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We study the details of preheating in an inflationary scenario in which the standard model Higgs,

strongly nonminimally coupled to gravity, plays the role of the inflaton. We find that the Universe does not

reheat immediately through perturbative decays, but rather initiates a complex process in which

perturbative and nonperturbative effects are mixed. The Higgs condensate starts oscillating around the

minimum of its potential, producing W and Z gauge bosons nonperturbatively, due to violation of the so-

called adiabaticity condition. However, during each semioscillation, the created gauge bosons partially

decay (perturbatively) into fermions. The decay of the gauge bosons prevents the development of

parametric resonance, since bosons cannot accumulate significantly at the beginning. However, the

energy transferred to the decay products of the bosons is not enough to reheat the Universe, so after

about a hundred oscillations, the resonance effects will eventually dominate over the perturbative decays.

Around the same time (or slightly earlier), backreaction from the gauge bosons into the Higgs condensate

will also start to be significant. Soon afterwards, the Universe is filled with the remnant condensate of the

Higgs and a nonthermal distribution of fermions and bosons (those of the standard model), which redshift

as radiation and matter, respectively. We compute the distribution of the energy budget among all the

species present at the time of backreaction. From there until thermalization, the evolution of the system is

highly nonlinear and nonperturbative, and will require a careful study via numerical simulations.
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I. INTRODUCTION

Inflation is nowadays a well-established paradigm, con-
sistent with all the observations, that solves most of the
puzzles of the hot big bang model in a very simple and
elegant way. It is able to explain not only the homogeneity
and isotropy of the present Universe on large scales, but
also the generation of almost scale invariant primordial
perturbations that give rise to the structure formation [1].
However, the naturalness of inflation is directly related to
the origin of the inflaton. Most of the inflationary models
proposed so far require the introduction of new degrees of
freedom to drive inflation. The nature of the inflaton is
completely unknown, and its role could be played by any
candidate able to imitate a scalar condensate (typically in
the slow-roll regime), such as a fundamental scalar field, a
fermionic or vector condensate, or even higher order terms
of the curvature invariants. The number of candidates
motivated by particle physics is as big as the number of
extensions of the standard model (grand unified theories,
supersymmetry, extra dimensions, etc.), where it is not
very difficult to find a field that could play the role of the
inflaton [2].

In addition, given a model we must find a graceful exit to
inflation and a mechanism to bring the Universe from a
cold and empty post-inflationary state to the highly en-
tropic and thermal Friedmann Universe [3]. Unfortunately,

the theory of reheating is also far from being complete,
since not only the details but even the overall picture
depend crucially on the different microphysical models.
It seems difficult to study the details of reheating in each
concrete model without the experimental knowledge of the
strength of the interactions among the inflaton and the
matter fields. Because of this, most of the work until now
has focused on models encoding the different mechanisms
that could play a role in the process, with the strength of the
couplings set essentially by hand. The relative importance
of each one of these mechanisms can only be clarified in
light of an underlying particle physics model, able to
provide us with the couplings among the inflaton and
matter fields. From this point of view it is very difficult
to single out a given model of inflation, and even more
difficult to understand the details of the reheating process
via the experimental access to the couplings.
We may be very far away from understanding the micro-

physical mechanisms responsible for inflation, but maybe
the natural candidate for being the inflaton was already
there long ago. If we do not want to introduce new dy-
namical degrees of freedom in the theory, apart from those
present in the standard model (SM) of particle physics, and
if at the same time we require Lorentz and gauge invari-
ance, we are left with just one possibility: the Higgs field.
Early models of inflation in terms of a Higgs-like scalar
field h with a quartic self-interaction potential �4 h

4 need an

extremely small coupling constant �� 10�13 [2], and are
also nowadays excluded at around 3� by the present ob-
servational data [4]. However, the SM-based inflation may
be rescued from these difficulties by replacing the usual
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Einstein-Hilbert action by a nonminimal coupling of the
Higgs field to the Ricci scalar [5–9], in a scalar-tensor
theory fashion,

SIG ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
�HyHR: (1)

The induced gravity (IG) action is indeed the most natural
generalization of the standard model in a curved space-
time, given the relevance of the nonminimal coupling to
gravity for renormalizing the theory [10]. It belongs to a
group of theories known as scalar-tensor theories, origi-
nally introduced by Brans and Dicke [11] to explain the
origin of the masses. In those theories not only the active
masses but also the gravitational constantG are determined
by the distribution of matter and energy throughout the
Universe, in a clear connection with the Mach principle.
The interaction that gives rise to the masses should be the
gravitational one, since gravity couples to all particles, i.e.
to their masses or energies. The gravitational constant G in
these theories is replaced by a scalar function that perme-
ates the whole space-time and interacts with all the ordi-
nary matter content, determining how the latter moves
through space and time. Any measurements of an object’s
mass therefore depends on the local value of this new field.

The successful Higgs mechanism lies precisely in the
same direction as Mach’s original idea of producing mass
by a gravitational-like interaction. The role of the Higgs
field in the standard model is basically to provide the
inertial mass of all matter fields through the local sponta-
neous symmetry breaking mechanism.1 The Higgs boson
couples to all the particles in the standard model in a very
specific way, with a strength proportional to their masses
[12], and mediates a scalar gravitational interaction of
Yukawa type [13,14], between those particles which be-
come massive as a consequence of the local spontaneous
symmetry breaking. According to the equivalence princi-
ple, it seems natural to identify the gravitational and par-
ticle physics approaches to the origin of the masses. From
this point of view, the induced gravity action (1) would be
an indication of a connection between the Higgs, gravity,
and inertia. Indeed, the action (1) is, at least at the classical
level, just a different representation of Starobinsky’s model
of inflation [1,15], where inflation is entirely a property of
the gravitational sector. Both representations of the same
theory are simply related by a Legendre transformation.
This fact, together with the possibility of having an infla-
tionary expansion of the Universe, makes the model ex-
tremely appealing. Unfortunately, the induced gravity
model cannot be accepted as a completely satisfactory
inflationary scenario, since the gauge bosons acquire a
constant mass in the Einstein frame and totally decouple
from the Higgs-inflaton field [9], which translates into an
inefficient reheating of the Universe. Notice, however, that

the action (1) is not the most general one that can bewritten
in a nontrivial background. As shown in [9,16] the simul-
taneous existence of a reduced bare Planck massMP and a
nonminimal coupling of a symmetry breaking field to the
scalar curvature,

SHG �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

P

2
Rþ �HyHR

�
; (2)

avoid the decoupling of the gauge bosons and can give rise
to an inflationary expansion of the Universe together with a
potentially successful reheating.
In this paper we initiate the study of the reheating

process in the model presented in Ref. [16], in which the
symmetry breaking field is the standard model Higgs,
strongly nonminimally coupled to gravity and playing the
role of the inflaton. The novelty and great advantage of this
model is its connection with a well-known microphysical
mechanism, hopefully accessible in the near future accel-
erator experiments. The measurement of the Higgs mass
will complete the list of the couplings of the standard
model and, therefore, one should be able to study all the
details of the reheating mechanism. This makes the model
under consideration extremely interesting and, potentially,
predictive. Reheating in the context of scalar-tensor theo-
ries has been studied in the Hartree approximation by
Ref. [17] and perturbatively by Ref. [18], but without the
Higgs boson playing the role of the inflaton, and therefore
without an explicit coupling of the fundamental scalar field
to matter.
Studying the details of reheating in this Higgs-inflaton

scenario, we have paid special attention to the relative
impact of the different mechanisms that can take place.
We have found that the Universe does not reheat immedi-
ately through perturbative decays, but rather initiates a
complex process in which perturbative and nonperturbative
effects are mixed. The Higgs condensate starts oscillating
around the minimum of its potential, producing Z and W
gauge bosons due to violation of the so-called adiabaticity
condition. During each semioscillation, the nonperturba-
tively created gauge bosons decay (perturbatively) into
fermions. This decay prevents the development of the usual
parametric resonance, since bosons do not accumulate
significantly at the beginning. The energy transferred to
the decay products of the bosons is not enough to reheat the
Universe within a few oscillations, and therefore the reso-
nance effects will eventually dominate over the perturba-
tive decays. Around the same time, the backreaction from
the gauge bosons into the Higgs condensate will also start
to be significant. Soon afterwards, the Universe is filled
with the remnant condensate of the Higgs and a nonthermal
distribution of fermions and bosons (those of the SM),
which redshift as radiation and matter, respectively. We
end the paper by computing the distribution of the energy
budget among all the species present at the time of back-
reaction. From there until thermalization, the evolution of1We are not considering here Majorana masses.
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the system is highly nonlinear and nonperturbative, and
will require a careful study via numerical simulations, to be
described in a future publication.

The paper is organized as follows. In Sec. II we present
the model with the Higgs field nonminimally coupled to
the scalar curvature, transform it into a new frame where
the action takes the usual Einstein-Hilbert form, and derive
an approximate inflationary potential. In Sec. III we study
the effect of the conformal transformation in the matter
sector, including the interaction among the Higgs, vector
bosons, and fermions. Section IV is devoted to the analysis
of the different reheating mechanisms, both perturbative
and nonperturbative, that can take place, leaving for Sec. V
the analysis of the combined effect of parametric reso-
nance and perturbative decays. We then study the back-
reaction of the produced particles on the Higgs oscillations
and the end of preheating in Sec. VI. Finally, the conclu-
sions are presented in Sec. VII.

II. THE STANDARD MODEL HIGGS AS THE
INFLATON

The Glashow-Weinberg-Salam [12] action is divided
into four parts: a fermion sector (F) which includes the
kinetic terms for the fermions and their interaction with the
gauge bosons; a gauge sector (G), including the kinetic
terms for the intermediate bosons as well as the gauge
fixing and Faddeev-Popov terms; a spontaneous symmetry
breaking sector, with a Higgs potential and the kinetic term
for the Higgs field including its interaction with the gauge
fields; and finally, a Yukawa sector (Y), with the interaction
among the Higgs and the fermions of the standard model,

SSM ¼ SF þ SG þ SSSB þ SY: (3)

The simplest versions of this Lagrangian in curved space-
time follow the principles of general covariance and local-
ity for both matter and gravitational sectors. To preserve
the fundamental features of the original theory in flat
space-time, one must also require the gauge invariance
and other symmetries in flat space-time to hold for the
curved space-time theory. The number of possible terms in
the action is unbounded even in this case, and some addi-
tional restrictions are needed. A natural requirement could
be renormalizability and simplicity. Following these three
principles (locality, covariance, and restricted dimension),
and the previously motivated requirement of not introduc-
ing new dynamical degrees of freedom, the form of the
action is fixed, except for the values of some new parame-
ters to be determined by the physics. This procedure leads
to the nonminimal Lagrangian for the standard model in
the presence of gravity, given by

SSMG ¼ SSM þ SHG; (4)

where SSM is the standard model part (3) defined above,
and SHG is the new Higgs-gravity sector, given by Eq. (2).

Here MP ¼ ð8�GÞ�1=2 is the reduced Planck mass, R the

Ricci scalar, H the Higgs field, and � the announced non-
minimal coupling constant. As shown in Ref. [16], the
parameters � and the self-coupling � of the Higgs potential

are related by � ’ 49 000
ffiffiffiffi
�

p
. In the unitary gauge, H ¼

h=
ffiffiffi
2

p
, and neglecting all gauge interactions for the time

being, the Lagrangian for the Higgs-gravity sector in the
so-called Jordan (J) frame takes the form

SHGþSSSB �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
fðhÞR� 1

2
g��@�h@�h�UðhÞ

�
;

(5)

where fðhÞ ¼ ðM2
P þ �h2Þ=2, and

UðhÞ ¼ �

4
ðh2 � v2Þ2 (6)

is the usual Higgs potential of the standard model, with
vacuum expectation value (vev) v ¼ 246 GeV.
In order to get rid of the nonminimal coupling to gravity,

we proceed as usual, performing a conformal transforma-
tion [19]

g�� ! ~g�� ¼ �2g��; (7)

such that we obtain the Lagrangian in the so-called
Einstein (E) frame

SEHG þ SESBS �
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
fðhÞ
�2

�
~Rþ 3~g�� ~r�

~r� ln�
2

� 3

2
~g�� ~r� ln�2 ~r� ln�

2

�
�

~@�h~@
�h

2�2

� 1

�4
UðhÞ

�
: (8)

The usual Einstein-Hilbert term can then be obtained im-
posing fðhÞ=�2 � M2

P=2, which implies the following
relation between the conformal transformation and the
Higgs field

�2ðhÞ ¼ 1þ �h2

M2
P

: (9)

This allows us to write the Lagrangian (8) completely in
terms of h

SEHG þ SESSB �
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
M2

P

2
~R� 1

2

�
�2 þ 6�2h2=M2

P

�4

�

� ~g��@�h@�h� 1

�4
UðhÞ

�
; (10)

where we have neglected a total derivative that does not
contribute to the equations of motion. As we will be work-
ing in the Einstein frame from now on, we will skip over
the tilde in all the variables to simplify the notation.
Notice that the conformal transformation (7) leads to a

nonminimal kinetic term for the Higgs field, which can be
reduced to a canonical one by making the transformation
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d�

dh
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 6�2h2=M2

P

�4

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ð1þ 6�Þh2=M2

P

ð1þ �h2=M2
PÞ2

s
;

(11)

where � is a new scalar field. Doing this, the total action in
the Einstein frame, without taking into account the gauge
interactions, is simply

SEHGþSESSB �
Z
d4x

ffiffiffiffiffiffiffi�g
p �

M2
P

2
R�1

2
g��@��@���Vð�Þ

�
;

(12)

with

Vð�Þ � 1

�4ð�ÞUðhð�ÞÞ (13)

the potential in terms of the new field �. To find the explicit
form of the potential in this new variable �, we must find
the expression of h in terms of �. This can be done by
integrating Eq. (11), whose general solution is given byffiffiffi

�
p
MP

�ðhÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6�

p
sinh�1ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6�
p

uÞ

� ffiffiffiffiffiffi
6�

p
sinh�1

� ffiffiffiffiffiffi
6�

p uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
�
; (14)

where u � ffiffiffi
�

p
h=MP. Since � � 1, we can take 1þ 6� �

6� and, using the identity sinh�1x ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 1

p
Þ for

�1< x<1, we can approximate Eq. (14) byffiffiffi
�

p
MP

�ðhÞ � ffiffiffiffiffiffi
6�

p
lnð1þ u2Þ1=2; (15)

or, equivalently,

�2 ¼ e�	�; (16)

where � ¼ ffiffiffiffiffiffiffiffi
2=3

p
and 	 ¼ M�1

P . The � field is therefore
directly related in this approximation (just in the limit � �
1 and far from u ¼ 0) to the conformal transformation� in
a very simple way, and the inflationary potential (13) is just
given by

Vð�Þ ¼ ��4UðhÞ

¼ �M4
P

4�2

�
e�	� �

�
1þ �

v2

M2
P

��
2
e�2�	�: (17)

Since v � Mp, then 1þ � v2

M2
P

� 1, and we can safely

ignore the vev for the evolution during inflation and pre-
heating, and simply consider the potential

Vð�Þ ¼ �M4
P

4�2
ð1� e��	�Þ2: (18)

Notice that the previous potential only partially parame-
trizes the original potential (6), since it neglects the region
�< 0, as can be seen in Fig. 1, where we compare the

exact solution (red solid line) obtained parametrically from
Eq. (14) with the analytic formula (18) (blue dashed line).
Both solutions agree very well in the region of positive �
but differ substantially for �< 0. The conformal trans-
formation is even ill defined in the negative field region.
From Eqs. (9) and (16) we have

�h2

M2
P

¼ �2 � 1 ¼ e�	� � 1 ¼ ð1� e��	�Þe�	�; (19)

which is inconsistent, since the left-hand side of this equa-
tion is positive definite while the right-hand side (r.h.s.) is
negative definite for �< 0. Taking this into account, in
order to study the different mechanisms of the post-
inflationary regime, we will then use the parametrization

Vð�Þ ¼ �M4
P

4�2
ð1� e��	j�jÞ2; (20)

which correctly describes the potential obtained from
Eq. (14), for the whole field range of interest. In Fig. 1,
this parametrization (green dotted line) is again compared
to the exact solution (red solid line) obtained from Eq. (14).
Around the minimum, the potential (20) can be approxi-
mated as

Vð�Þ ¼ 1
2M

2�2 þ �Vð�Þ; (21)

where M2 ¼ �M2
P=3�

2 is the typical frequency of oscil-
lation and �V are some corrections to the quadratic ap-
proximation, which soon become negligible after inflation
ends; see Sec. IV. Note, nevertheless, that approximations
(15) and (16), and therefore parametrization (20), do not
describe correctly the potential for very small values of the
field v � � � MP=�. As can be read from Eq. (11), for

j�j � �t � MP=�, we have
d�
dh � 1, and therefore, there is

a transition in the potential from (21) to Vð�Þ � �
4 �

4.

However, as will be shown in Sec. IVC, the transition

-3 -2 -1 0 1 2 3 4

0.2

0.4

0.6

0.8

1

V
V0

FIG. 1 (color online). Comparative plot of the exact solution
(red solid line) obtained parametrically from Eq. (14), the
analytic formula (18) for the potential (blue dashed line), and
their parametrization (20) (green dotted line).
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region j�j<�t is several orders of magnitude smaller than
the nonadiabaticity region j�j< �a [see Eq. (79)], inside
which the concept of particle is not properly defined.
Therefore, from now on we will neglect the change in the
behavior of the potential (from 1

2M
2�2 to �

4 �
4) in this

‘‘small’’ field region, since �t � �a. See Sec. IV for
more details.

The analysis of the inflationary potential (20) can be
performed either in the Jordan [20,21] or in the Einstein
frame [16] with the same result. The slow-roll parameters
can be expressed analytically, in the limit of h2 �
M2

P=� � v2, as a function of �,


 ¼ M2
P

2

�
V 0ð�Þ
Vð�Þ

�
2 ¼ 2�2

ðe�	� � 1Þ2 ;

� ¼ M2
P

V00ð�Þ
Vð�Þ ¼ 2�2ð2� e�	�Þ

ðe�	� � 1Þ2 :

(22)

The slow-roll regime of inflation will end when 
 ’ 1,
which corresponds to the field value

�end ¼ 1

�	
ln

�
1þ 2ffiffiffi

3
p

�
: (23)

Note that the slow-roll parameter � is then negative,
�end ¼ 1� 2ffiffi

3
p < 0, so there is a small region of negative

(mass squared) curvature in the potential just after the end
of inflation. The effective curvature of the potential will be
negative until �	 ¼ 1

�	 ln2, which corresponds to the in-

flection point, given by �	 ¼ 0.

During the slow-roll regimeHSR ¼ 	ffiffi
3

p V1=2, which, eval-

uated at N ¼ 60 e-folds, is approximately given by H60 ’
M
2 , whereM defines the natural inflationary energy scale of

this model as well as the frequency of oscillations (21)

during reheating. At the end of inflation Hend ¼ 	ffiffi
2

p V1=2 or,

equivalently, Hend ’ 2
3H60 ¼ M

3 .

The radiative corrections for a model containing a single
scalar field h nonminimally coupled to gravity were ge-
nerically calculated in Ref. [22]. The specific radiative
corrections for the model under consideration, estimated
in Ref. [16], were recently reviewed in Ref. [23]. In what
follows until the end of this section, we will summarize the
results of this last work. For large � and slowly varying h,
the main contribution comes from loops of the matter
[22,24] and the effective action can be calculated by a
local 1=m2 expansion in powers of the curvature and its
gradients and the gradients of the Higgs field, obtaining
[22,23]

S½g��; h
 ¼
Z

d4xg1=2

�
�
�UðhÞ þ FðhÞRðg��Þ � 1

2
GðhÞðrhÞ2

�
;

(24)

where the functions VðhÞ, UðhÞ, and GðhÞ are given by

UðhÞ ¼ �

4
ðh2 � v2Þ2 þ �h4

128�2

�
A ln

h2

Q2
þ B

�
; (25)

FðhÞ ¼ 1

2
ðM2

P þ �h2Þ þ h2

384�2

�
C ln

h2

Q2
þD

�
; (26)

GðhÞ ¼ 1þ 1

192�2

�
F ln

h2

Q2
þ E

�
: (27)

Here A, B, C,D, E, and F are different combinations of the
Higgs, gauge, and Yukawa couplings and their logarithms
[22,25,26], and Q is the normalization scale. Following
Ref. [23], for the analysis of inflation we will just consider
the explicit form of the combination A,

A ¼ 2

�

�
3
X
A

g4A �X
f

y4f

�
; (28)

which is related with the local conformal anomaly. The
factor 3 accounts for the polarizations of the gauge bosons,
and a similar factor 4 for the fermions has been taken into
account.
The new inflationary potential in the Einstein frame for a

Higgs field with nonminimal coupling � � 1 and mean
value much greater than the minimum of the classical
potential is given by [23]

~Vð~�Þ ¼
�
M2

P

2

�
2 UðhÞ
F2ðhÞ

��������h¼hð~�Þ
: (29)

The corresponding slow-roll parameters are

~
 ¼ 4M4
P

3�2h4

�
1þ h2

h2I

�
2 ¼ 4

3

�
M2

P

�h2
þ A

64�2

�
2
;

~� ¼ � 4M2
P

3�h2
;

(30)

with h2I ¼ 64�2M2
P

�A . Using the WMAPþ BAOþ SN con-

straint [27] at the 2� confidence level gives a value for the
spectral index [23]

0:934< nsðk0Þ< 0:988: (31)

For Nðk0Þ ¼ 60 the values for A and for the tensor-to-
scalar ratio are [23]

� 12:4< A< 14:1; (32)

0:0006< r < 0:015; (33)

with the spectral scalar index running being completely
negligible [23],

� 5:6<�� 104 <�4:3: (34)

Let us compare this window with the one obtained from the
standard model coupling constants at the scale M, and
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obtain the Higgs self-coupling at such scale. This differs
from the analysis performed in [23], where the coupling
constants were evaluated at the electroweak scale instead
of at the characteristic energy scale of inflation,M. At that
scale the coupling constants for the gauge groups SUð2ÞL
and Uð1ÞY are roughly equal, g21 � g22 � 0:3 and

cos2�W ¼ sin2�W � 1=
ffiffiffi
2

p
. The total anomalous scaling

constant at that scale [see Eq. (28)] in terms of g2 and
cos�W ,

A � 6

�

�
g42
8

�
1þ 1

2
cos��4

W

�
� y4f

�
; (35)

together with the bounds obtained from the WMAPþ
BAOþ SN 2� c.l. constraints [27] [see Eq. (32)], give
us the following range for the self-coupling of the Higgs
field at the scale M,

� 0:424< �ðMÞ< 0:482: (36)

This range can be propagated back to obtain a value at the
scale M2

Z through the renormalization group equations,

��1ð�Þ ¼ ��1ðMÞ þ 3

4�2
log

M2

�2
: (37)

Note that we have neglected the effect of the gauge and
Yukawa couplings, since the complete solution of the
renormalization group equations is out of the scope of
this preliminary study. If we integrate this equation and
take into account the present observational bounds [28], we
obtain a Higgs mass in the range

114:5 GeV<mH < 275 GeV; (38)

safely within the detection range of the Large Hadron
Collider at CERN. In the absence of an actual measure-
ment of the Higgs self-coupling �, for the analysis of
Sec. IV and thereafter, we will just take different values
compatible with the above range (38).

III. THE STANDARD MODEL MATTER SECTOR
IN THE EINSTEIN FRAME

The length scales are conventionally defined in such a
way that elementary particle masses are the same for all
times and in all places. This implies, for instance, that if
under a conformal transformation the Lagrangian of a free
particle transforms as

L 1P ¼
Z

mds ! ~L1P ¼
Z m

�
~ds; (39)

the mass should be accordingly redefined as ~m � m
� to

express it in the new system of units. The previous argu-
ment applies also for classical fields [29]. The rescaling of
all fields (including the metric tensor) with an arbitrary
space-time dependent factor �, taken with a proper con-
formal weight for each field, will leave the physics unaf-
fected. The physical interpretation of this symmetry is

clear: It changes all dimensional quantities (lengths,
masses, etc.) in every point of the space-time, leaving their
ratios unchanged.
In this section we will apply the previous prescription to

the different sectors of the action (3). Consider, for in-
stance, the spontaneous symmetry breaking sector, respon-
sible for the masses of the intermediate gauge bosons W
and Z,

SSSB � �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
m2

WW
þ
�W

�� þ 1

2
m2

ZZ�Z
�

�
: (40)

In the standard model, the masses of the SUð2Þ bosons are
due to a spontaneous symmetry breaking mechanism, real-
ized by the constant vev of the Higgs field, and therefore
are constant. In our case the Higgs field evolves with time,
giving rise to variable effective masses for the gauge
bosons

mW ¼ g2h

2
; mZ ¼ mW

cos�W
; (41)

with �W the Weinberg angle defined as �W ¼
tan�1ðg1=g2Þ, and g1 and g2 are the coupling constants
corresponding to Uð1ÞY and SUð2ÞL at the scale M, where
the relevant physical processes during preheating will take
place. As mentioned before, numerically this correspond to

a value g21 � g22 � 0:30, which implies sin2�W ¼
cos2�W � 1=

ffiffiffi
2

p
. From now on we will use these values

for numerical estimations. In agreement with the above
prescription for transforming masses and fields, the action
(40) preserves its form under the conformal transformation

SESSB � �
Z

d4x
ffiffiffiffiffiffiffi�~g

p �
~m2
W
~Wþ
�
~W�� þ 1

2
~m2
Z
~Z�

~Z�

�
; (42)

provided that we redefine the fields and masses with the
corresponding conformal weights as

~W�
� � W�

�

�
; ~Z� � Z�

�
;

~m2
W ¼ m2

W

�2
¼ g22M

2
Pð1� e��	j�jÞ

4�
; ~m2

Z ¼ ~m2
W

cos2�W
:

(43)

The same can be applied to the interactions between fer-
mions and gauge bosons. Let us consider, for instance,

SF ¼ SNC þ SCC �
Z

d4x
ffiffiffiffiffiffiffi�g

p

�
�
g2ffiffiffi
2

p Wþ
� J

�
� þ g2ffiffiffi

2
p W�

� J
þ
� þ g2

cos�W
Z�J

�
Z

�
; (44)

where J�� � �dL
�uL, J

þ
� � �uL

�dL are the charged cur-

rents carrying the information about the couplings of the
W� to the standard model fermions, and
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J
�
Z � 1

2
�uL

�uL � 1

2
�dL

�dL � 2sin2�W
3

�uL
�uL

þ sin2�W
3

�dL
�dL (45)

is the neutral current with the information of the couplings
of the Z boson. In the Einstein frame the action (44)
preserves its form,

SEF ¼ SENC þ SECC �
Z

d4x
ffiffiffiffiffiffiffi�~g

p
�

�
g2ffiffiffi
2

p ~Wþ
�
~J�� þ g2ffiffiffi

2
p ~W�

�
~Jþ� þ g2

cos�W
~Z�

~J
�
Z

�
; (46)

as long as we redefine the currents as

~J �
Z � J

�
Z

�3
; ~J�� � J��

�3
; (47)

which is equivalent to redefining the Dirac fields

~d � d

�3=2
; ~u � u

�3=2
: (48)

Finally, concerning the Yukawa sector, we have, for a given
family of the quark sector,

SY � �
Z

d4x
ffiffiffiffiffiffiffi�g

p fmd
�ddþmu �uug; (49)

where d and u stand for down- and up-type quarks, re-

spectively. The effective masses in the Jordan frame,mf ¼
yfhffiffi
2

p , become

~mf � yfMPffiffiffiffiffiffi
2�

p ð1� e��	j�jÞ1=2 (50)

in the Einstein frame.
On the other hand, the total decay widths, summing over

all the allowed decay channels in the standard model of the
W� and Z bosons into any pair of fermions and over all the
polarizations of the gauge bosons, are given, respectively,
by [30]

�Wþ ¼ �W� ¼ 3g22mW

16�
; �Z ¼ g22mZ

8�cos2�W
LIPS;

(51)

where LIPS denotes the Lorentz invariant phase-space
factors

LIPS � 7

4
� 11

3
sin2�W þ 49

9
sin4�W: (52)

The decay rates will preserve their functional form in the
Einstein frame, since they are only changed through the
conformal transformation of the masses, i.e.

�E
W� ¼ 3g22 ~mW

16�
¼ 3g32Mp

32��1=2
ð1� e��	j�jÞ1=2

¼ 3cos3�W
2LIPS

�E
Z (53)

where ~mW� , ~mZ / ð1� e��	j�jÞ1=2 are the dynamical
masses in the Einstein frame; see Eq. (43).

IV. REHEATING IN THE STANDARD MODEL
OF PARTICLE PHYSICS

In this section we will analyze the different mechanisms
that could give rise to efficient reheating of the Universe,
both perturbative and nonperturbative. The natural mecha-
nism, given the strength of the interactions of the Higgs
boson with the standard model particles, would be a per-
turbative reheating process right after the end of the slow-
roll regime. However, as we will see, perturbative reheat-
ing is not efficient enough, and nonperturbative effects
must be taken into account. Given the form of the potential
(20), very different (p)reheating mechanisms could, in
principle, take place, from a tachyonic production in the
region between the end of inflation and the inflection point
[31–33], an instant preheating mechanism [34], and a para-
metric resonance effect around the minimum of the poten-
tial [35–37]. Therefore, it will be crucial to disentangle the
contributions of each mechanism and quantify their rela-
tive importance.
In order to study the different reheating mechanisms it

will be useful to have an approximate expression for the
evolution of the inflaton. As mentioned before, we can
expand potential (20) for the range of interest, as

Vð�Þ ¼ 1
2M

2�2 þ �Vð�Þ; (54)

with M2 ¼ �M2
P=3�

2 the typical frequency of oscillation.
The first terms of the corrections �V to the quadratic
potential are given explicitly by

�Vð�Þ ¼ ��

3
j�j3 þ �

4
�4 þOðj�j5Þ; (55)

with � ¼ �MP=
ffiffiffi
6

p
�2 and � ¼ 7�=27�2. The Klein-

Gordon equation for the inflaton,

€�þ 3H _�þ V 0ð�Þ ¼ 0; (56)

can then be written, for a power-law evolution a / tp, as

t2 €�þ 3pt _�þ t2M2½1þ �M2ð�Þ
� ¼ 0; (57)

where we have neglected the Higgs’ interactions with other
fields, because they are proportional to the number density
of particles of a given species and therefore they will be
negligible (see Sec. VI) during the first oscillations of the
Higgs field. The backreaction of other particles into the
dynamics of the Higgs will only be relevant once their
occupation numbers have grown sufficiently. The nonlin-
ear terms of the Higgs’ self-interaction, described by
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�M2 � ��j�j þ ��2 þOð�3Þ; (58)

will also be negligible from the very beginning of reheat-
ing, j�M2ð�Þj � 1, as we will justify a posteriori. Thus,
neglecting such a term in the effective equation of �, the
general solution can be expressed as

�ðtÞ ¼ 1

ðMtÞ� ½AJþ�ðMtÞ þ BJ��ðMtÞ
; (59)

with A and B constants depending on the initial conditions
(end of inflation), and J��ðxÞ Bessel functions of order��,
with � ¼ ð3p� 1Þ=2. For a reasonable power index,
p > 1=3—for matter p ¼ 2=3, while for radiation
p ¼ 1=2—the second term in the right-hand side of
Eq. (59) diverges in the limitMt ! 0 and therefore should
be discarded on physical grounds. The physical solution is
then simply given by

�ðtÞ ¼ AðMtÞ�ðð3p�1Þ=2ÞJðð3p�1Þ=2ÞðMtÞ; (60)

which, making use of the large argument expansion (Mt �
1) of fractional Bessel functions [38], can be approximated
by a cosinusoidal function

�ðtÞ � A

ffiffiffiffi
2

�

s
ðMtÞ�ð3p=2Þ cosðMt� ð3p=2Þð�=2ÞÞ: (61)

The normalization constant A can be fixed if we consider
that the oscillatory behavior starts just at the end of in-

flation, i.e. �ðt ¼ 0Þ ¼ �end ¼ ��1Mp logð1þ 2=
ffiffiffi
3

p Þ
(23). In this case,

A ¼ �end2
1=2ð3p�1Þð12ð3p� 1ÞÞ!; (62)

where we have made use of the limit of the Bessel func-
tions when Mt � 1,

J1=2ð3p�1ÞðMtÞ � ðMtÞ1=2ð3p�1Þ

21=2ð3p�1Þð12 ð3p� 1ÞÞ! : (63)

The energy and pressure densities associated with the
general solution (60) are given, after averaging over several
oscillations, by

�� � h12 _�2 þ 1
2M

2�2i
� 1

2M
2X2½hcos2ðMt� 3�p=4Þiþ hsin2ðMt� 3�p=4Þi


¼ 1
2M

2X2; (64)

p� � h12 _�2 � 1
2M

2�2i
� 1

2M
2X2½hcos2ðMt� 3�p=4Þi� hsin2ðMt� 3�p=4Þi


¼ 0; (65)

with XðtÞ / ðMtÞ�ð3p=2Þ. Since the averaged pressure is
negligible, p� � 0, then aðtÞ / tp with p � 2=3. Using

this fact, the physical solution is finally expressed as

�ðtÞ ¼ �end

Mt
sinðMtÞ: (66)

Rewriting the previous equation in terms of the number of
times the inflaton crosses zero, j ¼ ðMtÞ=�, or equiva-
lently in terms of the number of oscillations N ¼ j=2, then

�ðtÞ � �end

2�N
sinð2�NÞ ¼ �end

j�
sinð�jÞ � XðjÞ sinð�jÞ:

(67)

Therefore, the Higgs condensate oscillates with a decreas-
ing amplitude XðjÞ / 1=j. We can obtain an upper bound,
�	j�j< 0:122=N, on the amplitude of the Higgs field
after N oscillations, which in terms of the correction of
�M2 to 1 [see Eq. (57)] implies j�M2j< 0:122, 0.0615, or
0.0244, after the first N ¼ 1, 2, and 5 oscillations, respec-
tively. Thus, from the very beginning, the effective poten-
tial of the Higgs field tends very rapidly to that of a
harmonic oscillator, which justifies a posteriori the ap-
proximation j�M2j � 1 used in the derivation of
Eqs. (59) and (67).
Note that if we neglect the presence of other fields and

consider the Higgs condensate as a free field only damped
by the expansion rate, then we can easily estimate the
number of semioscillations before the amplitude of the
field becomes smaller than the transition value �t �
Mp=�, defined in Sec. II. For j�j<�t, the Higgs potential

will not be approximated anymore by Eq. (54), but rather
by a quartic form ð�=4Þ�4. This will happen when

XðjtÞ=�t � �	�end

�jt
< 1, which implies

j � jt � � logð1þ 2=
ffiffiffi
3

p Þ
��

�Oð104Þ: (68)

Therefore, if before that moment, the Higgs field has not
yet efficiently transferred its energy into other fields, then
after jt semioscillations, the transition in the behavior of
the potential will also imply a change in the expansion rate,
from matterlike, characteristic of quadratic potentials, to
radiationlike, characteristic of quartic potentials.

A. Perturbative decay of the Higgs field

A natural reheating mechanism, given the strength of the
interactions of the Higgs boson with the standard model
particles, would be a perturbative decay process of the
inflaton quanta into the standard model particles right after
the end of the slow-roll regime. As we saw, soon after the
end of inflation the effective potential for the Higgs field
can be approximated by a simple quadratic potential (21).
In this approximation, the masses of fermions and gauge
bosons [see Eqs. (43) and (50)] are simply given by

mf ’ yf

�
�j�j
2�MP

�
1=2

MP; mW ’ g2

�
�j�j
4�MP

�
1=2

MP;

mZ ’ g2
cos�W

�
�j�j
4�MP

�
1=2

MP: (69)
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In order to have a perturbative decay, two conditions must
be fulfilled:

(1) There should be enough phase space in the final
states for the Higgs field to decay, i.e. M> 2mf,

mA, which will only happen when the amplitude of
the Higgs field becomes smaller than a certain criti-
cal value �c. In particular, for a decay into gauge
bosons and/or fermions, in the light of Eq. (69), one
needs

� & �c � 1

g2

ffiffiffiffi
�

2

s
M; (70)

where g ¼ g2, g2= cos�w for the W and Z bosons,
respectively, and g ¼ yf for the fermions. When

compared to the initial amplitude (23) of the Higgs
field at the end of inflation, �c=�end ’ 1=ð3g2�Þ, we
see that this critical value is much smaller than �end

for the gauge bosons and the top quark, of the same
order for the bottom and charm quarks, and even
greater for the rest of the quarks and the SM leptons.

(2) The Higgs decay rate �� g2

8�M has to be greater

than the rate of expansionH2 ¼ ��

3M2
P

� 1
6 ðMMP

Þ2ð�end

�j Þ2,
where we have used Eq. (64). Such a condition, �>
H, can be translated into the following inequality:

j � jc � 4ð�	�endÞ
g2

; (71)

which defines the critical number of semioscilla-
tions required for this second condition to be true
(again, g ¼ g2, g2= cos�w and yf, for W, Z bosons

and fermions, respectively).
The critical amplitude (70) below which the Higgs is

allowed to decay into gauge bosons is of order�c � 0:1 M.
As mentioned before, this amplitude is much smaller than
that of the Higgs at the end of inflation, �end � 0:94 Mp �
8� 105 M. Therefore, the Higgs condensate would need
to oscillate�106 times before being able to decay through
this channel. The same applies to the top quark. In the case
of other fermions, due to the wide range of the Yukawa
couplings, several situations can take place. For instance,
the decay channel into bottom and charm quarks is opened
only after a few oscillations of the Higgs, while for the rest
of the quarks and leptons, the decay channel has sufficient
phase space from the very end of inflation. In general, the
smaller the Yukawa coupling of a given fermion species to
the Higgs, the less oscillations the Higgs will go through
before there is enough phase space for it to decay into such
fermion species. Notice, however, that the smallness of the
Yukawa coupling implies also a smaller decay rate.
Consider for instance the decay of the Higgs into electrons,
whose Yukawa coupling is of order ye � 10�6. From the
very end of inflation [see Eq. (70)], there is phase space in
this channel for the Higgs to decay into. However, it is
precisely the smallness of the electron’s Yukawa coupling

that allows the decay to be possible, which prevents con-
dition (2) from being fulfilled. The decay width is much
smaller than the Hubble rate for a huge number of oscil-
lations. Looking at Eq. (71), we realize that the Higgs
condensate should oscillate j� 1012 times before the de-
cay rate into electrons overtakes the Hubble rate.
One can check that the previous conclusions also hold

for the rest of the fermions of the standard model. When
there is phase space for the Higgs to decay into a given
species, the decay rate does not catch up with the expan-
sion rate and, vice versa, if the decay rate of a given species
overtakes the expansion rate, there is no phase space for the
decay to happen.2 Therefore, during a large number of
oscillations, the Higgs field is not allowed to decay pertur-
batively in any of the standard model fields. Moreover,
before any of those decay channels is opened, many other
interesting (nonperturbative effects) will take place, as we
will describe in detail in the next sections.

B. Tachyonic preheating and nonadiabatic particle
production at the inflection point

As we pointed out in Sec. II, the effective square mass of
the Higgs field � is negative just after the end of inflation
and will be so till the inflection point. When this happens
spinoidal instability takes place [31–33] and long wave-
lengths quantum fluctuations �k, with momenta k < m�,

grow exponentially. The width of the tachyonic band will
be limited in our case by the point of maximum particle
production, the end of inflation. At this point the effective
mass m� takes a value

m2
�ð�endÞ ¼ @2Vð�Þ

@�2

���������end

� �M2

30
; (72)

which corresponds to a maximum momentum for the
tachyonic band kmax ¼ 0:2 M. This comes from vacuum

quantum fluctuations, �kðtÞ / expðit
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

�

q
Þ ¼

expðMt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=30� ðk=MÞ2p Þ, which grow exponentially.

However, since the inflaton is fast rolling down the
potential towards the positive curvature region, the dura-
tion of the tachyonic preheating stage is so short that the
occupation numbers of those modes in the band do not
grow significantly and the effect can be neglected. In
particular, the time interval from the end of inflation till
the inflection point is just M�t � 0:5, and therefore, even
for the fastest growing mode, k ¼ 0, its growth is only

�e0:5=
ffiffiffiffi
30

p
� 1:09. This is a negligible effect, and thus one

2Note that the condition (70) (which prevents Higgs decay into
gauge bosons and top quarks) assumes an average amplitude
over a single Higgs oscillation, while smaller values are attained
around the minimum of the potential when XðtÞ<�c. However,
when this happens the Higgs field is well inside the nonadiabatic
range j�j<�a (80), in which the very concept of particle (gauge
bosons and top quark) is not properly defined; see Sec. IVC.
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can still consider an initial spectrum of quantum vacuum
fluctuations even at the inflection point. For simplicity, all
our analytical estimations have been done ignoring this
period of tachyonic instability, taking as initial conditions
at the end of inflation the amplitude of the Higgs conden-

sate �end � MP

� logð1þ 2=
ffiffiffi
3

p Þ (23) and quantum vacuum

fluctuations.
Another physical effect before the Higgs condensate

reaches the bottom of the potential for the first time will
be the particle production in the inflection point, due to the
violation of the adiabaticity condition,

j _!kj � j!2
kj; (73)

where the frequency of oscillation of the fluctuations is
!2

kðtÞ ¼ k2 þ V 00ð�Þ. Differentiating this and rewriting the

adiabaticity condition as _!k!k � !3
k, we find that only

those modes within the band

k3 �
��������V

000ð�Þ _�
2

�������� (74)

are amplified. At the end of inflation _H ¼ �H2 which

implies _� � �V1=2ð�Þ. Extrapolating the previous for-
mula to the inflection point (ip), we get

_� ip �
ffiffiffiffiffiffi
V0

4

s
¼ �

ffiffiffi
3

p
M

4	
; (75)

which indeed seems to be a very good approximation if we
compare it with the result of a numerical solution beyond
the slow-roll regime. Inserting (75) into Eq. (74) we get

k3ip �
��������V

000ð�Þ _�ip

2

��������¼ H3
60

2
; (76)

which corresponds to a maximum excited wave number at
the inflection point given by kip < 0:4 M. Again, here the

time of production is so brief that the occupation number of
modes within the band is not significantly enhanced. We
will have to wait until the next stage of consecutive oscil-
lations of the Higgs field around zero for a significant
production of particles.

C. Instant preheating

During each oscillation of the Higgs field �, the rest of
the quantum fields that couple to it will oscillate many
times. Consider for instance the interaction of the Higgs
field with the Z bosons around the minimum of the poten-
tial. In this region the associated action (42) can be ap-
proximated by a trilinear interaction where the masses of
the W and Z bosons (43) are given by

~m 2
W ’ �g22MP

4�
j�j; ~m2

Z ’ �g22MP

4�cos2�W
j�j; (77)

which are much greater than the inflaton mass M for the
main part of the oscillation of �. As a result, the typical

frequency of oscillation of the gauge boson is much higher
than the one of the Higgs field �. This implies that during
most of the time the effective masses of the intermediate
boson are changing adiabatically and an adiabatic invariant
can be defined: the number of particles. However, for
values of � very close to zero, the adiabaticity conditions�������� _~mW

~m2
W

��������� 1;

�������� _~mZ

~m2
Z

��������� 1 (78)

are violated. In such a case, there will be an inequivalence
between the vacua before and after the passage of �
through the minimum of the potential, which can be inter-
preted as particle production [35,36]. In terms of the field
�, the violation of (78) corresponds to the region ��a &
� & �a,

�a ¼
�
�j _�ðtÞj2
�g2MP

�
1=3

; (79)

where, from now on, g ¼ g2, g2= cos�W for the W or Z
bosons. Only outside this region, the notion of particle
makes sense and an adiabatic invariant can be defined.
Taking this into account and approximating the velocity
of the field around zero as _�ðjÞ � M�end

�j ¼ MXðjÞ [see

Eq. (67)], the general expressions (79) can be approxi-
mated as

�aðjÞ ¼
�
�M2j�endj2
�j2g2�2MP

�
1=3

¼
�

��

3� logð1þ 2=
ffiffiffi
3

p Þ
�
1=3 j1=3

g2=3
XðjÞ: (80)

Note that the previous regions are indeed very narrow

compared to the amplitude of the oscillating Higgs, �a �
10�2j1=3XðjÞ. Therefore, the particle production that takes
place in that region happens within a very short period of
time as compared to the inflatons’ oscillation period T ¼
2�=M,

�taðjÞ � 2�a

j _�j � 10�2j1=3M�1 � T: (81)

Notice, indeed, that different values of � do not appreci-
ably change the above conclusions about the smallness of
the nonadiabatic regions. Given the weak dependence of

�t / j1=3, many semioscillations (� 103) will pass before
the fraction of time spent in the nonadiabatic zone will
increase from 1% to 10%, as compared with the period of
oscillations. This holds also independently of the species,
W or Z bosons.
Moreover, despite the smallness of �a as compared to

the amplitude XðjÞ, it is important to note that the field
range corresponding to the region of nonadiabaticity still is
much greater than those critical regions defined in Sec. II.
In particular, let us recall that there is a field value, �t �
MP=�, below which there is a transition of the effective
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potential from a quadratic to a quartic behavior. However,
this is well inside the region of nonadiabaticity, �t � �a,
as we emphasized before. Moreover, there is also an inter-
val of Higgs field values, j�j< �c, for which the Higgs
perturbative decay intoW, Z and top quarks can occur [see
Eq. (70) in Sec. IVA], which nevertheless is also much
smaller than the nonadiabaticity interval, �c � �a.

We will now discuss the nonperturbative creation of
particles in the nonadiabatic region. This production is
formally equivalent to the quantum mechanical problem
of a particle scattering in a periodic potential. In the case
under consideration the equations of motion for the fluc-
tuations of each gauge field with a given polarization will
be given by W 00

k þ ðk2=a2 þ ~m2
WÞWk ¼ 0, and the corre-

sponding one for the Z fluctuations. Expanding Eq. (67)
around the jth zero at time tj ¼ �j, the evolution equation

of the fluctuations can be approximated as

W 00
k þ

�
k2

a2
þ �g22Mp�endj sinðMðt� tjÞÞj

4�j�

�
Wk ¼ 0; (82)

Z00
k þ

�
k2

a2
þ �g22Mp�endj sinðMðt� tjÞÞj

4�j�cos2W

�
Zk ¼ 0: (83)

Notice that around the zeros of the inflaton the sinusoidal
behavior j sinðMðt� tjÞÞj can be very well approximated

by j sinðMðt� tjÞÞj � Mjt� tjj � �, which allows us to

rewrite Eqs. (82) and (83) as Schrödinger-like equations,

�W 00
k � qW

j
j�jWk ¼ K2Wk;

�Z00
k �

qZ
j
j�jZk ¼ K2Zk;

(84)

where primes denote derivatives with respect to the re-
scaled time � ¼ Mt,K is the rescaled momentumK � k

aM ,

and

qW ¼ cos�2WqZ ¼ g22�	�end

4��

�
Mp

M

�
2 ¼ 3g22��	�end

4��

(85)

are the usual resonance parameters [36]. Each time the
inflaton crosses zero can therefore be interpreted as the
quantummechanical scattering problem of a particle cross-
ing an inverted triangular potential. Let T and R ¼ 1� T,
for either W or Z, be the transmission and reflection
probabilities for a single scattering in this periodic trian-
gular barrier. The number of particles just after the jth
scattering, nkðjþÞ, in terms of the previous number of
particles nkðj�Þ just before that scattering, can be written
as [35,36]

nkðjþÞ ¼ ðT�1
k ðjÞ � 1Þ þ ð2T�1

k ðjÞ � 1Þnkðj�Þ
þ 2 cos�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1
k ðjÞðT�1

k ðjÞ � 1Þ
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkðj�Þðnkðj�Þ þ 1Þ

q
; (86)

where �j are some accumulated phases at each scattering,

which we will discuss later on in Sec. V since they will not
play any role in the following discussion of this section.
The inverse of the transmission probability for the jth
scattering can be expressed as [39]

T�1
k ðjÞ ¼ 1þ �2½Aið�x2j ÞAi0ð�x2j Þ

þ Bið�x2j ÞBi0ð�x2j Þ
2; (87)

with xj � K=ðq=jÞ1=3 and AiðzÞ, BiðzÞ the Airy functions.

Note that we have used the Wronskian normalization,
AiðzÞBi0ðzÞ � BiðzÞAi0ðzÞ ¼ ��1.
Consider the situation nkðj�Þ � 1, which is certainly

true in the first scattering j ¼ 1, or can happen for j > 1 if
the previously produced gauge bosons have fully decayed
into fermions. In such a case,

�nkðjþÞ � T�1
k ðjÞ � 1; (88)

where we have retained only the first term of Eq. (86). This
corresponds to the spontaneous particle creation of W and
Z bosons each time the Higgs crosses zero and, therefore,
tells us about the number of particles of these species that
are created in each zero crossing. The momenta distribu-
tion is shown in Fig. 2. In particular, the total number of
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FIG. 2 (color online). Spectral distributions (88) for the gauge
bosons created in a single zero crossing through the first term of
Eq. (86), calculated after j ¼ 1, 2, 5, and 10 oscillations (from
left to right). The horizontal axis represents x � k=Mq1=3, so
x ¼ 1 is the typical width of the band of momenta of particles
created at the first scattering. For later times, the distributions
broaden out to greater momenta, since the argument of Eq. (88),
xj, behaves as / j�1=3. The typical momenta of the distribution

agree with the one calculated in Sec. IVC.
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produced particles of a given species with a given polar-
ization, just after exiting the nonadiabatic region around
the jth zero crossing, can be obtained as

�nðjþÞ ¼ 1

2�2a3j

Z 1

0
dkk2½T�1

k ðjÞ � 1
 ¼ q

2j
IM3; (89)

with I¼R1
0 ½Aið�x2ÞAi0ð�x2ÞþBið�x2ÞBi0ð�x2Þ
2x2dx�

0:0046 and q the resonant parameters given by Eq. (85).
Thus, the only difference between the number of W and Z
bosons produced is simply encoded in the different reso-
nance parameter, qW / g22 and qZ / g22=cos

2�W , respec-
tively. Notice that the effect of the nonperturbative
production of these particles is proportional to the coupling
square. If the couplings of the Higgs field to the gauge
bosons were not so large (g2 � 0:5, cos�1�W � 1:4), then
their production would be very suppressed. Strictly speak-
ing, the previous analysis is just valid for gauge bosons.
The production of fermions through this mechanism is
different and more involved than for bosons. Never-
theless, if the effect is, as expected, proportional to the
Yukawa coupling squared [40], then only the top quark
production would be non-negligible.

After the passage through the minimum of the effective
potential, the number of W and Z particles remains (al-
most) constant while their masses grow when the field �
increases. TheW and Z bosons tend to decay into fermions
in a time �t� h�E

W;Zi�1
j , where �E

W;Z are given by Eq. (53),

while hij represents a time average between the jth and the

ðjþ 1Þth scatterings. Given the time dependence of the �

field (67), the typical time of decay turns out to be �t ’
0:64j1=2M�1 for the Z bosons and a bit bigger, �t ’
1:55j1=2M�1, for the W bosons, as was expected. This
implies that in a semiperiod, T=2 ¼ �M�1, the nonpertur-
batively produced gauge bosons at the jth scattering decay
significantly before the next scattering takes place, at least
for the first scatterings. However, as the amplitude of the
Higgs field decreases with time due to the expansion of the
Universe, the probability of decay of the gauge bosons [see
Eq. (53)] becomes smaller and smaller as time goes by.

This explains the j1=2 behavior, which essentially means
that after a certain number of oscillations, the number of
produced fermions through the perturbative decays per
semioscillation will eventually become negligible.

In the Jordan frame the standard model presents its usual
form and the fermions produced in the decay of the Z and
W bosons are mainly relativistic. Since both momenta and
masses transform in the same way under a change of
conformal frame, if a gauge boson is allowed to decay
into a pair of fermions in the Jordan frame, it will also be
able to decay in the Einstein frame. Therefore, the relation
between the typical momenta and masses of those fermions
and gauge bosons (W, Z) in the conformally transformed
frame is simply given by

2ð~k2F þ ~m2
FÞ ¼ ~k2W þ ~m2

W; 2ð~k2F þ ~m2
FÞ ¼ ~k2Z þ ~m2

Z:

(90)

In terms of the field �, the previous equations can be
rewritten as

~k2F
~m2
F

¼ 1

y2F

�
�~k2W

M2
Pðe�	j�j � 1Þ þ

g22
4

�
� 1; (91)

~k2F
~m2
F

¼ 1

y2F

�
�~k2Z

M2
Pðe�	j�j � 1Þ þ

g22
4cos2�W

�
� 1; (92)

for the W and Z fields, respectively. Note that the relativ-
istic or nonrelativistic nature of a given particle is some-
thing intrinsic to the particle and should not depend on the
conformal frame. As expected, the transitions Z ! �tt,
W ! tb are not allowed in the Einstein frame. For the

rest of the quarks ~k2F � ~m2
F, which implies that all the

fermions produced in the decay of the W and Z bosons are
clearly relativistic, as was the case in the Jordan frame. The
total number density of gauge bosons nðjþÞ present just
after the jth crossing will decay exponentially fast until the
next crossing, due to the perturbative decay into fermions.
Therefore the total number density just previous to the ðjþ
1Þth zero crossing, nððjþ 1Þ�Þ, is given by

nððjþ 1Þ�Þ ¼ nðjþÞe�
R

tjþ1
tj

�dt ¼ nðjþÞe�h�ijT=2: (93)

The number of fermions produced between those two
scatterings, �nFðjÞ, is simply given by

�nFðjÞ ¼ 2� 3� ½nZðjþÞð1� e�h�ZijT=2Þ
þ 2nWðjþÞð1� e�h�W ijT=2Þ
; (94)

where the factor 2� 3 takes into account that each gauge
boson can have one out of three polarizations and decay
into two fermions, while the extra factor 2 in front of nW
accounts for both the Wþ and W� decays. The averaged
value of the decay widths in the previous expressions can
be estimated [see Eq. (53)] as

h�Z!allij ¼
�

g2
cos�W

�
3 MPLIPS

16�
ffiffiffi
�

p hð1� e��	j�jÞ1=2ij

� 2Z

T
FðjÞ; (95)

h�W!allij ¼ 3cos3�W
2LIPS

h�Z!allij � 2W

T
FðjÞ; (96)

where T ¼ 2�=M is the typical oscillation period and we
have defined
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FðjÞ � hð1� e��	j�jÞ1=2ij
¼

�
1

�

Z ðjþ1Þ�

j�
dx

�
1�

�
1þ 2ffiffiffi

3
p

��j sinx=xj�1=2�

� 0:3423
1ffiffiffi
j

p : (97)

Note that the last approximated equality is simply a (good)
fit to FðjÞ for all j. The constants Z, W are just numerical
factors depending of the parameters of the model and the
decaying species,

Z ¼
�

g2
cos�W

�
3

ffiffiffi
3

p
�1=2

16�1=2
LIPS � 14:23��ð1=4Þ;

W � 3cos3�W
2LIPS

Z � 5:91��ð1=4Þ:

(98)

Using the notation EFZ
ðjÞ and EFW

ðjÞ for the mean

energy of the fermions produced between tj and tjþ1,

from the decay of Z orW bosons, respectively, then we find

EFZ
ðjÞ � h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

F

q
ij � hkFij � 1

2
hmZij

� g2

4�1=2 cos�W
FðjÞMp; (99)

EFW
ðjÞ � h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F þm2

F

q
ij � hkFij � 1

2
hmWij

� g2

4�1=2
FðjÞMp; (100)

where we have used the fact that the produced fermions are
relativistic [see Eqs. (91) and (92)], while the gauge bosons
are nonrelativistic [see Eq. (130) in Sec. V].

Let us work now under the following hypothesis: We
will consider that the perturbative decay of the gauge
bosons into fermions is sufficiently effective, such that
the gauge bosons do not accumulate significantly. This
amounts to neglecting initially a potential effect of para-
metric resonance. This is of course a rough approximation,
which is only valid for the first oscillations, where

e�FðjÞ � 1. Numerically, after j ¼ 1, 2, 10, 15, and 20
zero crossings, the 99.5%, 98.5%, 94.2%, 87.4%, 81.9%,
77.4%, respectively, of the produced Z particles have de-
cayed into fermions (and a similar though smaller fraction
of the W bosons). This implies that there will always be a
remnant of the gauge bosons produced at each scattering,
that will not decay in one semiperiod of the inflaton’s
oscillation. Let us neglect this for the time being, therefore
ignoring the possibility of having parametric resonance,
and estimate the energy transferred simply through the
perturbative decay into fermions, during the first
oscillations.

In particular, the energy density of those fermions pro-
duced after the first scattering, averaged over the first
semioscillation between Mt ¼ � and Mt ¼ 2�, will be

��Fð1Þ � 6½�nZð1ÞEFZ
ð1Þ þ 2�nWð1ÞEFW

ð1Þ

¼ "

�
1

2
M2�2

end

1

�2

�
Fð1Þ; (101)

with

" � 33=2��2ð2þ cos�3�WÞIg32
8�1=2�1=2ð�	�endÞ

� 3� 10�5��3=4:

(102)

The energy density of the inflaton, evaluated at the maxi-
mum amplitude of the first semioscillation, is given (64) by

��ð1Þ � 1

2
M2�2

end

�
2

3�

�
2
: (103)

Therefore, the ratio between the energy density of the
fermions and of the inflaton, at that moment,Mt � 1:5�, is


ð1Þ � �Fð1Þ
��ð1Þ ¼

"Fð1Þ
ð2=3Þ2 � 2� 10�5��3=4; (104)

which means that initially, e.g. for � ¼ 0:4, only�0:004%
of the inflaton’s energy has been transferred to the fermi-
ons. Thus, the so-called instant preheating mechanism [34]
becomes frustrated here, because in order to make it work
efficiently, the couplings of the theory must be really fine-
tuned, in such a way that a significant fraction of the energy
of the inflaton was transferred (in the first semioscillation)
to the decay products of the bosons to which the inflaton is
coupled. Moreover, in the instant preheating scenario, the
produced fermions must be nonrelativistic, while the ef-
fective behavior of the background inflaton should be
effectively mimicking that of relativistic matter (like e.g.
in ��4 models). Only in this case, it would be guaranteed
that the remnant energy of the inflaton would decay faster
than that of the fermions, thanks to the extra suppression
factor 1=a due to the expansion of the Universe. If the
inflaton would effectively behave as nonrelativistic matter
and the produced fermions were relativistic, the energy of
the inflaton could again overtake that of the fermions very
soon, because now the fermion’s energy would decrease
faster than that of the background. That is, precisely, the
situation we have in the scenario under discussion. Even if
we had found that 
ð1Þ �Oð1Þ, the relativistic nature of the
fermions and the nonrelativistic effective behavior of the
Higgs oscillations would have prevented the Universe from
instantaneously reheating at that point.
One could hope that after a certain number of oscilla-

tions, let us say jp, that ratio would grow to a value 
ðjpÞ �
Oð1Þ. The successively produced fermions, generated each
semioscillation through the perturbative decay of the (non-
perturbatively produced) W and Z bosons, could perhaps
accumulate a sufficient amount of energy that could finally
equal that of the Higgs condensate. This does not seem
totally unreasonable because the total energy stored in the
Higgs decreases with the expansion of the Universe as
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�� / 1=j2 [see Eq. (64)], such that the total amount of

energy that we would require to transfer to the fermions
would be less and less. Moreover, the number of fermions
would only increase as time goes on, so one keeps adding
energy each semioscillation in the form of newly produced
fermions. Thus, these two effects would contribute to the
increment of the ratio of the energy between the fermions
and the Higgs. On the other hand, the relativistic nature of
the fermions and the decrease of their production rate with
the expansion, as � / 1=

ffiffiffi
j

p
, would tend to decrease such a

ratio. Therefore, one must put together all these competing
effects in order to obtain the evolution in time of the energy
transferred from the Higgs to the fermions. To do this, we
will assume, for simplicity as well as to try to make this
mechanism more efficient, that since the gauge bosons do
not accumulate significantly, only the first term of Eq. (86)
should be considered, such that W and Z bosons are only
produced through spontaneous creation at each zero
crossing.

In this case the averaged energy density of the fermions
produced between tj and tjþ1 will be given by

��FðjÞ � 6½�nZðjÞð1� e�ZFðjÞÞEFZ
ðjÞ

þ 2�nWðjÞð1� e�WFðjÞÞEFW
ðjÞ


¼ "

�
1

2
M2�2

end

1

�2

�
FðjÞ
j

�ðjÞ; (105)

where " is given by Eq. (102) and we have defined

�ðjÞ �
�
1� ð1þ 2cos3�We

�ðW�ZÞFðjÞÞ
ð1þ 2cos3�WÞ

e�ZFðjÞ
�
:

(106)

Then the ratio between the energy of the fermions to the
Higgs condensate at the jth zero crossing finally reads

"ðjÞ � �FðjÞ
��ðjÞ � "

ðjþ 1
2Þ2

j

Xj
i¼1

FðiÞ�ðiÞ
�
i

j

�
5=3

¼ "GðjÞ ðjþ
1
2Þ2

j
; (107)

where

GðjÞ � Xj
i¼1

FðiÞ�ðiÞ
�
i

j

�
5=3

: (108)

Note that the strength of the effect, i.e. the amplitude of
"ðjÞ, is modulated by the gauge couplings through " / g32
so, even in this case in which the SM gauge couplings of
the Higgs to the vector bosons are quite big (g22 � 0:3), that
does not help transfer sufficient energy initially. As men-
tioned before, if we could apply this formalism to the
production of fermions at each Higgs’ zero crossing, by
substituting the gauge couplings with the Yukawa ones, we
would obtain an even more ridiculous production of parti-
cles (except perhaps for the top quarks). Of course, the

question of fermionic preheating at each zero crossing
deserves more investigation, and we will address it in a
future publication.
The numerical values of the ratio "ðjÞ after e.g. j ¼ 1, 2,

5, 10, 15, and 20 semioscillations, e.g. for � ¼ 0:4, are,
respectively, "ðjÞ½�105
 � 3:90, 5.97, 11.82, 37.26, 65.04,
and 97.59. For different values of �, these numbers do not
change significantly. Thus, we see that the transferred
energy from the Higgs field to the fermions through the
gauge bosons is generically a very slowly growing func-
tion. After 20 crossings the transferred energy is still only
�0:03% of the Higgs energy at that time. Therefore, we
clearly see that this successive instant preheating mecha-
nism is not efficient enough as to rapidly reheat the
Universe. If we consider that the former formalism (107)
is valid up to an arbitrary number of oscillations, then we
can estimate the number jp of semioscillations required to

achieve "ðjÞ �Oð1Þ. Equating "ðjÞ to 1 in Eq. (107), we
obtain jp �Oð104Þ. However, much earlier than that, para-

metric resonance effects should be considered; see Sec. V.
In other words, notice that we have neglected the pres-

ence of those Z and W bosons that did not decay into
fermions in each semioscillation. The occupation number
of the bosons produced at the bottom of the potential is not
simply generated by the first term of Eq. (86), but rather by
the rest of the terms in Eq. (86), which indeed give rise to
the phenomena of resonant production of bosons. Taking
this into account will have very interesting consequences.
The number density of the bosonic species will grow
exponentially fast and thus will also transfer energy into
the fermions exponentially fast. We must therefore develop
a mixed formalism that takes into account the two com-
peting effects: that of parametric resonant production of
bosons versus the effect of their perturbative decay into
fermions. It is crucial to note that while the perturbative
decay does not transfer enough energy (as we have just
seen), the fact that those bosons disappear will have very
important consequences for the development of the reso-
nant effect. In particular, the resonance will not become
effective at the beginning of the oscillations of the inflaton
right after inflation, as usually assumed, but only after the
inflaton has already performed a significant number of
oscillations.

V. COMBINED PREHEATING: MIXED
PARAMETRIC RESONANCE AND

PERTURBATIVE DECAYS

Let us now analyze how the occupation number of the Z
and W bosons grows if we consider the effect of all the
terms in Eq. (86). The production of gauge bosons will also
occur, as before, in a very short interval of time (81) when
the Higgs condensate crosses around zero, then violating
the adiabaticity conditions (80), j�j<�a. In the large
occupation limit nk � 1, the first term in Eq. (86) can be
neglected, and therefore the spectral number density of the
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produced gauge bosons just after the jth scattering is given
by

nkðjþÞ � ðð2T�1
k ðjÞ � 1Þ

� 2 cos�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1
k ðjÞðT�1

k ðjÞ � 1Þ
q

Þnkðj�Þ; (109)

which indicates the spectral number density nkðjþÞ just
after the jth scattering, in terms of the spectral number
density nkðj�Þ just before such scattering. Since the inter-
val between successive scatterings is M�t ¼ �, we can
naturally define a growth (Floquet) index �kðjÞ as [35,36]

nkðjþÞ � nkðj�Þe2�kðjÞM�t ¼ nkðj�Þe2��kðjÞ: (110)

Comparing formulas, we obtain

�kðjÞ � 1

2�
logðð2T�1

k ðjÞ � 1Þ

� 2 cos�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1
k ðjÞðT�1

k ðjÞ � 1Þ
q

Þ: (111)

The �j are some accumulated phases at the jth scattering,

which can indeed play a very important role since they can
enhance ( cos�j < 0) or decrease ( cos�j > 0) the effect of

production of particles at each scattering.
Depending on the phases, we can consider the

following cases: the typical behavior of the Floquet index,
for cos� ¼ 0,

�ðtypÞ
k ¼ 1

2�
logð2T�1

k � 1Þ; (112)

the maximum index, achieved for cos� ¼ �1, given by

�ðmaxÞ
k ¼ 1

�
logð

ffiffiffiffiffiffiffiffiffi
T�1
k

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T�1
k � 1

q
Þ; (113)

and the average index over an oscillation, obtained as

�ðavÞ
k ¼ 1

2�

Z 2�

0
�kð�Þd� ¼ 1

2�
logð2T�1

k Þ: (114)

All these possibilities are shown in Fig. 3, as a function of

x � K=ðq=jÞ1=3, where q are the resonant parameters (85)
for the Z andW bosons, while xj is the natural argument of

the transmission probability scattering functions (87).
As explained in Ref. [36], when��j � �jþ1 � �j � �,

the effect of resonance will be chaotic, since then the
phases are essentially random at each scattering. For in-
stance, using the effective frequencies of the fluctuations
(82) of the W field, these phases can be estimated, for the
relevant range of momenta, as follows:

��j ¼
Z tjþ1

tj

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ ~m2

W

q

� g2�
ffiffiffiffiffiffi
3�

p
2

ffiffiffiffi
�

p FðjÞ �Oð10�2Þj�1=2; (115)

where FðjÞ was defined in Eq. (97) and we have neglected
K2 versus ~m2

W in the second equality, since, as will be
justified later (130), the produced bosons are nonrelativis-
tic. Comparing the above formula with �, we see that the
end of the stochastic behavior will occur after �ð2� 5Þ �
103 zero crossings, depending on �. For the case of the Z
boson the previous estimation of the end of the stochastic
resonance is modified by a factor ðcos�WÞ�1 � Oð1Þ, and
thus the result is essentially unaffected. Therefore, since
for the first thousand oscillations of the Higgs, the accu-
mulated phases of the fluctuations of the gauge bosons will
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FIG. 3 (color online). Left panel: The Floquet index for a given polarization of the W and Z bosons as a function of the variable
xj ¼ k=k	ðjÞ. Here we show the maximum (solid red line), the average (short dashed green line), and the typical (long dashed blue

line) indices. Right panel: The initial spectral distribution nkð1þÞ (lower blue curve) and the Gaussian approximation nðjþ � 2Þ (127)
for different j’s greater than 2 (rest of the curves), describing the resonant behavior. The approximation is so good that it is hard to
distinguish it from the real curve, presenting small deviations just on the tail. The horizontal axis is x ¼ k=k	ð1Þ and the curves
correspond to different j’s. It is clearly distinguishable that only the range x < 1 [k < k	ð1Þ] is filtered and, therefore, excited through
parametric resonance, no matter if j � 2 or not.
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be chaotic, we will average out the phases and work with

�ðavÞ
k .

On the other hand, the perturbative decay of the pro-
duced vector bosons occurs precisely just between two
successive Higgs zero crossings, nððjþ 1Þ�Þ ¼ nðjþÞ�
expð�FðjÞÞ, where FðjÞ is given by Eq. (97) and  ¼
Z, W [see Eq. (98)]. Taking into account Eqs. (110) and
(111), we can express the number of gauge bosons just
after the ðjþ 1Þth scattering in terms of the number just
after the previous one,

nkððjþ 1ÞþÞ ¼ nkððjþ 1Þ�Þe2��kðjþ1Þ

¼ nkðjþÞe�FðjÞe2��kðjþ1Þ: (116)

Applied recursively, this formula allows us to obtain the
occupation number for each species and polarization, just
after the ðjþ 1Þth scattering in terms of the initial abun-
dances nkð1þÞ,

nkððjþ 1ÞþÞ ¼ nkð1þÞ exp
�
�

Xj
i¼1

FðiÞ
�

� exp

�
2�

Xj
i¼1

�kðiþ 1Þ
�
: (117)

The initial abundances are, of course, only generated
through Eq. (88), and are given by

nkð1þÞ ¼ T�1
k ð1Þ � 1 � �2Ci2ð�x1Þ; (118)

where we have defined the function

Ci ðxjÞ ¼ Aið�x2j ÞAi0ð�x2j Þ þ Bið�x2j ÞBi0ð�x2j Þ; (119)

xj � j1=3k

Mq1=3aj
: (120)

Again, we used xj in light of Eq. (84), as the natural

argument of the expression of the transmission probability
(87). Note that here the species are only distinguished
through the resonance parameters in Eq. (85).
Normalizing the scale factor at the first zero crossing as
a1 ¼ 1, we can simply write the evolution of the scale

factor as aj ¼ j2=3. Thus, the behavior of xj with the

number of zero crossings goes as / j�1=3. Then, we can
define a typical momentum of the problem, k	ðjÞ, related in
a very simple way to the resonance parameters qZ, qW (85),
as

xj ¼ k

j1=3k	ð1Þ
) k	ðjÞ � k	ð1Þj1=3; (121)

where

k	ð1Þ � q1=3M �
�
2g2��	�end

4��

�
1=3

M; (122)

with g ¼ g2 and g2= cos�W for W and Z bosons, respec-

tively. Since k	ðjÞ is the natural scale for the momenta of
the problem, its order of magnitude should coincide simply
with the one obtained via the Heisenberg uncertainty prin-
ciple [see Eq. (81)], as is indeed the case since

kðjÞ � ajð�taÞ�1 � j1=3k	ð1Þ
21=3

� k	ðjÞ: (123)

Notice that the typical momenta range will be redshifted
because of the expansion of the Universe, and even the
comoving typical moment k	 is not a static quantity but
rather depends on j.
Let us now obtain the total number density of created

particles. Just after the jth scattering, this will be given by

nðjþ � 2Þ ¼ 1

2�2a3j
ef�

P
j�1
i¼2

FðiÞg Z dkk2nkð1þÞ

� ef2�
P

j
i¼1

�kðiÞg

¼ M3 k
3	ð1Þ
2a3j

ef�
P

j�1
i¼1

FðiÞg Z duu2Ci2ð�u2Þ

�Yj
l¼2

ð2�2Ci2ð�u2=l2=3Þ þ 1Þ; (124)

where k	ð1Þ3 / g2 (122) should be evaluated with g ¼ g2
or g2= cos�W , and  ¼ W or Z, respectively, for W or Z
bosons. This formula encodes the usual resonant behavior
discovered in the 1990s, see Refs. [35,36], in which it was
implicitly assumed that the produced bosons did not decay
between successive inflaton zero crossings. However, as
we saw in Sec. IVC, the bosons produced each time the
Higgs condensate crosses zero significantly decay before
the next scattering. Therefore, we had to correct our for-
mulas for this effect. Fortunately, this was easily done,
since the resonant growth occurs in a steplike form instan-
taneously [within a time �ta; see Eq. (81)] when the Higgs
condensate crosses around zero, while the perturbative
decay of the produced vector bosons occurs during the
time just between two successive Higgs zero crossings.
Thus, the occupation number just before the ðjþ 1Þth
scattering, in terms of the occupation number just after
the jth scattering, has been corrected by the factor

expf�
Pj�1

i¼1 FðiÞg, which accounts for the accumulated

effect of the perturbative decays up to the jth scattering.
The combined effect of the nonperturbative parametric

resonance at the nonadiabatic regions at the bottom of the
potential, together with the perturbative decay along the
adiabatic zone during the rest of the semioscillation, gives
rise to a new phenomenology, as we will immediately see.
Therefore, to emphasize the difference from the usual
parametric resonance or instant preheating-like mecha-
nisms, we will call this effect combined preheating.
Expanding the combination of Airy functions (119), it is
possible to write
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Ci 2ðxjÞ � Ce�Du2=j2=3 and ð2�2Ci2ð�u2=l2=3Þ þ 1Þ � Ae�Bu2=l2=3 ; (125)

where u � j1=3xj and

C ¼ ð2=3Þ2
�2ð1=3Þ�2ð2=3Þ ; D ¼ 12

32=3
�ð2=3Þ
�ð1=3Þ ; A ¼ 2þ 2�2C; B ¼ 1� ð16=3Þ2�2

32=3�3ð1=3Þ�ð2=3Þ
1

A
: (126)

Substituting Eqs. (125) and (126) into Eq. (124), we then obtain

nðjþ � 2Þ � M3 e
�F�ðj�1Þk3	ð1Þ

2j2
Aj�1C

Z
duu2e�Du2e�BðPj

i¼2
i�2=3Þu2

¼ M3 e
�F�ðj�1Þk3	ð1Þ

2j2
Aj�1C

ffiffiffiffi
�

p
4

�
Dþ B

Xj
i¼2

i�2=3

��3=2
; (127)

where we have used aj ¼ j2=3, performed the resulting
Gaussian integral, and defined

F�ðjÞ �
Xj
i¼1

FðiÞ; (128)

for simplicity. Notice that the resonant behavior is now
encoded in the factor Aj�1, which, for sufficiently large j,
will finally overtake the decaying factor e�F�ðj�1Þ, since
A > 2. Taking also into account the factor 1=j2 due to the
expansion of the Universe, the first result we can read from
here is that only for those values of j for which ðj� 1Þ�
logA� 2 logj > F�ðj� 1Þ, the resonant effect will
dominate over both the perturbative decay and the expan-
sion rate.

Note that inside the integral (127), the function

u2e�ðDþB
P

j

i¼2
i�2=3Þu2 has a maximum at a value up � ðDþ

B
Pj

i¼2 i
�2=3Þ�1=2, which implies that the typical (comov-

ing) excited momentum is

kp � k	ð1Þ
ðDþ B

Pj
i¼2 i

�2=3Þ1=2 : (129)

In the right panel of Fig. 4, one can easily observe this
behavior: The value of the momentum at which the distri-
bution peaks slightly moves to smaller values, according to

kp / ðDþ B
Pj

i¼2 i
�2=3Þ�1=2. Thus, it is noticeable that the

typical momentum k of the resonant fluctuations is always
of order k	ð1Þ, independently of how many oscillations the
Higgs performs. The reason for this is that the parametric
resonance effect builds up initially from the spectral
distribution nkð1þÞ, which only filters k & k	ð1Þ; see
Eq. (117) and Fig. 4.
On the other hand, the ratio k2p=hmi2j for both W and Z

bosons, between the typical momenta produced around
zero and the average masses in every oscillation, is shown
in Fig. 4. In particular, it is easy to estimate the evolution in
time of such a ratio, in terms of the resonant parameters
(85), as
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FIG. 4 (color online). Left panel: The ratio k2=hm2i between the typical momenta produced around zero and the average mass in
every oscillation for the W (dashed blue line) and Z bosons (solid red line) as a function of the number of oscillations. This ratio is
significantly smaller than 1 for all crossings, which allows us to consider the produced gauge bosons as nonrelativisitic. Right panel:

Successive spectral distributions k2nkð1þÞe2�
P

j
k¼2

�kðjÞ, at different j’s, including the volume factor k2. One can see the predicted (129)
slow displacement of the maxima of the distribution. The x axis is given in terms of x ¼ k=ðk	ð1ÞÞ.
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ðkp=ajÞ2
hmi2j

¼ q2=3

ðDþ B
Pj

k¼2 k
�2=3Þg2ð 32�Þ�FðjÞ2

/ 1

g2=3
1

j1=3ðDþ B
Pj

k¼2 k
�2=3Þ � 1 8 j;

(130)

Taking into account that the previous ratio (130) is a
decreasing function with j, as well as its dependence on

the gauge couplings g�2=3, we can conclude that the vector

bosons produced at the bottom of the potential are always
nonrelativistic. This justifies a posteriori the calculation of
the energy of the fermions as EFðjÞ � 1

2 hmZ;Wij; see

Eq. (99) in Sec. IVC. Extrapolating Eq. (130) to the case
of fermions, we realize that the produced particles at each
zero crossing would be mainly relativistic, due to the
smallness of the Yukawa couplings, with the exception of
the top quarks.
The energy density transferred to the fermions between

the jth and the ðjþ 1Þth scatterings will be

��FðjÞ ¼ 6½ð1� e�ZFðjÞÞnZðjþÞEFZ
ðjÞ þ 2ð1� e�WFðjÞÞnWðjþÞEFW

ðjÞ


¼ ~


2�2
M2�2

endA
j�1C

ffiffiffiffi
�

p
4

k3	
j2

�
Dþ B

Xj
l¼2

l�2=3

��ð3=2Þ
FðjÞðð1� e�ZFðjÞÞe�Z��ðj�1Þ

þ 2 cos�3Wð1� e�WFðjÞÞe�W��ðj�1ÞÞ; (131)

where we have used the energy of the fermions (99) and
defined a momentum scale independent of the gauge cou-
plings, common to both bosonic species, as

k	 � k	ð1Þ
g2=3

: (132)

The gauge coupling dependence is indeed incorporated in
the definition of the parameter

~
 � 3g32�
1=2�2

ðcos�WÞ3�5=2ð�	�endÞ2
; (133)

which modulates again the strength of the effect as ~
 / g32.
The total energy density transferred into the fermions

will be

�FðjÞ ¼
Xj
i¼1

��FðiÞ
�
i

j

�
8=3

; (134)

and the ratio of such an energy to that of the inflaton is

"FðjÞ � �FðjÞ
��

¼ 2�2ðjþ 1
2Þ2

M2�2
end

Xj
i¼1

��FðiÞ
�
i

j

�
8=3

; (135)

with ��FðiÞ given by Eq. (131). Here we can clearly see
the two competing effects: That of the perturbative decay

of the bosons, given by the factors of the form ð1�
e�FðjÞÞe�F�ðj�1Þ, tends to decrease the rate of production
of bosons and fermions, while the factors e2��k encoded in
the form of the Gaussian approximation describe the reso-
nant effect due to the accumulation of previously produced
bosons and fermions. Initially, the perturbative decay will
prevent the resonance from being effective. However, after
a certain number of oscillations (a number that we will
estimate next), the resonant effect will overtake the pertur-
bative decays and parametric resonance will be developed

as usual, as if the produced bosons would not decay
perturbatively during each semioscillation.
In order to estimate the time in which the perturbative

decays stop blocking the parametric resonance effect, we

can evaluate numerically when the expression e���ðj�1Þ

becomes subdominant versus e2�
P

j
i¼2

�kðiÞ. In particular,
we can evaluate the ratios, for either W or Z,

� � 2�
Pj

i¼2 �kðiÞ
��ðj� 1Þ ; (136)

for the fastest growing mode k ¼ kp (129), and find the

number of semioscillations jR for which the previous ratio
becomes greater than 1, � � 1. We find jR � 62 for theW
bosons and jR � 360 for the Z bosons. The fact that para-
metric resonance becomes important much earlier for W’s
than for Z’s is not a surprise, since their decay rates (53)
differ by a factor Z=W � 2:4, which simply means that
there are many more W bosons surviving per semioscilla-
tion than Z bosons. Therefore, the combined preheating of
the W bosons is driven into the parametric-like behavior
much faster, while the evolution of the Z bosons is much
more affected by the perturbative decays, delaying (or even
completely preventing) the development of parametric
resonance. Obviously, after a dozen oscillations, the trans-
fer of energy from the inflaton to the gauge bosons will be
completely dominated by the channel into the W bosons,
since by that moment they will be fully resonant while the
Z bosons will still be severely affected by their perturbative
decay.
Finally, to conclude this section and achieve an overall

complete picture of all the details, let us also estimate the
transfer of energy from the inflaton to the gauge bosons. In
particular, the total energy transferred to them just after the
jth scattering, �BðjÞ, is given simply by

�BðjÞ ¼ 3ðnZðjþÞhmZij þ 2nWðjþÞhmWijÞ; (137)
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where we have used the fact that the gauge bosons are
nonrelativistic and have three polarizations. Therefore, the
ratio of the energy of the gauge bosons to the energy of the
inflaton can be expressed as

"BðjÞ � �BðjÞ
��

¼
�
jþ 1

2

�
2
�

1

cos�W

�
2

ffiffiffiffi
�

p
~
k3	FðjÞAj�1C

4j2ðDþ B
Pj

i¼2 i
�2=3Þ3=2

� ðe�ZF�ðjÞ þ 2 cos�3We
�WF�ðjÞÞ; (138)

where we have used Eq. (127), and ~
, defined in Eq. (133),
again modulates the amplitude of this growing function.

Using Eqs. (135) and (138), we can estimate the time in
which the energy of the inflaton would finally be trans-
ferred efficiently to the fermions or the bosons. Defining
that moment, respectively, like "FðjeffÞ � 1 and "BðjeffÞ �
1, one obtains the numbers in Table I. Note that the bosons
receive the transfer of energy from the inflaton before the
fermions, since by the time that parametric resonance
overtakes the perturbative decay, the fraction of bosons
decaying (per semioscillation) into fermions is very small
and, therefore, the fraction of newly added fermions is less
and less important, while the amount of produced bosons is
more and more prominent. Note also that the number of
oscillations jeff required for an efficient transfer of energy
depends on the parameter �, although the overall order of
magnitude does not change appreciably.

Unfortunately, as we will see in the next subsection,
before reaching the stage in which 
F;B � 1, the backreac-

tion of the produced gauge fields into the homogeneous
Higgs condensate will become significant, and it will have
to be taken into account.

VI. BACKREACTION

Let us now calculate the backreaction from theW and Z
bosons into the Higgs condensate. Neglecting the vectorial
nature of the bosons, the effective equation of the Higgs
condensate can be written, in the Hartree approximation, as

€�þ 3H _�� 1

a3
r2�

þ
�
M2 þ g2M2

p

4�

1

�

@

@�
ð1� e��	j�jÞh’2i

�
� ¼ 0; (139)

where there is a ’ field for each polarization of each gauge
boson species, such that g2 ¼ g22 and g2 ¼ g22=cos

2�W , as
usual, for the W and Z bosons, respectively. From here,
performing the derivative, one obtains for the effective
Higgs frequency

!2 ¼ M2 þ �g2Mp

4�j�j e��	j�jh’2i; (140)

where the second term in the r.h.s. should be summed over
polarizations and species. For the fraction of time of each
semioscillation, during which the Higgs frequency evolves
adiabatically, we can use the correlation function

h’k’
	
k0 i ¼ ð2�Þ3j’kj2�ðk� k0Þ; (141)

with ’kðtÞ expressed as

a3=2’kðtÞ ¼ �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ðkÞp e�i

R
t

0
!kdt

0 þ �kðtÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2!ðkÞp eþi

R
t

0
!kdt

0
:

(142)

Thus, one can compute the expectation value of the bo-
sonic fields (components),

h’2i � 1

2�2a3

Z
dkk2j’kj2 ¼ 1

2�2a3

Z dkk2

!k

�
1

2
þ j�kj2 þ Ref�k�

	
ke

�i2
R

t
!dt0þarg�kþarg�kg

�

� 1

2�2a3
2

ffiffiffi
�

p
gMp

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e��	j�j

p Z
dkk2nk

�
1þ cos

�
2�

M

X
j

h!ij þ arg�k þ arg�k

��
; (143)

where, to obtain the last expression we have used

!k ¼ gMp

2
ffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e��	j�j

p
, j�kj2 ¼ j�kj2 � 1 ¼ nk, andR

!kðt0Þdt0 ¼ ð�=MÞPn
j¼1h!ij, with h!ij ¼ M

� �Rtjþ1

tj dt0!ðt0Þ. Following [36], since we do not know the
accumulated phases of �k and �k, we will write

h’2i � 2
ffiffiffi
�

p
gMp

n’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e��	j�j

p �
1þ A cos

�
2�

M

X
j

h!ij
��

;

(144)

with A < 1 and n’ ¼ ð2�2a3Þ�1
R
dkk2nk.

TABLE I. Number of semioscillations of the Higgs required,
as a function of �, for an efficient transfer of energy from the
inflaton to the gauge fields and/or to the fermions.

� 0.2 0.4 0.6 0.8 1.0

jðBÞeff 74 64 60 57 55

jðFÞeff 79 69 64 61 59
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From here, one can define the effective frequency of the
Higgs condensate as

!2 � M2 þ �gn’

2
ffiffiffi
�

p j�j
½1þ A cosð2�M

P
jh!ijÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2�	j�j � e�	j�j
p : (145)

The backreaction of the gauge boson fields over the Higgs
field will be non-negligible when the last term in the r.h.s.
of the previous expression becomes of the order of M2. In
terms of the number densities of the Z and W bosons, i.e.
summing the contribution over polarizations and species of
all the fields that backreact, this will happen at a time tj ¼
j�=M,

Backreaction , ðnZðjÞ= cos�W þ 2nWðjÞÞ

*
2

ffiffiffi
�

p j�ðtjÞjð�	j�ðtjÞjÞ1=2M2

3�g2
; (146)

where we have expanded
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�	j�j � e�	j�j

p
� ð�	j�jÞ1=2,

which is certainly accurate after a couple of dozens of
oscillations, since j�ðtnÞj / 1

j . Substituting the averaged

value per semioscillation �ðtÞ ! h�ðtÞij, we will then

take �	j�ðtjÞj ! �	�end

�j ð1�
R
�
0 sinðxÞÞ ¼ 2

�
�	�end

�j . Using

the analytical expressions for the occupation numbers
(127), we can translate the above condition into the follow-
ing one:

ðe�Z��ðj�1Þ=cos3�W þ 2e�W��ðj�1ÞÞ Aðj�1Þ

j1=2ðDþ B
Pj

i¼2 i
�3=2Þ �

32
ffiffiffi
6

p
�3=2 logð1þ 2=

ffiffiffi
3

p Þ3=2
3�1=2�2g32�

7=2Ck3	
: (147)

Thus, if we find numerically the number of semioscilla-
tions of the Higgs, jbackr, for which j > jbackr fulfills the
above condition, then we know the moment at which back-
reaction of the bosonic fields becomes significant, tbackr �
�jbackr=M. Note that the above condition depends on �
both in the left- and right-hand sides. In particular, the �
dependence is rather weak in the constant of the right-hand
side of the inequality, since it goes as �1=4, while in the left-
hand side, it enters through the exponentials so it can
change the number nbackr in a more significant manner.
Taking values of � between 0.2 and 1.0, we obtain the
numbers in Table II.

We clearly see that backreaction seems to become im-
portant at a time slightly earlier than that at which we were
expecting the Higgs to have efficiently transferred its
energy to the bosons and fermions. This means that our
analytical estimates of these transfers were biased, and a
careful numerical study of the process is required. Beyond
backreaction, the strength of the resonance very quickly
decreases due to the increased frequency of oscillations of
the Higgs. Eventually, the broad resonance driving the
production of gauge bosons, and thus their decay into
SM particles, becomes a narrow resonance and finally
shuts off. From then on, the inflaton will oscillate like a
matter field, while the produced particle will redshift as
radiation, its effect on the expansion becoming negligible
after a few hundred oscillations.

VII. CONCLUSIONS

We have studied the different stages of reheating after
inflation in a model where the role of the inflaton is played
by the Higgs field of the standard model of particle physics
with a nonminimal coupling to gravity. Inflation in this
model takes place at the grand unified theory scale, along
the lines of the Starobinsky model of inflation since a
conformal transformation makes these two models indis-
tinguishable from the point of view of inflation. The usual
difficulty with large self-couplings of the Higgs is tamed
here by the inclusion of a large nonminimal coupling to
gravity, �� 105, which nevertheless does not leave any
signature at low (electroweak) scales due to the fact that the
Higgs field acquires a vacuum expectation value and does
not evolve at present, while the local space-time curvature
is negligible.
The advantage of this model of inflation for the study of

reheating after inflation is that all the couplings of the
Higgs inflaton to matter fields are known at the electroweak
scale, and can be extrapolated to the GUT scale using the
renormalization group equations, and therefore one can
study in detail the process of reheating the Universe,
without having to impose ad hoc assumptions about their
values. The surprise is that the process becomes more
complicated than expected, and a series of subsequent
stages take place, where essentially all different types of
particle production mechanisms at preheating occur.
Moreover, since the standard model couplings of the
Higgs to gauge and matter fields are non-negligible, nor
are their couplings among themselves, the process of non-
perturbative decay via parametric resonance is mixed with
the usual perturbative decays of the decay products, which
complicates things significantly.
Inflation ends at values of the Higgs field of order the

Planck scale and goes through a brief stage of tachyonic

TABLE II. Number of semioscillations of the Higgs required,
as a function of �, for the backreaction of the gauge fields into
the Higgs background to become significant.

� 0.2 0.4 0.6 0.8 1.0

jbackr 67 57 52 50 48
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preheating soon after the end of inflation. The passage is so
short that particle production is not significant at that stage.
The same occurs with the production at the inflection point.
Finally, the Higgs-inflaton field starts oscillating around
the minimum of its potential with a curvature scale of order
1013 GeV. At this stage, particle production occurs when-
ever the Higgs passes through zero, creating mostly vector
gauge bosonsW and Z. These gauge bosons acquire a large
mass while the Higgs increases towards a maximum am-
plitude, and start to decay into all standard model leptons
and quarks within half a Higgs oscillation, rapidly deplet-
ing the occupation numbers of gauge bosons, like in instant
preheating. However, the fraction of energy of the Higgs
that goes into SM particles is still very small compared
with the energy in the oscillations, and therefore the non-
perturbative decay is slow. This implies that a relatively
large number of oscillations take place before a significant
amount of energy is transferred to the gauge bosons and
fermions.

The amplitude of Higgs boson oscillations decreases as
the Universe expands in a matterlike dominated stage with
zero pressure. Eventually, this amplitude is small enough
that the gauge boson masses are not large enough for
inducing a quick decay of the gauge bosons, and they start
to build up their occupation numbers very rapidly via
parametric amplification. The question of whether this
effect can give rise to the production of a significant
gravitational wave background potentially observable to-
day remains to be addressed. Several papers have recently
studied such an issue in the chaotic and hybrid models of
inflation [41], but in the present model, we do not simply
have a parametric resonance phenomena but a combined
preheating effect which, perhaps, could modify the prop-
erties of such a gravitational wave background. Similar
arguments would also affect the production of magnetic
fields at preheating [42] or even electroweak baryogenesis
[43].

After about a hundred oscillations the gauge bosons
produced backreact on the Higgs field and the resonant
production of particles stops. The Higgs field acquires a
large mass via its interaction with the gauge condensate,
and preheating ends. From there on, both Higgses and

gauge fields decay perturbatively until their energy is trans-
ferred to SM particles. Since the stage after backreaction is
very nonlinear and nonperturbative, it cannot be solved
analytically and we have to resort to numerical studies in
the lattice. We leave the description of our numerical
studies to a future publication.
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Note added.—Upon completion of this paper, we re-

ceived through the arXiv the preprint of Bezrukov et al.
[44], where they also study preheating in the �MSM.
Although the formalism is common to both, our conclu-
sions are somewhat different from those of Ref. [44]. We
find that the Higgs decay into gauge bosons is significantly
faster, and that backreaction occurs much before thermal-
ization. We thus think it is not possible to determine the
reheating temperature without a careful numerical analysis
with lattice simulations.
A few days after this work was completed, Ref. [45] was

also posted in the arXiv, performing an analysis of the two-
loop quantum corrections to the running of all the parame-
ters involved in the model. This paper allows for a different
range of the Higgs self-coupling, which is compatible with
the range (38) although more restricted. The main result of
Ref. [45] is a relationship between the Higgs mass and the
spectral index which, in principle, could be tested in the
future against data from Planck and the LHC. Similar
conclusions were found in Ref. [46].
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