ε2)αα]1/2
|νi〉 ≡

(1 + ε∗)αβ

[1 + 2εαα + (ε2)αα]1/2

∣

∣νSM
β

〉

. (A1)

The parameters that appear linearly in the normalisation factors are εee, εµµ, and εττ , which

are already better constrained by other considerations than the sensitivities we find for a

Neutrino Factory. Thus, the determination of the fluxes and cross-sections by the near

detectors only suffer from a minor additional theoretical uncertainty. We will present the

oscillation probabilities P̂ (να → νβ) = P̂αβ without taking the normalisation factors into

account. Notice that this will not be at all relevant for the golden and silver channels, since

the probabilities are already order ε2 before taking the normalization factors into account.

Thus, the corrections would be at most O(ε3).

The oscillation probability P̂αβ, expressed as a function of the KTY parameters, is [6]:

P̂αβ = |(NN †)αβ |2 − 4
∑

j<k

Re(X̃αβ
j X̃αβ∗

k ) sin2

(

∆ẼjkL

2

)

+2
∑

j<k

Im(X̃αβ
j X̃αβ∗

k ) sin(∆ẼjkL), (A2)

where ∆Ẽjk ≡ Ẽj−Ẽk and X̃αβ
j ≡ (N∗W )αj(N

∗W )∗βj (j = 1, 2, 3). Here, Ẽi are the effective

eigenvalues in matter and Wij is the unitary matrix which diagonalizes the evolution equation

for the mass eigenstates:
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SM expansion parameters (η) MUV expansion parameters

θ13, ∆m2
21/∆m2

31, δθ23 = θ23 − π/4 εαβ

TABLE I: The small expansion parameters used in our neutrino oscillation probabilities. We will

refer to the set of SM expansion parameters as η. The full set of expansion parameters will be

referred to as ε, while only the set of MUV expansion parameters will be denoted by εαβ .

i
d

dt
|νi〉 =

[

diag(E1, E2, E3) + N †
√

2GF diag(ne − nn/2,−nn/2,−nn/2) N
]

ji
|νj〉

≡ Hji |νj〉 (A3)

where Ei = ∆m2
i1/(2E). Assuming that the electron and neutron number densities are

equal4 (i.e., ne = nn), H can be expressed as

H = diag(E1, E2, E3) + N † diag

(

A

2
,−A

2
,−A

2

)

N, (A4)

where A =
√

2GFne. Finally, according to the KTY formalism applied to the MUV scheme

(again, see Ref. [6]), X̃αβ
j can be expressed as

X̃αβ
j ≡

∑

l

(

V −1
)

jl
Y αβ

l =
∑

l

(

V −1
)

jl

[

N Hl−1 N †
]

βα
, (A5)

where

V −1 =











(∆Ẽ21∆Ẽ31)
−1 (Ẽ2Ẽ3,−Ẽ2 − Ẽ3, 1)

−(∆Ẽ21∆Ẽ32)
−1 (Ẽ3Ẽ1,−Ẽ3 − Ẽ1, 1)

(∆Ẽ31∆Ẽ32)
−1 (Ẽ2Ẽ1,−Ẽ2 − Ẽ1, 1)











. (A6)

Once the effective eigenvalues in matter are known, it is straightforward to obtain the

expressions for the neutrino oscillation probabilities. However, in order to obtain reasonably

simple expressions, it is necessary to expand them in small parameters. Here, we present

the oscillation probabilities to second order in the parameters listed in Tab. I.

To second order in ε, we can find the eigenvalues by using perturbation theory. We find

that

Ẽ1 = A

[

1 +
E2

A
s2
12 +

1

4

E2
2

A2
sin2(2θ12) +

E3s
2
13

A − E3

+ εee +
ε2

ee

2
− |εeτ |2

2

]

+ O(ε3) , (A7)

4 This is a very good approximation in the case of neutrino oscillations in the Earth.
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Ẽ2 = A

{

E2

A
c2
12 −

E2
2

4A2
sin2(2θ12) + Re (εµτ )

[

1 +
1

2
(εµµ + εττ )

]

− 1

2
(εµµ + εττ)

−1

4
(ε2

µµ + ε2
ττ) −

|εµτ |2
2

+
|εeτ |2

4
− δθ23

[

εττ − εµµ +
1

2
(ε2

ττ − ε2
µµ) − |εeτ |2/2

]

− A

E3

Re(εµτ )
2 − A

4E3

(εττ − εµµ)2

}

+ O(ε3) , (A8)

Ẽ3 = A

{

E3

A
− E3s

2
13

A − E3

− Re (εµτ )

[

1 +
1

2
(εµµ + εττ)

]

+ δθ23(εττ − εµµ)

− 1

2
(εµµ + εττ ) −

1

4
(ε2

ττ + ε2
µµ) − |εµτ |2

2
+

|εeτ |2
4

}

+ O(ε3) . (A9)

Notice that, for εαβ → 0, we recover the SM results as expected. These results allow us

to obtain V −1 at second order. Thus, we only need to compute Y αβ
j at the same order,

the computation is straightforward but tedious (see Eq. (A5)). For brevity, we do not

present the results for V −1 and Y αβ
j here. However, we would like to comment that, for

the golden and silver channels, it is enough to compute these quantities to first order, since

X̃αβ
j is already of first order in η. This is not true in the case of the νµ-ντ sector, where

X̃µµ
2 |ε=0 = X̃µµ

3 |ε=0 = −X̃τµ
2 |ε=0 = X̃τµ

3 |ε=0 = 1/2. The advantage of this sector, from the

point of view of discovering new physics, is that the effects of the new physics can appear in

the probability at first order as an interference term between the SM and the new physics

without additional suppression by η. For this reason, we keep only the interference between

the O (εαβ) terms and the O (η) ones at second order5 in that sector.

In the end, we obtain the following expanded oscillation probabilities at the orders men-

tioned above:

P̂µµ = P SM
µµ + 4εµµ + 4ε2

µµ

+4

{

−εµµ + 2 Re(εµτ )δθ23 − 2δθ23(εµµ − εττ )
A

E3

}

sin2

(

E3L

2

)

− [2 Re(εµτ ) − δθ23(εµµ − εττ )] AL sin(E3L) + O
(

ε2
αβ

)

, (A10)

P̂µτ = P SM
µτ + 4|εµτ |2

+

[

2 Re(εµµ + εττ) + 8δθ23(εµµ − εττ )
A

E3

]

sin2

(

E3L

2

)

5 It could also be justified to neglect the O
(

εαβ

∆m2
21

∆m2
31

)

terms, since the maximal allowed value of
∆m2

21

∆m2
31

is at least one order of magnitude smaller than the maximal allowed values of s13 and δθ23. However, we

keep also these terms for completeness.
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+ [−2 Im(εµτ ) − δθ23(εµµ − εττ)AL] sin(E3L)

−
√

2 Im

{

εeτ

[

E2

A
sin(2θ12) +

2E3s13e
iδ

A − E3

]}

sin

(

AL

2

)

sin

(

E3L

2

)

sin

(

E3 − A

2
L

)

+
√

2 Re

{

εeτ

[

E2

A
sin(2θ12) sin

(

AL

2

)

cos

(

E3 − A

2
L

)

− 2E3s13e
iδ

A − E3

cos

(

AL

2

)

sin

(

E3 − A

2
L

)]}

sin

(

E3L

2

)

+O
(

ε2
αβ

)

, (A11)

P̂eµ = P SM
eµ + |εeτ |2 sin2

(

E3L

2

)

+ Im

{

εeτ

[

1

2

E2

A
sin(2θ12) +

E3s13e
iδ

A − E3

]}

sin

(

AL

2

)

sin

(

E3L

2

)

sin

(

E3 − A

2
L

)

+ Re

{

εeτ

[

1√
2

E2

A
sin(2θ12) sin

(

AL

2

)

cos

(

E3 − A

2
L

)

− 2
√

2E3s13e
iδ

A − E3

cos

(

AL

2

)

sin

(

E3 − A

2
L

)

]}

sin

(

E3L

2

)

+O
(

ε3
)

, (A12)

P̂eτ = P SM
eτ + 4|εeτ |2 − 2

[

|εeτ |2 −
√

2E3s13

A − E3

Re(εeτe
iδ)

]

sin2

(

E3 − A

2
L

)

−2

[

|εeτ |2 −
1√
2

E2

A
sin(2θ12) Re(εeτ)

]

sin2

(

AL

2

)

− Im

{

ε∗eτ

[

1√
2

E2

A
sin(2θ12) sin(AL) −

√
2E3s13e

−iδ

A − E3

sin({E3 − A}L)

]}

−2
√

2Re

{

εeτ

[

1

2

E2

A
sin(2θ12) −

E3s13e
iδ

A − E3

]}

sin

(

AL

2

)

cos

(

E3L

2

)

sin

(

E3 − A

2
L

)

+ Im

{

εeτ

[√
2
E2

A
sin(2θ12) sin

(

AL

2

)

cos

(

E3 − A

2
L

)

+
2
√

2E3s13e
iδ

A − E3

cos

(

AL

2

)

sin

(

E3 − A

2
L

)

]}

cos

(

E3L

2

)

+O
(

ε3
)

. (A13)

Notice that we do not neglect the zero-distance effect in the νµ-ντ sector. Although this is

not within the order of the expansion, we keep it as it plays an important role in the analysis
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of the neutrino flavour transitions at near detectors.
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