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Abstract

We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of
p-form fields, with 1 ≤ p ≤ D, which realize an off-shell algebra of bosonic gauge
transformations. We show how these tensor hierarchies can be put on-shell by intro-
ducing a set of duality relations, thereby introducing additional scalars and a metric
tensor. These so-called duality hierarchies encode the equations of motion of the
bosonic part of the most general gauged supergravity theories in those dimensions,
including the (projected) scalar equations of motion.

We construct gauge-invariant actions that include all the fields in the tensor
hierarchies. We elucidate the relation between the gauge transformations of the p-
form fields in the action and those of the same fields in the tensor hierarchy.
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1 Introduction

The bosonic degrees of freedom of a generic supergravity theory are described by a metric
tensor field and a set of (electric) p-form potentials with p ≥ 0. In order to describe the
correct number of degrees of freedom these fields must satisfy second-order differential
equations. In general one may realize the supersymmetry algebra on a larger set of p-form
potentials as long as this does not upset the counting of degrees of freedom. Such potentials
are expected to exist in order to allow for the coupling of various types of branes. Examples
of such potentials are the (magnetic) (D− p− 2)-forms. Whereas the p-form couples to an
(electric) (p−1)-brane, the (D−p−2)-form potential couples to a (magnetic) (D−p−3)-
brane. The magnetic (D − p − 2)-forms do not describe new degrees of freedom since
they are related to the electric p-forms via a first-order duality relation. By virtue of the
Bianchi identities that the curvatures of the electric and magnetic potentials satisfy, the
second-order equations can be derived as integrability conditions of the duality relations:

Bianchi identities & duality relations ⇔ equations of motion . (1.1)

For instance, in the case of IIA/IIB supergravity the supersymmetry algebra can be realized
on all p-forms (0 ≤ p ≤ 10) with p odd (IIA) or p even (IIB). The Bianchi identities and
duality relations then lead to all equations of motion (except the Einstein equation). This
is often referred to as the “democratic formulation” of IIA/IIB supergravity [1].

The idea of deriving the equations of motion of supergravity from an underlying set of
Bianchi identities and first-order differential equations has been pursued in several contexts
in the literature. It already occurs in the work of [2] for the case of maximal supergravity
including massive IIA supergravity [3]. Similar duality relations are natural in the E11-
approach to supergravity [4–7]. Duality relations also play an important role in encoding
the integrability of a system, for instance in maximal two-dimensional supergravity [8].

Recently, it has been shown that dual potentials are not only relevant to describe
the coupling to branes but play also a crucial role in the construction of a supersymmetric
action for certain gauged supergravity theories. A systematic way to study the most general
gaugings of a supergravity theory is provided by the embedding tensor approach [9–13],
which is a powerful technique to construct in a unified way gauged supergravity theories
for different gauge groups. Usually, supersymmetric actions involve besides the metric
tensor only electric potentials. However, using the embedding tensor approach, it has been
shown that to describe a magnetic gauging in D = 4, i.e. a gauging involving a magnetic
vector field, the action must also contain a dual 2-form potential via a Chern-Simons-like
topological coupling.1 In general dimensions p-form potentials of even higher rank are
introduced. For instance, the action corresponding to certain gaugings in D = 6 requires
magnetic 2-form and 3-form potentials [17]. This led to the notion of a tensor hierarchy,
which consists of a system of potentials of all degrees p = 1, . . . , D and their respective
curvatures, which are related by Bianchi identities. Note that the tensor hierarchy does

1In the context of N = 2, D = 4 supergravity it has been shown how the local supersymmetry algebra
can be closed on some of these dual 2-form fields [16].
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not contain 0-form potentials, i.e. scalars, and the metric tensor. These are introduced at
a later stage, see below.

We wish to stress that for theories in specific dimensions generically not the full tensor
hierarchy is used or needed in the construction of an action. Moreover, the field equa-
tions for the new (magnetic) potentials take the form of projected duality relations and,
therefore, do not encode the full set of second-order equations via their integrability condi-
tions. It is the purpose of this paper to investigate gauged supergravities from the point of
view that all bosonic field equations (except the Einstein equation and part of the scalar
equations of motion) should be derivable from first-order duality relations. This will nat-
urally include the full tensor hierarchy, which is required by consistency. We will focus
on the bosonic gauge symmetries that are realized by the D = 3 and (non-anomalous2)
D = 4 tensor hierarchy independent of any supersymmetry. Our results apply for any
number of supersymmetries, not just the maximal or half-maximal cases. Hence we obtain
an off-shell formulation 3 of all bosonic symmetries that act in the bosonic sector of any
(non-anomalous) D = 3, 4 gauged supergravity theory.

In the D = 4 case we use as our staring point Ref. [11]. We use the same formalism,
impose the same constraints on the embedding tensor and follow the same steps up to the
2-form level reproducing exactly the same results, but we carry out the program to its
completion, determining explicitly all the 3- and 4-forms and their gauge transformations.
Here we find already a surprise in the sense that in D = 4 we find more top-form potentials
than follow from the expectations formulated in Refs. [13,18]4. Our results and the general
results and conjectures of these references5 cannot be straightforwardly compared, though,
since in these works on the general structure of tensor hierarchies only one possible con-
straint on the embedding tensor (the standard quadratic constraint) is considered, while
in the 4-dimensional setup of Ref. [11] the embedding tensor is subject to two additional
constraints, one quadratic and one linear. They are ultimately responsible for the exis-
tence of additional 4-forms, which we find to be in one-to-one correspondence with the
constraints6.

Next, we will make precise how a set of dynamical equations can be defined by the

2By a non-anomalous tensor hierarchy we refer to a specific form of the so-called representation (or
linear) constraint imposed on the embedding tensor. This constraint is such that the classical action of
the corresponding gauged supergravity is gauge invariant.

3By “off-shell formulation” we mean that the commutator algebra of gauge symmetries closes without
the need to impose constraints on the fields. In this sense an off-shell formulation is not related to any
particular action.

4For instance, we find in D = 4 not only top-forms that correspond to quadratic constraints of the
embedding tensor but also top-forms that are related to certain linear constraints, see subsection 3.4.

5There are no direct computations of tensor hierarchies up to the 4-form level in the literature. All we
know about them, up to now, is based on general arguments.

6Note added in proof: it has recently been shown in Ref. [19] that the introduction of these additional
4-forms is consistent with N = 1, D = 4 supergravity. Furthermore, it has been shown that the gauging
of particular classes of theories (e.g. N = 1, D = 4 supergravity with a non-vanishing superpotential) may
require additional constraints on the embedding tensor, which lead to extensions of the tensor hierarchy
and, in particular, to additional 4-forms related to the new constraints.
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introduction of first-order duality relations. Besides the p-form potentials these duality
relations also contain the scalars and the metric tensor defining the theory. The set of
dynamical equations not only contains the equations of motion putting all electric poten-
tials on-shell but it also involves the (projected) scalar equations of motion. The tensor
hierarchy supplemented by this set of duality relations will be called the duality hierarchy.
This set of duality relations cannot be derived from an action, though the relation to a
possible action will be elucidated in a last step.

For the readers’ convenience we briefly outline our program, which can be summarized
by the following 3-step procedure. The first step consists of the general construction of
the tensor hierarchy, which is an off-shell system. The structure in generic dimension
has been given in [12, 13]. The explicit form, however, of the complete D = 4 tensor
hierarchy is not available in the literature since it was constructed in [11] only up to the
2-form level. (For the construction of the tensor hierarchy of maximal and half-maximal
4-dimensional supergravities, see [20] and references therein.) The complete D = 3 tensor
hierarchy has been discussed in [12, 21]. To construct the tensor hierarchy one usually
starts from the p-form potential fields of all degrees p = 1, . . . , D and then constructs
the gauge-covariant field strengths of all degrees p = 2, . . . , D. These field strengths are
related to each other via a set of Bianchi identities of all degrees p = 3, . . . , D. Usually, one
starts with the construction of the covariant field strength for 1-form potentials which, for
general gaugings, requires the introduction of 2-form potentials. The corresponding 3-form
Bianchi identity relates the 2-form field strength to a 3-form field strength for the 2-form
potential, whose construction requires the introduction of a 3-form potential, etc. This
bootstrap procedure ends with the introduction of the top-form potentials. The only input
required for this construction is the number of electric p ≥ 1-form potentials, the global
symmetries of the theory and the representations of this group under which the p-forms
transform. Changing these data leads to different theories that can be seen as different
realizations of the low-rank sector of the same tensor hierarchy.

A trick that simplifies the construction outlined above and which makes the construction
of the complete D = 4 tensor hierarchy feasible is to first construct the set of all Bianchi
identities relating the (p + 1)-form field strengths to the (p + 2)-field strengths. This
systematic construction of the Bianchi identities can be carried out even if we do not know
explicitly the transformation rules of the potentials. These can be found afterwards by
using the covariance of the different field strengths. The resulting gauge transformations
form an algebra that closes off-shell: at no stage of the calculation equations of motions
are involved.

The second step is to complement the tensor hierarchy with a set of duality relations
and as such to promote it to what we have called duality hierarchy. The duality relations
contain more ‘external’ information about the particular theory we are dealing with. It will
introduce the scalars and the metric tensor field that were not involved in the construction
of the tensor hierarchy7. More precisely, some of the duality relations contain the scalar
fields via functions that define all scalar couplings, i.e. the Noether currents, the (scalar

7The dual scalars, i.e. the (D − 2)-form potentials, are included in the tensor hierarchy.
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derivative of the) scalar potential and functions that define the scalar-vector couplings. In
this way the duality hierarchy contains all the information about the particular realization
of the tensor hierarchy as a field theory.

The duality hierarchy leads to a set of dynamical equations that not only contains the
equations of motion for the electric potentials but it also involves the (projected) scalar
equations of motion according to the rule:

Tensor hierarchy & duality relations ⇔ dynamical equations . (1.2)

The gauge algebra of the tensor hierarchy closes off-shell even in the presence of the du-
ality relations. However, in the context of the duality hierarchy this is a basis-dependent
statement. We are free to modify the gauge transformations by adding terms that are
proportional to the duality relations. Of course, in this new basis the gauge algebra will
close on-shell, i.e. up to terms that are proportional to the duality relations. We will call
the original basis with off-shell closed algebra the off-shell basis.

The last and third step is the construction of a gauge-invariant action for all p-form
potentials, scalars and metric.8 In this last step we encounter a few subtleties that we will
clarify. In particular, we will answer the following questions:

1. How are the equations of motion that follow from the gauge-invariant action related
to the set of dynamical equations defined by the duality hierarchy?

2. How are the gauge transformations of the p-form potentials occurring in the action
related to the gauge transformations that follow from the tensor hierarchy?

It turns out that the construction of a gauge-invariant action requires that the gauge
transformations of the duality hierarchy are given in a particular basis that can be obtained
from the off-shell basis by a change of basis that will be described in this paper. To be
specific, the two sets of transformation rules (those corresponding to the off-shell tensor
hierarchy and those that leave the action invariant) differ by terms that are proportional to
the duality relations. It is important to note that once a gauge-invariant action is specified
the gauge transformations that leave this action invariant are not anymore related to the
off-shell basis by a legitimate basis transformation from the action point of view. This
is due to the fact that from the action point of view one is not allowed to remove terms
that are not proportional to one of the equations of motion that follow from this action 9.
However, although some projected duality relations follow by extremizing the action, this
is not the case for all duality relations of the duality hierarchy. Therefore, from the action
point of view, the gauge transformations that leave the action invariant are not equivalent
to the gauge transformations of the duality hierarchy in the off-shell basis. Indeed, the
gauge transformations in the off-shell basis do not leave the action invariant.

This work is organized as follows. In section 2 we briefly review a few basic facts about
the embedding tensor formalism that will be needed later on. In section 3 we construct

8Strictly speaking, in D = 4 not all 2-forms enter the action, see sec. 5.
9One may only change the gauge transformations by adding so-called “equations of motion symmetries”.
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the complete D = 4 tensor hierarchy for non-anomalous supergravities. We introduce the
setup of our procedure in subsection 3.1, present the standard construction of the vector
2-form field strengths in subsection 3.2 and the construction of the 3-form and 4-form field
strengths in subsections 3.3 and 3.4. In section 4 we add to the tensor hierarchy duality
relations and construct the duality hierarchy. We show how the set of dynamical equations
that follows from this duality hierarchy not only contains the equations of motion of the
different potentials but also the (projected) scalar equations of motion. Finally, in section 5
we construct a gauge-invariant action for all the fields of the D = 4 tensor hierarchy and
show how this result is related to the duality hierarchy. The general analysis of theories
in D = 3 is presented in Section 6, which completes the investigations [12, 21] discussed
in the literature so far. The D = 4 and D = 3 cases may be studied independently, and
the latter serves as a toy model which elucidates some (but not all) of the subtleties of
the four-dimensional analysis. Our conclusions are contained in section 7 and the three
appendices contain a summary of the 4-dimensional results.

2 The embedding tensor formalism

We start by giving a brief review of the the embedding tensor formalism [9, 10, 12, 13].
Readers familiar with this technique may skip this part.

The embedding tensor formalism is a convenient tool to study gaugings of supergravity
theories in a universal and general way, that does not require a case-by-case analysis. This
technique formally maintains covariance with respect to the global invariance group G of
the ungauged theory, even though in general G will ultimately be broken by the gauging
to the subgroup that is gauged. It turns out that all couplings that deform an ungauged
supergravity into a gauged one, as Yukawa couplings, scalar potentials, etc., can be given
in terms of a special tensor, called the embedding tensor. Thus, gauged supergravities are
classified by the embedding tensor, subject to a number of algebraic or group-theoretical
constraints, some of which we will discuss below.

To be more precise, the embedding tensor ΘM
α pairs the generators tα of the group

G with the vector fields Aµ
M used for the gauging. The indices α, β, . . . label the adjoint

representation of G and the indices M, N, . . . label the representation RV of G, in which
the vector fields that will be used for the gauging transform. Thus, the choice of ΘM

α,
which generally will not have maximal rank, determines which combinations of vectors

Aµ
MΘM

α , (2.1)

can be seen as the gauge fields associated to (a subset of) the generators tα of the group
G, and, simultaneously, or alternatively, which combinations of group generators

XM = ΘM
α tα (2.2)

can be seen as the generators of the gauge group. Consequently, the embedding tensor can
be used to define covariant derivatives

7



Dµ = ∂µ − Aµ
M ΘM

α tα = ∂µ − Aµ
M XM , (2.3)

which shows that the embedding tensor can also be interpreted as a set of gauge coupling
constants10 of the theory. Even though ΘM

α has been introduced as a tensor of the duality
group G, it is not taken to transform according to its index structure, i.e. in the tensor
product RV ⊗ Adj∗, but must be inert under G for consistency. This requirement leads
to the so-called quadratic constraints, which state that the embedding tensor is invariant
under the gauge group. If we denote the generators of G (with structure constants fαβ

γ)
in the representation RV by (tα)M

N , this amounts to the condition

δP ΘM
α = ΘP

βtβM
NΘN

α + ΘP
βfβγ

αΘM
γ = 0 . (2.4)

Therefore, seemingly G-covariant expressions actually break the duality group to the sub-
group which is gauged.

In the next sections we will frequently make use of the objects

XMN
P ≡ ΘM

αtαN
P = X[MN ]

P + ZP
MN , (2.5)

with ZP
MN denoting the symmetric part of XMN

P , in terms of which the quadratic con-
straints read

ΘP
αZP

MN = 0 . (2.6)

Thus, the antisymmetry of the ‘structure constants’ of the gauge group holds only upon
contraction with the embedding tensor. Similar relations, that are familiar from ordinary
gauge theories but hold in the present context only upon contraction with Θ, will be
encountered at several places in the next sections. Note that standard closure of the gauge
group follows from (2.4) in that

[XM , XN ] = −XMN
P XP = −X[MN ]

P XP (2.7)

by virtue of (2.6).
So far, the discussion has been quite general. In the remaining part of this paper we

are going to discuss the D = 4 and D = 3 tensor hierarchies in full detail. For these cases
the embedding tensor can be specialized according to the known representation of the
vector fields. Also, our notation for the indices will slightly differ from the general case to
accord with the literature. In the D = 4 case we will work with electric vectors AΛ

µ, with
Λ = 1, . . . , n̄, and magnetic vectors AΛµ. Together, these vectors will be combined into
a symplectic contravariant vector AM

µ with M labeling the fundamental representation

10G may have a product structure and each factor may have a different coupling constant, which is
contained in the embedding tensor. We, therefore, do not write any other explicit coupling constants
apart from ΘM

α.
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of Sp(2n̄, R). Also the adjoint index of the global symmetry group will be denoted by A
instead of α. This leads to the following notation for the D = 4 embedding tensor:

D = 4 : ΘM
α → ΘM

A . (2.8)

On the other hand, in the D = 3 case the representation RV of the vector fields is equal
to the adjoint representation of the global symmetry group G. Therefore, the D = 3
embedding tensor carries two adjoint indices and this leads to the following notation :11

D = 3 : ΘM
α → ΘMN . (2.9)

We now discus the D = 4 tensor hierarchy in sections 3, 4 and 5 and, next, the D = 3
tensor hierarchy in section 6.

3 The D = 4 tensor hierarchy

In this section we will construct the complete D = 4 tensor hierarchy extending the results
of Ref. [11] following the outline of Ref. [12]. We will follow closely the notation and
conventions used in these references.

3.1 The setup

The (bosonic) electric fields of any 4-dimensional field theory are the metric, scalars and
(electric) vectors. Only the latter are needed in the construction of the tensor hierarchy.
We denote them by AΛ

µ where Λ, Σ, . . . = 1, · · · , n̄. In 4-dimensional ungauged theories
one can always introduce their magnetic duals which we denote by a similar index in lower
position AΛ µ.

The symmetries of the equations of motion of 4-dimensional theories that act on the
electric and magnetic vectors are always subgroups of Sp(2n̄, R) [22] . Thus, it is convenient
to define the symplectic contravariant vector

AM
µ =

(

AΛ
µ

AΛ µ

)

. (3.1)

It is also convenient to define the symplectic metric ΩMN by

ΩMN =

(

0 In̄×n̄

−In̄×n̄ 0

)

, (3.2)

and its inverse ΩMN by

ΩMNΩNP = −δM
P . (3.3)

11We assume that G carries an invariant Cartan-Killing form, such that the indices can be freely raised
and lowered. This assumption is satisfied for the duality groups of three-dimensional supergravity.
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They will be used, respectively, to lower and raise symplectic indices, e.g.12

AM ≡ ΩMNAN = (AΛ ,−AΛ) , AM = ANΩNM . (3.4)

The contraction of contravariant and covariant symplectic indices is, evidently, equivalent
to the symplectic product: AMBM = AMΩMNBN = −AMBM .

We denote the global symmetry group of the theory by G and its generators by TA,
A, B, C, . . . = 1, · · · , rankG. These satisfy the commutation relations

[TA, TB] = −fAB
CTC . (3.5)

G can actually be larger than Sp(2n̄, R) and/or not be contained in it13, but, according to
the above discussion, it will always act on AM as a subgroup of it, i.e. infinitesimally

δαAM = αATA N
MAN , δαAM = −αATA M

NAN , (3.6)

where

TA [MN ] ≡ TA [M
PΩN ]P = 0 . (3.7)

This is an important general property of the 4-dimensional case. It is implicit in this
formalism that some of the matrices TA M

N may act trivially on the vectors, i.e. they may
vanish. Otherwise we could only deal with G ⊂ Sp(2n̄, R).

Apart from its global symmetries, an ungauged theory containing n̄ Abelian vector
fields will always be invariant under the 2n̄ Abelian gauge transformations

δΛAM
µ = −∂µΛM , (3.8)

where ΛM(x) is a symplectic vector of local gauge parameters.
To gauge a subgroup of the global symmetry group G we must promote the global

parameters αA to arbitrary spacetime functions αA(x) and make the theory invariant under
these new transformations. This is achieved by identifying these arbitrary functions with a
subset of the (Abelian) gauge parameters ΛM of the vector fields and subsequently using the
corresponding vectors as gauge fields. This identification is made through the embedding
tensor ΘM

A ≡ (ΘΛ
A , ΘΛ A):

αA(x) ≡ ΛM(x)ΘM
A . (3.9)

The embedding tensor allows us to keep treating all vector fields, used for gaugings or not,
on the same footing. It hence allows us to formally preserve the symplectic invariance even
after gauging.

As discussed in section 2 the embedding tensor must satisfy a number of constraints
which guarantee the consistency of the theory. Some of these constraints have already been

12In what follows we will mostly use differential-form language and suppress the spacetime indices.
13The symmetries of a set of scalars decoupled from the vectors are clearly unconstrained.
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discussed in section 2. In total we have three constraints which we list below. First of all,
in the D = 4 case we must impose the following quadratic constraint

QAB ≡ 1
4
ΘM [AΘM

B] = 0 , (3.10)

which guarantees that the electric and magnetic gaugings are mutually local [11]. Observe
that the antisymmetry of ΩMN and the above constraint imply ΘM AΘM

B = 0. This
constraint is a particular feature of the 4-dimensional case.

As mentioned in section 2 there is a second quadratic constraint which encodes the fact
that the embedding tensor has to be itself invariant under gauge transformations. If the
gauge transformations of objects with contravariant and covariant symplectic indices are

δΛξM = ΛNΘN
ATA P

MξP , δΛηM = −ΛNΘN
ATA M

P ξP , (3.11)

and the gauge transformations of objects with contravariant and covariant adjoint indices
are written in the form

δΛπA = ΛMΘM
BfBC

AπC . δΛζA = −ΛMΘM
BfBA

CζC , (3.12)

then

δΛΘM
A = −ΛNQNM

A , QNM
A ≡ ΘN

ATA M
PΘP

A − ΘN
AΘM

BfAB
A , (3.13)

and the second quadratic constraint reads

QNM
A = 0 . (3.14)

The third constraint applies to all 4-dimensional supergravity theories that are free of
gauge anomalies [30] and can be expressed using the X generators introduced in section 2,
see Eq. (2.5):

XM ≡ ΘM
ATA , XMN

P ≡ ΘM
ATA N

P . (3.15)

This constraint (the so-called representation constraint) is linear in ΘM
A and reads as

follows [11]:

LMNP ≡ X(MNP ) = X(MN
QΩP )Q = 0 . (3.16)

The three constraints that the embedding tensor has to satisfy are not independent,
but are related by

Q(MN)
A − 3LMNP ZPA − 2QABTBMN = 0 . (3.17)

This relation can be used to show that the constraint QAB = 0 follows from the constraint
Q(MN)

A = 0 when the linear constraint LMNP = 0 is explicitly solved, whenever the action
of the global symmetry group on the vectors is faithful. We will neither solve explicitly
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the linear constraint by choosing to work only with representations allowed by it, nor we
will assume the action of the global group on the vectors to be faithful, since there are
many interesting situations in which this is not the case and we aim to be as general as
possible. In (half-) maximal supergravities, though, the global symmetry group always
acts faithfully on the vector fields.

These two choices, which differ from those made in the explicit examples found in the
literature (see e.g. Ref. [20]) will have important consequences in the field content of the
tensor hierarchy and are the reason why our results also differ from those obtained in them.
Before we go on we wish to collect a few properties of the X generators XMN

P in a separate
subsection.

3.1.1 The X generators and their properties

We first discuss the symmetry properties of the X generators. By their definition, and due
to the symplectic property of the TA N

P generators, see Eq. (3.7), we have

XMNP = XMPN . (3.18)

From the definition of the quadratic constraint Eq. (3.14) it follows that

X(MN)
P ΘP

C = Q(MN)
C , (3.19)

and so it will vanish14, although, in general, we will have

X(MN)
P 6= 0 . (3.20)

This implies, in particular

X(MN)P = −1
2
XPMN + 3

2
LMNP ⇒ X(MN)

P = ZPATAMN + 3
2
LMN

P , (3.21)

where we have defined

ZPA ≡ −1
2
ΩNP ΘN

A =







+1
2
ΘΛA ,

−1
2
ΘΛ

A ,
. (3.22)

ZPA will be used to project in directions orthogonal to the embedding tensor since, due to
the first quadratic constraint Eq. (3.10), we find that

ZMAΘM
B = −1

2
QAB . (3.23)

We next discuss some properties of the products of two X generators. From the com-
mutator of the TA generators and the definition of the generators XM and the matrices
XMN

P we find the commutator of the XM generators to be

14Here we will keep the terms proportional to constraints for later use, including the linear constraints
in (3.21).
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[XM , XN ] = QMN
CTC − XMN

P XP . (3.24)

This reduces to (cf. to Eq. (2.7))

[XM , XN ] = −X[MN ]
P XP , (3.25)

upon use of the above constraint and QMN
C = 0. From the commutator Eq. (3.24) one

can derive the analogue of the Jacobi identities

X[MN ]
QX[PQ]

R + X[NP ]
QX[MQ]

R + X[PM ]
QX[NQ]

R =

= −1
3
{X[MN ]

QX(PQ)
R + X[NP ]

QX(MQ)
R + X[PM ]

QX(NQ)
R}

−Q[MN |
CTC |P ]

R .

(3.26)

We finally present two more useful identities that can be derived from the commutators:

X(MN)
QXPQ

R − XPN
QX(MQ)

R − XPM
QX(NQ)

R = −QP (M |
CTC |N)

R , (3.27)

X[MN ]
QXPQ

R − XPN
QX[MQ]

R + XPM
QX[NQ]

R = QP [M |
CTC |N ]

R . (3.28)

3.2 The vector field strengths FM

We now return to the construction of the field strengths of the different p-form potentials.
In what follows we will set all the constraints explicitly to zero in order to simplify the
expressions. In this section we consider the vector field strengths.

To construct the vector field strength it is convenient to start from the covariant deriva-
tive. This derivative acting on objects transforming according to δφ = ΛMδMφ is defined
by

Dφ = dφ + AMδMφ . (3.29)

For instance, the covariant derivative of a contravariant symplectic vector

DξM = dξM + XNP
MANξP , (3.30)

transforms covariantly provided that

δAM = −DΛM + ∆AM , ΘM
A∆AM = 0 . (3.31)

The Ricci identity of the covariant derivative on ΛN can be written in the form

DDΛM = XNP
MF NΛP , (3.32)
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for some 2-form F M . Since this expression is gauge-covariant, F M , contracted with the
embedding tensor, will automatically be gauge-covariant, whatever it is and it is natural
to identify it with the gauge-covariant vector field strength. The above expression defines
it up to a piece ∆F M which is projected out by the embedding tensor, just like ∆AM in
δAM . An explicit calculation gives

F M = dAM + 1
2
X[NP ]

MAN ∧ AP + ∆F M , ΘM
A∆F M = 0 . (3.33)

The possible presence of ∆F M is a novel feature of the embedding tensor formalism.
Its gauge transformation rule can be found by using the gauge covariance of F M . Under
Eq. (3.31), using ΘM

A∆F M = 0, we find that

δFM = ΛP XPN
MF N + D∆AM − 2X(NP )

M(ΛNF P + 1
2
AN ∧ δAP ) + δ∆F M , (3.34)

so that F M transforms covariantly provided that we take

δ∆F M = −D∆AM + 2ZMATA NP (ΛNF P + 1
2
AN ∧ δAP ) , (3.35)

where we have used Eq. (3.21). Since both ∆AM and ∆F M are annihilated by the
embedding tensor, we conclude that in the generic situation we are considering here15

∆F M = ZMABA where BA is some 2-form field in the adjoint of G and ∆AM = −ZMAΛA

where ΛA is a 1-form gauge parameter in the same representation. Then

F M = dAM + 1
2
X[NP ]

MAN ∧ AP + ZMABA , (3.36)

δAM = −DΛM − ZMAΛA , (3.37)

δBA = DΛA + 2TA NP [ΛNF P + 1
2
AN ∧ δAP ] + ∆BA , (3.38)

where ∆BA is a possible additional term which is projected out by ZMA, i.e. ZMA∆BA = 0,
and can be determined by studying the construction of a gauge-covariant field strength HA

for the 2-form BA.

3.3 The 3-form field strengths HA

We continue to determine the form of HA using the Bianchi identity for F M just as we used
the Ricci identity to find an expression for F M . An explicit computation using Eq. (3.36)
gives

15The only information we have about the embedding tensor in a generic situation is provided by the
three constraints QNP

E = 0 , QAB = 0 , LMNP = 0. There is only one which we can write in the form
ΘM

A×SomethingM = 0, which is the constraint QAB = 0 and that uniquely identifies SomethingM = ZMB

up to a proportionality constant.

14



DF M = ZMA{DBA + TA RSAR ∧ [dAS + 1
3
XNP

SAN ∧ AP ]} . (3.39)

It is clear that the expression in brackets must be covariant and it defines a 3-form field
strength HA up to terms ∆HA that are projected out by ZMA, i.e.

DF M = ZMAHA , (3.40)

HA = DBA + TA RSAR ∧ [dAS + 1
3
XNP

SAN ∧ AP ] + ∆HA (3.41)

with ZMA∆HA = 0. Both ∆BA and ∆HA are determined by requiring gauge covariance
of HA. An explicit calculation gives

δHA = −ΛMΘM
BfBA

CHC

−YAM
C [ΛMHC − δAM ∧ BC − F M ∧ ΛC − 1

3
TC NP AM ∧ AN ∧ δAP ]

+D∆BA + δ∆HA .

(3.42)

We have defined the Y -tensor as

YAM
C ≡ ΘM

BfAB
C − TA M

NΘN
C . (3.43)

and it satisfies the condition

ZMAYAN
C = 1

2
ΩPMQPN

C = 0 . (3.44)

The 3-form field strengths HA transform covariantly provided that the last two lines in
Eq. (3.42) vanish. A natural solution is to take

∆BA ≡ −YAM
CΛC

M , ∆HA ≡ YAM
CCC

M , (3.45)

where ΛC
M is a 2-form gauge parameter and CC

M is a 3-form field about which we will
not make any assumptions for the moment. In particular, we will not assume it to satisfy
any constraints in spite of the fact that we expect it to be “dual” to the embedding tensor,
which is a constrained object. We are going to see that, actually, we are not going to
need any such explicit constraints to construct a fully consistent tensor hierarchy. On the
other hand, we are going to find Stückelberg shift symmetries acting on CC

M whose role
is, precisely, to compensate for the lack of explicit constraints and, potentially, allow us
to remove the same components of CC

M which would be eliminated by imposing those
constraints. We anticipate that those Stückelberg shift symmetries require the existence of
4-forms in order to construct gauge-covariant 4-form field strengths GC

M . It should come
as no surprise after this discussion, that the 4-forms are in one-to-one correspondence with
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the constraints of the embedding tensor. Working with unconstrained fields is simpler and
it is one of the advantages of our approach.

We then, find

HA = DBA + TA RSAR ∧ [dAS + 1
3
XNP

SAN ∧ AP ] + YAM
CCC

M , (3.46)

δBA = DΛA + 2TA NP [ΛNF P + 1
2
AN ∧ δAP ] − YAM

CΛC
M , (3.47)

δCC
M = DΛC

M + ΛMHC − δAM ∧ BC − F M ∧ ΛC

−1
3
TC NP AM ∧ AN ∧ δAP + ∆CC

M , (3.48)

where we have introduced a possible additional term ∆CC
M analogous to ∆AM and ∆BA

which now is projected out by YAM
C

YAM
C∆CC

M = 0 , (3.49)

and which will be determined by requiring gauge covariance of the 4-form field strength
GC

M .

3.4 The 4-form field strengths GC
M

To determine the 4-form field strengths GC
M we use the Bianchi identity of HA. We

can start by taking the covariant derivative of both sides of the Bianchi identity of F M

Eq. (3.40) and then using the Ricci identity. We thus get

ZMA
DHA = XNP

MF N ∧ F P = ZMATA NP F N ∧ F P . (3.50)

This implies that DHA = TA MNF M ∧ F N + ∆DHA where ZMA∆DHA = 0, suggesting
that ∆DHA ∼ YAM

CGC
M . A direct calculation yields the result

GC
M = DCC

M + F M ∧ BC − 1
2
ZMABA ∧ BC

+1
3
TC SQAM ∧ AS ∧ (F Q − ZQABA)

− 1
12

TC SQXNT
QAM ∧ AS ∧ AN ∧ AT

+∆GC
M ,

(3.51)

where

YAM
C∆GC

M = 0 . (3.52)

The Bianchi identity then takes the form
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DHA = YAM
CGC

M + TA MNF M ∧ F N . (3.53)

∆CC
M and ∆GC

M must now be determined by using the gauge covariance of the full
field strength GC

M . It is tempting to repeat what we did in the previous cases. However,
the calculation is, now, much more complicated and it would be convenient to have some
information about the new tensor(s) orthogonal to YAM

C that we may expect.
Given that the projectors arise naturally in the computation of the Bianchi identities,

we are going to “compute” the Bianchi identity of GC
M obviating the fact that it is already

a 4-form, and in D = 4 its Bianchi identity is trivial. We have not used the dimensionality
of the problem so far (except in the existence of magnetic vector fields that gives rise to
the symplectic structure and in the assignment of adjoint indices to the 2-forms) and, in
any case, our only goal in performing this computation is to find the relevant invariant
tensor(s).

Thus, we apply D to both sides of Eq. (3.53) using the Bianchi identity of F M Eq. (3.40)
and the Ricci identity. This leads to the following identity

YAM
C{DGC

M − F M ∧ HC} = 0 , (3.54)

from which it follows that

DGC
M = F M ∧ HC + ∆DGC

M , YAM
C∆DGC

M = 0 . (3.55)

Acting again with D on both sides of this last equation and using the Ricci and Bianchi
identities, we get in an straightforward manner

D∆DGC
M = WC

MABHA ∧ HB

+WCNPQ
MF N ∧ F P ∧ F Q

+WCNP
EMF N ∧ GE

P ,

(3.56)

where

WC
MAB ≡ −ZM [AδC

B] , (3.57)

WCNPQ
M ≡ TC (NP δQ)

M , (3.58)

WCNP
EM ≡ ΘN

DfCD
EδP

M + XNP
MδC

E − YCP
EδN

M . (3.59)

We thus found the desired new tensors. The Y -tensor annihilates the three new W tensors
in virtue of the 3 constraints satisfied by the embedding tensor

YAM
CWC

MAB = YAM
CWCNPQ

M = YAM
CWCNP

EM = 0 , (3.60)
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as expected. Note that the first and third W -tensors are linear in Θ but that the second W -
tensor is independent of Θ. Other important sets of identities satisfied by these W -tensors
can be found in Appendix A.

Coming back to our original problem of determining the form of ∆GC
M and ∆CC

M ,
we conclude from the previous analysis that

∆CC
M = −WC

MABΛAB − WCNPQ
MΛNPQ − WCNP

EMΛE
NP , (3.61)

∆GC
M = WC

MABDAB + WCNPQ
MDNPQ + WCNP

EMDE
NP , (3.62)

where ΛAB, ΛNPQ, ΛE
NP are 3-form gauge parameters and DAB, DNPQ, DE

NP are possible
4-forms whose presence will be justified in GC

M if their gauge transformations are non-
trivial in order to make the 4-form field strengths gauge covariant. Taking into account
the symmetries of the W -tensors, it is easy to see that DAB = D[AB], DNPQ = D(NPQ) and
analogously for the gauge parameters ΛAB, ΛNPQ. DE

NP and ΛE
NP have no symmetries.

We observe that the three 4-form D-potentials seem to be associated to the three
constraints QAB, LNPQ, QNP

E given in Eqs. (3.10), (3.14) and (3.16) in the sense that
they carry the same representations. Only the last one was expected according to the
general formalism developed in Ref. [12] and the specific study of the top forms performed
in Ref. [13,18]. We find that in 4 dimensions there are more top-form potentials due to the
additional structures (e.g. the symplectic one) and properties of 4-dimensional theories.

Knowing the different W tensors it is now a relatively straightforward task to obtain
by a direct calculation the expression for δGC

M , collect the terms proportional to the
three W -structures and determine the gauge transformations of the three different 4-form
D-potentials by requiring gauge-covariance of GC

M . An explicit calculation gives

δDAB = DΛAB + αB[A ∧ YB]P
EΛE

P + DΛ[A ∧ BB] − 2Λ[A ∧ HB]

+2T[A|NP [ΛNF P − 1
2
AN ∧ δAP ] ∧ B|B] , (3.63)

δDE
NP = DΛE

NP − [F N − 1
2
(1 − α)ZNABA] ∧ ΛE

P + CE
P ∧ δAN

+ 1
12

TEQRAN ∧ AP ∧ AQ ∧ δAR + ΛNGE
P , (3.64)

δDNPQ = DΛNPQ − 2A(N ∧ (F P − ZPABA) ∧ δAQ)

+1
4
XRS

(NAP | ∧ AR ∧ AS ∧ δA|Q) − 3Λ(NF P ∧ F Q) , (3.65)

where α is an arbitrary real constant. We hence find that there is a 1-parameter family
of solutions to the problem of finding a gauge-covariant field strength for the 3-form. The
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origin of this freedom resides in the presence of a Stückelberg-type symmetry which we
discuss in the next subsection.

3.4.1 Stückelberg symmetries

Differentiating (3.17) with respect to ΘQ
C using Eqs. (A.7)-(A.9) gives the following iden-

tity among the W tensors:

WC(MN)
AQ − 3WCMNP

QZPA − 2WC
QABTB MN = 3

2
LMN

QδC
A . (3.66)

The relation (3.66) gives rise to symmetries under Stückelberg shifts of the 4-forms in the
4-form field strength GC

M

δDE
NP = ΞE

(NP ) ,

δDAB = −2Ξ[A
MNTB]MN ,

δDNPQ = −3Z(N |AΞA
|PQ) .

(3.67)

This shift symmetry, which allows us to remove the part symmetric in NP of DE
NP , also

leaves the 4-form field strengths GC
M invariant.

If we multiply (3.17) by ZNE we find another relation between constraints

QABYBP
E − 1

2
ZNAQNP

E = 0 . (3.68)

Differentiating it again with respect to the embedding tensor we find the following relation
between W -tensors16:

WC
MABYBP

E − 1
2
ZNAWCNP

EM = 1
4
QM

P
EδC

A − QAB[δP
MfBC

E − TB P
MδC

E ] , (3.69)

which implies that the Stückelberg shift

δDE
NP = 1

2
ZNBΞBE

P ,

δDAB = Y[A|P
EΞB]E

P ,
(3.70)

leaves invariant the 4-form field strength GC
M up to terms proportional to the quadratic

constraints, which are taken to vanish identically in the tensor hierarchy. This shift sym-
metry is associated to the arbitrary parameter α in the gauge transformations of DAB and
DE

NP . Observe that, even though it is based on the identity Eq. (3.69) which we can get
from Eq. (3.66), this symmetry is genuinely independent from that in Eq. (3.67).

This finishes the construction of the 4-dimensional tensor hierarchy. The field strengths,
Bianchi identities and gauge transformations of the hierarchy’s p-form fields are collected
in Appendix B. By construction the algebra of all bosonic gauge transformations closes
off-shell on all p-form potentials. No equations of motion are needed at this stage.

16This identity can also be obtained multiplying Eq. (3.66) by ZNE.
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4 The D = 4 duality hierarchy

In this section we are going to introduce dynamical equations for the tensor hierarchy
via the introduction of first-order duality relations, see Eq. (1.2). This promotes the
tensor hierarchy to a duality hierarchy. We will see that the dynamical equations will not
only contain the equations of motions of the p-form potentials but also the (projected)
scalar equations of motion. These scalars, together with the metric, will be introduced via
the duality relations. In particular, the scalar couplings enter into the duality relations
via functions that can be identified with the Noether currents, the (scalar derivative of
the) scalar potential and the kinetic matrix describing the coupling of the scalars to the
vectors. In this way the duality hierarchy puts the tensor hierarchy on-shell and establishes
a link with a Yang-Mills-type gauge field theory containing a metric, scalars and p-form
potentials. This field theory can be viewed as the bosonic part of a gauged supergravity
theory. We stress that at this point we only compare equations of motion. It is only in
the last and third step that we consider an action for the fields of the hierarchy. We will
assume that the Yang-Mills-type gauge field theory has an action but we will only consider
its equations of motion in order to properly identify in the duality relations the Noether
current, scalar potential and the scalar-vector kinetic function.

In the next subsection we will first consider a Yang-Mills-type gauge field theory with
purely electric gaugings, i.e. only electric 1-forms are involved in the gauging. In particular
we will compare the equations of motion of this field theory with the dynamical equations
of the duality hierarchy. This example shows us how to introduce the metric and scalars in
the duality hierarchy. In the next subsection we will first consider a formally symplectic-
covariant generalization of the equations of motion with purely electric gaugings. This
generalization necessarily involves electric and magnetic gaugings. We will see that this
generalization does not lead to gauge-invariant answers unless we also include the equations
of motion corresponding to the magnetic 2-form potentials. In this way we recover the
observation of [11–15] that magnetic gaugings require the introduction of magnetic 2-form
potentials in the action of the field theory.

4.1 Purely electric gaugings

Having N = 1, D = 4 supergravity in mind, we consider complex scalars Z i (i = 1, · · · , n)
with Kähler metric Gij∗ admitting holomorphic Killing vectors KA = kA

i∂i + c.c.. The
index A of the Killing vectors must be associated to those of the generators of the global
symmetry group G. In general, not all the global symmetries will act on the scalars.
Therefore, we assume that some of the KA may be identically zero just as some of the
matrices TA M

N can be zero for other values of A. The action for the electrically gauged
theory is

Selec[g, Z i, AΛ] =

∫

{

⋆R − 2Gij∗DZ i ∧ ⋆DZ∗ j∗ + 2FΣ ∧ GΣ − ⋆V
}

, (4.1)

where DZ i is given by
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DZ i = dZ i + AΛΘΛ
AkA

i , (4.2)

and where GΛ denotes the combination of scalars and electric vector field strengths defined
by

GΛ
+ = fΛΣ(Z)FΣ+ , (4.3)

where FΣ + = 1
2
(FΣ + i ⋆ FΣ). It is assumed that the scalar-dependent kinetic matrix

fΛΣ(Z) is invariant under the global symmetry group, i.e.17

£AfΛΣ = 2TA (Λ
ΩfΣ)Ω , (4.4)

where £A stands for the Lie derivative with respect to KA, since this is a pre-condition
to gauge the theory. However, the potential needs only be invariant under the gauge
transformations, because the gauging usually adds to the globally-invariant potential of
the ungauged theory another piece. Thus, we must have

£AV = YAΛ
C ∂V

∂ΘΛ
C

, (4.5)

where YAΛ
C is the electric component of the tensor defined in Eq. (3.43). Indeed, using

this property, one can show that under the gauge transformations

δZ i = ΛΛΘΛ
AkA

i ,

δAΛ = −DΛΛ ,
(4.6)

the scalar potential V is gauge invariant:

δV = ΛΣΘΣ
A£AV = ΛΣQΣ

ΛC ∂V

∂ΘΛ
A

= 0 , (4.7)

on account of the quadratic constraint.
The equations of motion (plus the Bianchi identity for FΛ) corresponding to the action

(4.1) are given by

17Here we are only considering a restricted type of perturbative symmetries of the theory, excluding
Peccei-Quinn-type shifts of the kinetic matrix for simplicity. We will consider these shifts together with
the possible non-perturbative symmetries in the general gaugings’ section.
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Eµν ≡ − ⋆
δS

δgµν
= Gµν + 2Gij∗[DµZ i

DνZ
∗ j∗ − 1

2
gµνDρZ

i
D

ρZ∗ j∗]

−4ℑmfΛΣFΛ+
µ

ρFΣ−
νρ + 1

2
gµνV , (4.8)

Ei ≡ 1
2

δS

δZ i
= Gij∗D ⋆ DZ∗ j∗ − ∂iGΣ

+ ∧ FΣ+ − ⋆1
2
∂iV , (4.9)

EΛ ≡ −1
4
⋆

δS

δAΛ
= DGΛ − 1

4
ΘΛ

A ⋆ jA ,

EΛ ≡ DFΛ , (4.10)

where

jA ≡ 2k∗
AiDZ i + c.c. , (4.11)

is the covariant Noether current.
According to the second Noether theorem there is an off-shell relation between equations

of motion of a theory associated to each gauge invariance. For instance, associated to
general covariance we find the well-known identity

∇µEµν − (DνZ
iE∗

i + c.c.) + 2FΛ
νρ(⋆EΛ)ρ = 0 , (4.12)

which implies the on-shell covariant conservation of the energy-momentum tensor. Simi-
larly, the identity associated to the Yang-Mills-type gauge invariance of the theory is given
by

DEΛ + 1
2
ΘΛ

A(kA
iEi + c.c.) = 0 . (4.13)

Using the Ricci identity for the covariant derivative and Eqs. (4.4) and (4.5) we find that
this equation is indeed satisfied because the Noether current satisfies the identity

D ⋆ jA = −2(kA
iEi + c.c.) + 4TA Σ

ΓFΣ ∧ GΓ + ⋆YAΛ
C ∂V

∂ΘΛ
C

. (4.14)

We are now going to establish a relation between the tensor hierarchy and the equations
of motion for the vector fields, their Bianchi identities and the following projected scalar
equations of motion:
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DGΛ − 1
4
ΘΛ

A ⋆ jA = 0 , (4.15)

DFΛ = 0 , (4.16)

kA
i

[

Gij∗D ⋆ DZ∗ j∗ − ∂iGΣ
+ ∧ FΣ+ − ⋆1

2
∂iV

]

+ c.c. = 0 . (4.17)

Note that, unlike the tensor hierarchy, these equations contain not only p-form potentials
but also the metric and scalars.

In order to derive the above equations of motion from the tensor hierarchy we must
complement the tensor hierarchy with a set of duality relations that reproduces the scalar
and metric dependence of these equations. Besides the usual D

2Z term in the last equation
the scalar dependence of (4.15)-(4.17) resides in the magnetic 2-forms GΛ, the Noether
currents jA and the derivatives ∂iV of the scalar potential V . The latter derivative is

equivalently represented, via the invariance property (4.5), by the derivative
∂V

∂ΘΛ
A

of the

scalar potential with respect to the embedding tensor. These are precisely the objects that
occur in the following set of duality relations that we introduce:

GΛ = FΛ ,

jA = −2 ⋆ HA ,

∂V

∂ΘΛ
A

= −2 ⋆ GA
Λ ,

(4.18)

where the magnetic 2-form field strengths FΛ, the 3-form field strengths HA and the 4-form
field strengths GA

Λ are those of the tensor hierarchy. The tensor hierarchy, together with
the above duality relations, forms the duality hierarchy. Upon hitting the duality relations
(4.18) with a covariant derivative and next applying one of the Bianchi identities of the
tensor hierarchy we precisely obtain the equations of motion (4.15)-(4.17). In the case of
the scalar equations of motion we first obtain the identity

D ⋆ jA − 4TAΣ
ΓFΣ ∧ GΓ − ⋆YAΛ

C ∂V

∂ΘΛ
A

= 0 . (4.19)

Next, by comparing this equation with the Noether identity (4.14) we derive the projected
scalar equations of motion (4.17), i.e.

kA
iEi + c.c. = 0. (4.20)

It also works the other way around. By substituting the duality relations into the
equations of motion the scalar and metric dependence of these equations can be eliminated
and one recovers the hierarchy’s Bianchi identities for a purely electric embedding tensor
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ΘΣA = 0. To be precise, Eqs. (4.15) and (4.16) are mapped into the 3-form Bianchi
identities (3.40). Furthermore, Eq. (4.19), which is equivalent to (4.17) upon use of the
Noether identity (4.14), is mapped into the 4-form Bianchi identities (3.53).

We conclude that, at least in this case, the duality hierarchy encodes precisely the
vector equations of motion and the projected scalar equations of motion via the duality
rules (4.18).

4.2 General gaugings

In this subsection we wish to consider the more general case of electric and magnetic
gaugings. Our starting point is the formally symplectic-covariant generalization of the
equations of motion (4.15)-(4.17)18

Eµν = Gµν + 2Gij∗[DµZ
i
DνZ

∗ j∗ − 1
2
gµνDρZ

i
D

ρZ∗ j∗] − GM
(µ|

ρ ⋆ GM |ν)ρ + 1
2
gµνV ,

Ei = Gij∗D ⋆ DZ∗ j∗ − ∂iGM
+ ∧ GM+ − ⋆1

2
∂iV , (4.21)

EM ≡ DGM − 1
4
ΘM

A ⋆ jA ,

where we have defined

(GM) ≡

(

FΣ

GΣ

)

, GΣ
+ = fΣΓ(Z)F Γ+ , (4.22)

and where the electric and magnetic field strengths F M are defined as in the tensor hi-
erarchy, i.e. including the 2-form BA for which we do not want to have an independent
equation of motion to preserve the original number of degrees of freedom.

The requirement that the kinetic matrix is invariant under the global symmetry group
G and that the potential is gauge-invariant leads to the conditions

£AfΛΣ = −TA ΛΣ + 2TA (Λ
ΩfΣ)Ω − TA

ΩΓfΩΛfΓΣ , (4.23)

£AV = YAM
C ∂V

∂ΘM
C

, (4.24)

from which it follows that

kA
i∂iGM

+ ∧ GM+ = kA
i∂ifΛΣFΛ+ ∧ FΣ+ = −TA MNGM ∧ GN . (4.25)

A direct computation using the above properties leads to the following identity for the
covariant Noether current:

18The Einstein and scalar equations of motion are just a rewriting of the original ones, which are already
symplectic-invariant.
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D ⋆ jA = −2(kA
iEi + c.c.) − 2TA MNGM ∧ GN + ⋆YA

ΛC ∂V

∂ΘΛ
C

. (4.26)

On the other hand, the Ricci identity gives

DDGM = −XNM
P F N ∧ GP = XNPMF N ∧ GP . (4.27)

Taking the covariant derivative of the full EM and using Eqs. (4.26) and (4.27) we find

DEM + 1
2
ΘM

A(kA
iEi +c.c.) = XNPM(F N −GN )∧GP = ΘΣA(FΣ−GΣ)∧TA PMGP . (4.28)

This is the gauge identity associated to the standard electric and magnetic gauge transfor-
mations of the vectors and scalars

δZ i = ΛMΘM
AkA

i ,

δAM = −DΛM ,
(4.29)

provided that the right-hand side of the equation vanishes. Since this is not the case we
conclude that the equations of motion are not gauge-invariant. Hence, a naive symplectic
covariantization of the electric gauging case is not enough to obtain a gauge-invariant
answer involving magnetic gaugings.

In order to re-obtain gauge invariance we extend the set of equations of motion, adding,
arbitrarily, as equation of motion of the 2-forms BA

EA ≡ ΘMA(FM − GM) = −ΘΣA(FΣ − GΣ) , (4.30)

so that the above identity becomes again a relation between equations of motion

DEM + 1
2
ΘM

A(kA
iEi + c.c.) + TA MPE

A ∧ GP = 0 , (4.31)

that we can interpret as the gauge identity associated to an off-shell gauge invariance of
the extended set of equations of motion.

The price we may have to pay for doing this is the possible modification of the equations
of motion of the vector fields: the above gauge identities are associated to the gauge
transformations of BA

δBA = 2TA MP ΛMGP + 2RA M ∧ δAM , (4.32)

where RA M is a 1-form that is cancelled in the above gauge identity by an extra term in
the equation of motion of the vector fields:

E ′
M = EM + RA MEA ∧ AM . (4.33)

The 1-forms RA M must be such that the infinitesimal gauge transformations form a closed
algebra. The gauge identity takes now the form
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DE ′
M + 1

2
ΘM

A(kA
iEi + c.c.) + TA MPE

A ∧ GP − D(RA MEA ∧ AM) = 0 . (4.34)

In order to make contact with the tensor hierarchy we take RA M = 1
2
XP

MNAN∧(FP −GP ).
We observe that the equations of motion also satisfy the relation

DEA − 1
2
TB MNΘPAAN ∧ EB + ΘMAEM = 0 , (4.35)

which can be interpreted as the gauge identity associated to the symmetry

δAM = ZMAΛA ,

δBA = DΛA − 1
2
TAMNΘNBAM ∧ ΛB .

(4.36)

As we did in the electric gauging case, we are now going to establish a relation between
the tensor hierarchy and the following equations of motion:

E ′
M = DGM − 1

4
ΘM

A ⋆ jA + 1
2
TA MNAN ∧ ΘPA(FP − GP ) = 0 , (4.37)

EA = ΘMA(FM − GM) = 0 , (4.38)

kA
iEi = kA

i

[

Gij∗D ⋆ DZ∗ j∗ − ∂iGM
+ ∧ GM+ − ⋆1

2
∂iV

]

= 0 . (4.39)

These equations are invariant under the gauge transformations

δaZ
i = δhZ

i , (4.40)

δaA
M = δhA

M , (4.41)

δaBA = δhBA − 2TA NP ΛN(F P − GP ) , (4.42)

where we have denoted by δa the gauge transformations that leave this system of equations
invariant and by δh those derived in the construction of the 4-dimensional tensor hierarchy
(summarized in Appendix B). δaBA is, therefore, just δhBA with F P replaced by GP .

Following the electric gauging case, in order to derive the above equations of motion
from the tensor hierarchy, we introduce the following set of duality relations:

GM = F M ,

jA = −2 ⋆ HA ,

∂V

∂ΘM
A

= −2 ⋆ GA
M .

(4.43)
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We note that the gauge-covariance of the first duality relation is more subtle in that GM

transforms not only covariantly, but also into GM − F M , see [30]. Note that the equation
of motion of the magnetic 2-form potentials, EA = 0, is identified as a projected duality
relation. To recover the other equations of motion we have to again hit the duality relations
(4.43) with a covariant derivative and next apply one of the Bianchi identities of the tensor
hierarchy. To derive the projected scalar equations of motion we first obtain the identity

D ⋆ jA + 2TA MNGM ∧ GN − ⋆YA
ΛC ∂V

∂ΘΛ
A

= 0 (4.44)

from the duality hierarchy and, next, apply the Noether identity (4.26).
The gauge identities guarantee the existence of a gauge-invariant action from which the

equations of motion E ′
M and EA can be derived. This action has actually been constructed

in Ref. [11]. In our conventions, it is given by

S[gµν , Z
i, AM , BA] =

∫

{

⋆R − 2Gij∗DZ i ∧ ⋆DZ∗ j∗ + 2FΣ ∧ GΣ − ⋆V

−4ZΣABA ∧
(

FΣ − 1
2
ZΣ

BBB

)

−4
3
X[MN ]ΣAM ∧ AN ∧

(

FΣ − ZΣBBB

)

−2
3
X[MN ]

ΣAM ∧ AN ∧
(

dAΣ − 1
4
X[PQ]ΣAP ∧ AQ

)}

.

(4.45)

A general variation of the above action gives

δS =

∫
{

δgµν δS

δgµν
+

(

δZ i δS

δZ i
+ c.c.

)

− δAM ∧ ⋆
δS

δAM
+ 2δBA ∧ ⋆

δS

δBA

}

, (4.46)

where

δS

δgµν
= ⋆IEµν , (4.47)

−1
2

δS

δZ i
= Ei , (4.48)

−1
4
⋆

δS

δAM
= E ′

M , (4.49)

⋆
δS

δBA

= EA . (4.50)
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4.3 The unconstrained case

In this subsection we briefly comment on the meaning of the top-form and next to top-
form potentials. Experience shows that these higher-rank potentials can be related to
constraints: the constancy of ΘM

A, DΘM
A = 0, can be associated to the 3-form potential,

and the quadratic and linear constraints QNP
E = 0, QAB = 0, LNPQ = 0 can be associated

to the 4-form potentials DE
NP , DAB, DNPQ that we have providentially found. We would

like to stress, however, that prior to relaxing the constraints one is forced to introduce these
potentials if one requires that the field equations are derivable as compatibility conditions
from the duality relations, as we showed in the previous section.

In view of the discussion of an action principle with Lagrange multipliers in the next
section, we reconsider the gauge identities of the equations E ′

M , EA defined in the previous
subsections assuming that those constraints are not satisfied. We then denote the embed-
ding tensor by ϑM

A = ϑM
A(x) in order to indicate that it is now space-time dependent.

Evidently, we are going to get extra terms proportional to the constraints which we will
reinterpret as equations of motion of the 3- and 4-form potentials, obtaining new gauge
identities that involve the equations of motion of all fields. Thus, off-shell gauge invariance
will have been preserved by the same mechanism used in the previous case. The price that
we will have to pay is the same: modifying the gauge transformations and the equations
of motion.

This procedure is too complicated in this case, though. As an example, let us take the
covariant derivative of EA:

DEA = −DϑM
A ∧ (F M − GM) + ϑMA(DFM − DGM) . (4.51)

The unconstrained Bianchi identity for F M is

DF M = ZMB[HB − YBN
CCC

N ] + LM
RS [3

2
AR ∧ dAS + 1

2
XNP

SAR ∧ AN ∧ AP ]

+DϑN
A ∧ [1

2
ΩNMBA + 1

2
TA P

MAN ∧ AP ] + 1
3
QNP

ETE R
MAN ∧ AP ∧ AR ,

(4.52)
and, using the equation of motion E ′

M we can write the following gauge identity

DEA − 1
2
TB MNϑMAAN ∧ EB + ϑMAE ′

M + QAB[2(HB + 1
2

⋆ jB) − 2YBN
CCC

N ]

+DϑM
B ∧ [1

2
ϑMABB + 1

2
TB P

QϑQ
AAM ∧ AP + δB

A(F M − GM)]

+LMRSϑMA[−3
2
AR ∧ dAS − 1

2
XNP

SAR ∧ AN ∧ AP ]

−1
3
QNP

ETE R
MϑM

AAN ∧ AP ∧ AR = 0 .
(4.53)

It is very difficult to infer directly from this and similar identities all the gauge trans-
formations of the fields and the modifications of the equations of motion. Thus, we are
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going to adopt a different strategy in the next section: we are going to construct directly
a gauge-invariant action.

5 The D = 4 action

In this section we perform the third and last step of our procedure: the construction
of an action for the fields of the tensor hierarchy19. Our starting point is the action
Eq. (4.45), which we will denote by S0 in what follows and which includes, besides the
metric, only scalars, 1-forms and 2-forms and which is invariant under the gauge transfor-
mations Eqs. (4.40)-(4.42). We now want to add to it 3- and 4-forms as Lagrange multipliers
enforcing the covariant constancy of the embedding tensor (which we promote to an uncon-
strained scalar field ΘM

A(x)) and the three algebraic constraints QAB, LNPQ, QNP
E that

we have imposed on the embedding tensor. The new terms must be metric-independent
(“topological”) and scalar-independent in order to leave unmodified the scalar and Einstein
equations of motion (4.21) which are derived from the action S0 given in Eq. (4.45).

Thus, we add to S0 the following piece ∆S given by20

∆S =

∫

{

DϑM
A ∧ C̃A

M + QNP
ED̃E

NP + QABD̃AB + LNPQD̃NPQ
}

. (5.1)

The tildes in C̃C
M , D̃AB, D̃NPQ and D̃E

NP indicate that these 3- and 4-form fields need
not be identical to those found in the hierarchy, although we expect them to be related by
field redefinitions.

The action S0 is no longer gauge invariant under the gauge transformations involving 0-
and 1-form gauge parameters ΛM , ΛA, without imposing any constraints on the embedding
tensor, but the non-vanishing terms in the transformation can only be proportional to the
l.h.s.’s of the constraints DϑM

C = 0, QNP
E = 0, QAB = 0 and LNPQ = 0 and, by choosing

appropriately the gauge transformations of C̃C
M , D̃AB, D̃NPQ and D̃E

NP we can always
make the variation of the action S ≡ S0 + ∆S vanish. Having done that we would like to
relate the tilded fields with the untilded ones in the hierarchy.

Let us start by computing the general variation of the action. Taking into account the
fact that the fields gµν , Z i and BA µν only occur in S0, that the field AM

µ occurs in S0 and
in the term DϑM

AC̃A
M in ∆S and that the new fields C̃C

M , D̃AB, D̃NPQ and D̃E
NP only

occur in ∆S, we find

19Actually, not all the 2-forms BA will appear in the action but only ΘΛABA.
20Observe that DΘM

A = dΘM
A −QNM

AAN and, therefore, the covariant constancy of the embedding
tensor plus the quadratic constraint QNP

E = 0 imply dΘM
A = 0.
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δS =

∫
{

δgµν
δS0

δgµν
+

(

δZ i
δS0

δZ i
+ c.c.

)

− δAM ∧ ⋆
δS0

δAM
+ 2δBA ∧ ⋆

δS0

δBA

+DϑM
A ∧ δC̃A

M + QNP
E(δD̃E

NP − δAN ∧ C̃E
P ) + QABδD̃AB

+LNPQδD̃NPQ + δϑM
A

δS

δϑM
A

}

.

(5.2)

The scalar and Einstein equations of motion are as in Eqs. (4.21) and (4.47),(4.48).
The variations of the old action S0 with respect to AM and BA are modified by terms
proportional to the constraints. We can write them in the form

− 1
4
⋆

δS0

δAM
= DFM − 1

4
ϑM

A ⋆ jA − 1
3
dX[PQ]M ∧ AP ∧ AQ − 1

2
Q(NM)

EAN ∧ BE

−LMNP AN ∧
(

dAP + 3
8
X[RS]

PAR ∧ AS
)

+ 1
8
QNP

ATA QMAN ∧ AP ∧ AQ

−d(FM − GM) − X[MN ]
P AN ∧ (FP − GP ) , (5.3)

⋆
δS0

δBA

= ϑPA(FP − GP ) + QABBB . (5.4)

In deriving these equations we have used the unconstrained Bianchi identity for FΛ, given
by the upper component of Eq. (4.52), to replace HA in the equation of motion of AΛ.
This has allowed us to write a symplectic-covariant expression for the equation of motion
of AM .

The only non-trivial variation that remains to be computed in Eq. (5.2) is the equation
of motion of the embedding tensor. We get

δS

δϑM
A

= −DC̃A
M + ZMBBB ∧ BA − 2(F M − GM) ∧ BA − ⋆

∂V

∂ϑM
A

+WANP
EMD̃E

NP + WA
BCMD̃BC + WANPQ

MD̃NPQ

+AM ∧
{

− ⋆ jA + YAN
CC̃C

N − TAN
P AN ∧ (FP − GP )

−4
3
TANRAN ∧

[

dAR + 3
8
X[PQ]

RAP ∧ AQ + 3
2
ZRBBB

]}

.

(5.5)

We are going to use this equation to find the relation between the tilded fields and
the hierarchy fields. Using Eqs. (4.43) and the definitions of the tensor hierarchy’s field
strengths HA and GA

M , we are left with
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1
2

δS

δϑM
A

= D(−1
2
C̃A

M − CA
M − AM ∧ BA)

+YAP
CAM ∧ (1

2
C̃C

P + CC
P + AP ∧ BC) + WA

BCM (1
2
D̃BC − DBC)

+WANP
EM(1

2
D̃E

NP − DE
NP + 1

2
AN ∧ AP ∧ BE)

+WANPQ
M(1

2
D̃NPQ − DNPQ) ,

(5.6)

which is satisfied if we identify

C̃A
M = −2(CA

M + AM ∧ BA) , D̃E
NP = 2DE

NP − AN ∧ AP ∧ BE ,

D̃BC = 2DBC , D̃NPQ = 2DNPQ .

(5.7)

Using these identifications ∆S reads

∆S =

∫

{

−2DϑM
A ∧ (CA

M + AM ∧ BA) + 2QNP
E(DE

NP − 1
2
AN ∧ AP ∧ BE)

+2QABDAB + 2LNPQDNPQ
}

,
(5.8)

and a general variation of the total action S = S0 + ∆S is given by

δS =

∫
{

δgµν
δS0

δgµν
+

(

δZ i
δS0

δZ i
+ c.c.

)

− δAM ∧ ⋆
δS0

δAM
+ 2δBA ∧ ⋆

δS0

δBA

+DϑM
A ∧ [−2δCA

M − 2δAM ∧ BA − 2AM ∧ δBA] + QAB[2δDAB]

+QNP
E[2δDE

NP + 2δAN ∧ CE
P + 2δA(N ∧ AP ) ∧ BE − AN ∧ AP ∧ δBE ]

+LNPQ[2δDNPQ] + δϑM
A

δS

δϑM
A

}

.

(5.9)
The first variation of the total action S with respect to ϑM

A can be written in the form

1
2

δS

δϑM
A

= (GA
M − 1

2
⋆ ∂V/∂ϑM

A) − AM ∧ (HA + 1
2

⋆ jA)

−1
2
TAN

P AM ∧ AN ∧ (FP − GP ) − (F M − GM) ∧ BA .

(5.10)
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We can now check the gauge invariance of the total action S. We are going to use for
the gauge transformations of all the fields (except for the scalars and vectors) the Ansatz
δa = δh + ∆ where ∆ is a piece to be determined. If we assume that the embedding tensor
is exactly invariant21, i.e. δϑM

A = 0, we find

∆BA = −2TA NPΛN(F P − GP ) , (5.11)

∆CA
M = ΛA ∧ (F M − GM) − ΛM(HA + 1

2
⋆ jA) , (5.12)

∆DAB = 2Λ[A ∧ (HB] +
1
2

⋆ jB]) − 2T[A|NP ΛN(F P − GP ) ∧ B|B] , (5.13)

∆DE
NP = −ΛN (GE

P − 1
2

⋆ ∂V/∂ϑP
E) + (F N − GN) ∧ ΛE

P , (5.14)

∆DNPQ = −3δA(N ∧ AP ∧ (F Q) − GQ)) + 6Λ(NF P ∧ (F Q) − GQ))

−3Λ(N (F P − GP ) ∧ (F Q) − GQ)) , (5.15)

where we have used in this calculation the non-trivial Ricci identities22

ϑM
C
DDΛC

M = DϑM
A ∧ (−YAP

EAM ∧ ΛE
P ) + QNP

E[(F N − ZNABA) ∧ ΛE
P

−1
2
YEQ

CAN ∧ AP ∧ ΛC
Q] , (5.16)

DDFM = XNPMF N ∧ F P − 2QABTA PMF P ∧ BB + dXNPM ∧ AN ∧ F P

−1
2
QNP

ETE MQAN ∧ AP ∧ F Q , (5.17)

and the variations of the kinetic matrix and the potential Eqs. (4.23) and (4.24).
We observe that all terms in the extra variations ∆ vanish when we use the duality

relations (4.43). Actually, all of them, except for just one term in ∆DNPQ, are such that the
variations δa are obtained from the tensor hierarchy variations δh simply by replacing the
scalar-independent field strengths F M , HA, GA

M by the corresponding scalar-dependent

objects GM , jA,
∂V

∂ϑΛ
A

via the duality relations (4.43).

21One could also allow ϑA
M

to transform according to its indices as δϑA
M

= −QNM
AΛN . This is like

adding a term proportional to an equation of motion, that of DA
NM , to the zero variation.

22If the constraints are satisfied, ϑM
C

DDΛC
M = DD(ϑM

CΛC
M ) = dd(ϑM

CΛC
M ) = 0. Therefore,

when they are not satisfied, ϑM
C

DDΛC
M must be proportional to them.
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Finally, we note that the variations δa and δh are equivalent from the point of view
of the duality hierarchy. The two sets of transformation rules differ by terms that are
proportional to the duality relations. The only difference is that the commutator algebra
corresponding to δh closes off-shell whereas the algebra corresponding to δa closes up to
terms that are proportional to the duality relations. The two sets of transformation rules
are not equivalent from the action point of view in the sense that only one of them, the
one with transformation rules δa, leaves the action invariant, whereas the other, with
transformations δh, does not.

6 The 3-dimensional case

As an illustration of our general procedure we will construct in this section the complete
D = 3 tensor and duality hierarchy corresponding to a generic D = 3 gauged supergrav-
ity theory, extending the analysis of the maximally supersymmetric case [12, 21]. The
D = 3 hierarchy is sufficiently short in order to allow for a straightforward analysis and
nevertheless captures the features expected to appear in general dimensions.

6.1 Generalities on D = 3

Three-dimensional gauged supergravity has been constructed in [9, 10] for the maximal
case and subsequently generalized to lower supersymmetries in [23, 24].

D = 3 (ungauged) supergravities are particularly simple theories because their only
physical bosonic degrees of freedom are described by scalar fields, since in D = 3 the
metric and p-forms with p ≥ 2 have no dynamics and vectors are dual to scalars. The
number of scalar fields as well as the rigid symmetry group G is ultimately constrained
by supersymmetry. For instance, in case of maximal supersymmetry there are 128 scalars,
which parameterize the coset space E8(8)/SO(16), and thus we have G = E8(8). However,
for the general construction of the tensor hierarchy to be discussed here supersymmetry
does not play any role, and so for the moment we will leave the group G completely generic,
thereby capturing the most general situation in D = 3.

The original formulation [9, 10] of maximal gauged D = 3 supergravity requires the
introduction of gauge vectors Aµ

M transforming in the adjoint representation of G which
do not describe new degrees of freedom but are dual to scalars. Owing to this fact, the em-
bedding tensor carries in three dimensions two adjoint indices and thus reads ΘMN . More
precisely, the gauge vectors enter via a topological Chern-Simons term, whose invariant
tensor is precisely given by ΘMN (cf. (6.22) below). In this case, the embedding tensor is
symmetric, ΘMN = ΘNM , and the tensors defined in (2.5) read

XMN
P = ΘMKfKP

N = X[MN ]
P + ZP

MN , ZP
MN = ΘK(MfKP

N) , (6.1)

with the structure constants of G satisfying [tM , tN ] = −fMN
KtK . As in (2.6), the

quadratic constraint states that the symmetric part Z vanishes upon contraction with
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the embedding tensor, ΘPKZP
MN = 0. Ultimately, supersymmetry requires in addition a

linear constraint. However, for the bosonic gauge covariance of the tensor hierarchy this
constraint is immaterial and thus it is sufficient to impose only the quadratic constraints.

For the present purpose it suffices to inspect the equations of motion of the gauge
vectors. By virtue of the Chern-Simons term they take the form of first-order duality
relations,

e−1εµνρΘMNFνρ
N = −2ΘMNJµN . (6.2)

Here, the current JµM corresponds to the Noether current of the ungauged theory, which
can be written in terms of the Killing vector fields ki

M(φ) generating G as

Jµ
M = Dµφ

i ki
M , (6.3)

where i, j, . . . are the coordinate labels of the scalar manifold. The field strength takes the
standard form

Fµν
M = ∂µAν

M − ∂νAµ
M + XNP

MA[µ
NAν]

P , (6.4)

where the quadratic term has to be antisymmetrized explicitly due to the lack of antisym-
metry of the ‘structure constant’ XNP

M .
At this stage the situation is very similar to the four-dimensional case discussed in

the previous section. Due to the simplicity in D = 3, it is instructive to repeat below
a few of the remarks we already made in the previous section. First, one may wonder
whether it is possible to obtain the scalar equations of motion from the duality relation
(6.2) by acting on it with a derivative Dµ. This turns out not to be the case, since
(6.2) is only a projected version of the naive duality relation in that both sides appear
contracted with the embedding tensor. In fact, in gauged supergravity there is a scalar
potential, whose contributions to the scalar field equations are invisible upon contraction
with the embedding tensor. Thus, the duality relation obtained from the action does not
imply the scalar field equations, though it is nevertheless compatible with them. One
might be tempted to impose the unprojected duality relations by dropping the contraction
with ΘMN , in order to obtain the full field equations. However, there are two immediate
obstacles. First, the naive Bianchi identity D[µFνρ]

M = 0 required for deriving second-
order equations as integrability conditions holds for the field strength in (6.4) only upon
contraction with ΘMN . Second, it is clear that the contributions from a scalar potential
cannot be reproduced in this way, due to the fact that one cannot ‘pull out a derivative’ of
the scalar potential. It turns out that the resolution of these two problems is related and
naturally suggested by the structure of the tensor hierarchy. Specifically, this will introduce
higher-rank tensor fields that allow for covariant field strengths satisfying consistent Bianchi
identities. Moreover, these additional tensor fields will be accompanied by further duality
relations which encode, in particular, the scalar potential. This set of first-order field
equations defines the duality hierarchy which will be discussed in the next subsection.
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6.2 The D = 3 tensor and duality hierarchy

As in the D = 4 case, the tensor hierarchy can be systematically introduced by requir-
ing that the field strengths satisfy Bianchi identities and transform covariantly according
to their index structure. First, we modify the field strength (6.4) by a Stückelberg-like
coupling involving a 2-form gauge potential BNK = BKN ,

Hµν
M = Fµν

M − 2ZM
NKBµν

NK . (6.5)

By virtue of the quadratic constraint (2.6) the extra term vanishes upon contraction with
the embedding tensor. Thus, all non-covariant terms in the variation of the (unprojected)
Fµν

M can be absorbed into a suitable variation of the 2-form potential. Specifically, under
the standard form of the gauge transformation

δAµ
M = DµΛM = ∂µΛM + XNP

MAµ
NΛP , (6.6)

one finds

δFµν
M = XNP

MFµν
NΛP − 2ZM

NP A[µ
NδAν]

P . (6.7)

We note that upon contraction with ΘMN the second term vanishes and the structure
constant in the first term is antisymmetric. In particular the latter property is required
in order to derive the standard covariant form of the gauge transformation. The lack of
covariance for the unprojected field strength can now be compensated by assigning gauge
transformations to the 2-form in (6.5). Requiring the covariant variation

δHµν
M = −ΛNXNP

MHµν
P , (6.8)

determines the 2-form gauge variation, with parameter ΛMN = ΛNM , to be

δBµν
MN = D[µΛν]

MN − A[µ
〈MδAν]

N〉 + Λ〈MHµν
N〉 + · · · , (6.9)

up to terms that vanish upon contraction with ZP
MN . Here, the brackets 〈 〉 a priori denote

ordinary (unit-strength) symmetrization. However, Eq. (6.9) and all subsequent relations
directly generalize to the case, where a linear constraint has been imposed, for which 〈 〉
has to be interpreted as the corresponding projector onto the surviving representations.
We have also added the variation of the 2-form under its own gauge parameter Λµ

MN .
Invariance of (6.5) then requires that Aµ

M transforms (as a shift) under this symmetry,
i.e., the gauge variation (6.6) has to be modified by δ′Aµ

M = ZM
NP Λµ

NP .
In a next step one can introduce a 3-form field strength Gµνρ

MN for the 2-form gauge
potential by requiring gauge covariance. It turns out, however, to be more convenient
to determine the leading terms of this field strength by requiring that the modified field
strength for the original gauge vector satisfies a Bianchi identity,

D[µHνρ]
M = −2ZM

NPGµνρ
NP . (6.10)
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This uniquely determines the field strength up to terms that vanish by contraction with
ZP

MN . Ultimately, we want to write covariant duality relations involving the uncontracted
Gµνρ

MN . As before, this can be achieved via introducing a new potential, which is a 3-form,
and assigning appropriate gauge transformations to it. Without repeating the detailed
steps of the derivation, we simply state the results. (For more details we refer the reader
to [12].) The 3-form field strength reads

Gµνρ
MN = D[µBνρ]

MN − A[µ
〈M∂νAρ]

N〉 −
1

3
XKL

〈MA[µ
N〉Aν

KAρ]
L

−
2

3
Y MN

P,KL Cµνρ
P,KL . (6.11)

Here, we have introduced the intertwining Y -tensor [12]

Y MN
P,KL = Z〈M

KLδN〉
P − XP 〈K

〈MδN〉
L〉 , (6.12)

which relates the irreducible representation in which Bµν
MN transforms to the irreducible

representation of the 3-form.
Summarizing, we find that the 2-from field strengths (6.5) and the 3-form field strengths

(6.11) transform covariantly under the following gauge transformations of the D = 3 tensor
hierarchy:

δAµ
M = DµΛ

M + ZM
NP Λµ

NP (6.13)

δBµν
MN = D[µΛν]

MN − A[µ
〈MδAν]

N〉 + Λ〈MHµν
N〉 +

2

3
Y MN

P,KLΛµν
P,KL (6.14)

δCµνρ
P,MN = D[µΛνρ]

P,MN − 3 δA[µ
〈P Bνρ]

MN〉 + A[µ
〈P Aν

MδAρ]
N〉

−
3

2
H[µν

〈P Λρ]
MN〉 − 3Λ〈P Gµνρ

MN〉 . (6.15)

Again, the brackets 〈 〉 generically impose the constraints on the 2-form and, via (6.12), also
the corresponding constraints on the 3-form. As in D = 4 the above gauge transformations
of the D = 3 tensor hierarchy close off-shell. In three dimensions the tensor hierarchy
terminates at this point, as there are no higher-rank tensor fields and no further non-
trivial Bianchi identities beyond the 3-form identity (6.10).

Now we are in a position to impose manifestly gauge-covariant duality relations, whose
compatibility conditions with the Bianchi identities reproduce the supergravity equations
of motion (up to the Einstein equation). First, we introduce the unprojected form of the
duality relation (6.2), in which the field strength gets modified according to (6.5),

Eµ M ≡ e−1εµνρHνρ
M + 2JµM = 0 . (6.16)
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Next, we define a duality relation for the 2-form potential, which introduces the derivative
of the scalar potential with respect to Θ,

EMN ≡ e−1εµνρGµνρ
MN +

1

4
GMN,KLΘKL = 0 . (6.17)

Here, GMN,KL is a (scalar-dependent) matrix fixed by supersymmetry (for the explicit form
in case of N = 16 see [21]), which determines the potential according to

V =
1

32
GMN,KLΘMNΘKL . (6.18)

The (formal) G-invariance implies the following identity

kiM ∂V

∂φi
− 2ZM

NP

∂V

∂ΘNP

= 0 . (6.19)

The claim is that the D = 3 duality hierarchy (6.16) and (6.17) encodes the equations
of motion up to the Einstein equations. In this example there are just two equations of
motion: the vector equations (6.2), resulting from (6.16) by contracting with ΘMN , and
the scalar equations of motion,

Dµ

(

gijD
µφj

)

= −2
∂V

∂φi
, (6.20)

where gij is the metric on the scalar manifold. By acting with Dµ on (6.16) and using the
second duality relation (6.17) one obtains as a consequence of the Bianchi identity (6.10)

DµJ
µM = −2kiM ∂V

∂φi
. (6.21)

Alternatively, these equations are identical to the 3-form Bianchi identity (6.10) after
replacing in (6.21) the scalar-dependent Noether current JµM by the scalar-independent
2-form field strength HM via the duality relation (6.16) and after replacing the scalar-
dependent (derivative of) the scalar potential V by the scalar-independent 3-form field
strength GMN via the duality relation (6.17). These second-order ‘conservation equations’
can be viewed as projected scalar equations of motion in the sense that (6.21) results from
(6.20) by contracting with the Killing vector ki

M .

6.3 The D = 3 action

An action including all fields of the D = 3 tensor hierarchy has already been constructed
in [12, 21] (see [27] for the case of global supersymmetry). It reads
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L = −
1

4
eR +

1

4
eP µaPµa − eV

−
1

4
εµνρAµ

MϑMN

(

∂νAρ
N +

1

3
XKL

NAν
KAρ

L

)

+ Lfermions

+
1

4
εµνρDµϑMNBνρ

MN +
1

6
ϑPKZK

MNεµνρCµνρ
P,MN .

(6.22)

Here we used the definition

Pµ
a = Dµφ

i ei
a(φ) , (6.23)

where ei
a denotes the vielbein on the scalar manifold with flat indices a, b, . . .. We denote

the embedding tensor by ϑMN = ϑMN(x) in order to indicate that it is now a space-time
dependent field. As long as the precise form of the scalar potential and the fermionic
couplings is not specified, this form of the action is completely general and applies to all
gauged supergravities in D = 3. In particular, the scalar kinetic term represents a generic
non-linear sigma model.

In (6.22) we have made use of the fact that the 2-form potentials emerging in the tensor
hierarchy carry the same G-representation as the embedding tensor. This follows from the
fact that the tensor ZM

NK contracting the 2-forms in (6.5) can be viewed as a G-rotation
of ϑMN and thus satisfies the same representation constraint (if any) as the embedding
tensor. The space-time dependent embedding tensor ϑMN (x) in (6.22) is set to a constant
satisfying the quadratic constraints by the field equations for the 2- and 3-forms.

Like in D = 4, in principle, it is also possible to enforce linear constraints via additional
top-form Lagrange multipliers. However, since for the action in D = 3 the linear constraint
is immaterial for bosonic gauge invariance, this would be redundant and so we will not
follow this route here. This is in contrast to the D = 4 case where linear constraints do play
a role for bosonic gauge invariance. In that case we did introduce a Lagrange multiplier
for the linear constraint.

In this reformulation with dynamical embedding tensor the original invariance of the
action is violated by terms proportional to ∂µϑMN and the quadratic constraint. This can
be compensated by assigning appropriate gauge transformations to the 2- and 3-form, as
has been done in [21]. The corresponding gauge variations will be denoted by δa in order to
distinguish them from the gauge transformations δh of the tensor hierarchy. As in D = 4
we find that δa and δh differ by terms that are proportional to the duality relations (6.16)
and (6.17):

δaBµν
MN = δhBµν

MN +
1

2
eεµνρΛ

〈MEρ N〉 ,

δaCµνρ
P,MN = δhCµνρ

P,MN −
3

4
eεσ[µνE

σ〈P Λρ]
MN〉 −

1

2
eεµνρΛ

〈PEMN〉 , (6.24)
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as can be inferred from [21] by comparing the δa variations with the tensor hierarchy.23

We note that the variations of the original vectors and scalars remain unchanged. This
modification is precisely such that all field strengths in the transformation rules get replaced
by dual (matter) contributions, as Noether currents, etc.

Let us stress again that (6.24) is not equivalent to the original gauge transformations of
the tensor hierarchy. First of all, (6.24) does not represent a modification by an equations-
of-motion symmetry, since this would have to act on all fields and not just the 2- and
3-forms. Moreover, the modified gauge transformations are not even on-shell equivalent
to the tensor hierarchy, due to the fact that neither the duality relation (6.16) nor (6.17)
follows from the action. More precisely, the field equations are

δS

δAµ
M

= −
1

4
ϑMN Eµ N = 0 , (6.25)

δS

δϑMN

= −
1

4

(

EMN + Aµ
〈MEµ N〉

)

= 0 . (6.26)

Thus, the first duality relation appears only in a contracted version. Once its unprojected
form (6.16) has been imposed by hand, the field equations for the embedding tensor (6.26)
turn out to be equivalent to (6.17). As a consequence, the field equations obtained from
the action are not manifestly gauge-covariant but rather rotate under the gauge transfor-
mations in a highly intricate way into the other field equations (including second-order
matter equations) [21]. Moreover, the off-shell closure of the gauge algebra characteristic
for the abstract tensor hierarchy is violated in that closure requires the validity of all field
equations (except the Einstein equation).

7 Conclusions

In this paper we have showed how the second-order p-form equations of motion and the
projected scalar equations of motion of general D = 3, 4 gauged supergravity theories24 can
be derived by a duality hierarchy, i.e. a set of first-order duality relations between p-form
curvatures.

Our starting point has been the complete tensor hierarchy of the embedding tensor
formalism which we have used to derive the off-shell gauge algebra for a set of p-form
potentials, not including the scalars and the metric tensor. Next, in a second step we have
put the tensor hierarchy on-shell by introducing duality relations between the curvatures
of the tensor hierarchy. These duality relations contain the metric tensor and all the
information about the scalar couplings via natural objects, like the Noether current, the
derivative of the scalar potential with respect to the embedding tensor and, in the case of

23Strictly speaking, only the maximally supersymmetric case has been investigated in [21]. However, as
far as invariance of the bosonic Lagrangian is concerned, this is no restriction.

24Actually, our results should apply, unmodified, to more general D = 3, 4 theories with no supersym-
metry.

39



four dimensions, a function describing the scalar-vector couplings. We have showed how
the duality relations, together with the Bianchi identities of the tensor hierarchy, lead to
the desired second-order equations of motion for the p-form potentials and to the projected
equations of motion for the scalars.

In a third and final step we have constructed a gauge-invariant action for all the fields
of the tensor hierarchy. Here a subtlety occurred. We find that the gauge transforma-
tions of the action, with on-shell closed gauge algebra, are not the same as the gauge
transformations of the tensor hierarchy, with off-shell closed gauge algebra. They differ by
(unprojected) duality relations some of which do not follow from extremizing the action
although they are part of the duality hierarchy. We find that the transformation rules
that leave the action invariant are obtained from the transformation rules of the tensor
hierarchy by replacing everywhere curvatures by dual curvatures via the duality relations
except in one term in the gauge transformations of the 4-forms DNPQ, associated to the
linear constraint. This exception to the almost-general rule disappears if one solves the
linear constraint at the beginning and uses only the allowed field representations. It is
reasonable to conjecture that the same will be true in other dimensions and, if true, it
would be interesting to find an explanation for this general pattern. It would also be in-
teresting to find out how the general D = 4 tensor hierarchy is modified if one relaxes
the linear constraint as in Ref. [30], in which the classical lack of gauge invariance can be
compensated by a quantum anomaly.

It is natural to ask under which circumstances the duality hierarchy can give rise to the
full set of scalar equations of motion. For this to be the case, the Killing vector fields need
to be ‘left-invertible’. For instance, in the D = 3 example this means that (6.21) implies
(6.20). A necessary condition is that the dimension of the isometry group is larger or equal
to the dimension of the scalar manifold. This is satisfied for coset manifolds G/H . In
order to see this, let V be G-valued and Pµ

a = [V−1DµV]a the coset part of the G-invariant
Maurer-Cartan forms. The Noether current results from Pµ

a by converting the flat index
to a curved or rigid one by means of the coset vielbein V,

Jµ
M = VM

aPµ
a , (7.1)

where the contraction is only over the ‘coset directions’. Comparing with (6.3) one infers

ki
M = VM

a ei
a . (7.2)

Since the vielbeine e and V are both invertible the desired result follows. Thus, in case of
supergravity theories based on coset manifolds, the entire set of field equations (except the
Einstein equations) are encoded in first-order duality relations.

It is tempting to conjecture that this pattern will persist in general dimensions D > 4.
In the context of higher dimensions it is noteworthy that to construct an action not always
all fields of the tensor hierarchy are involved. Apart from low-rank forms, which are
required for consistent gaugings, and the (D − 1)- and D-forms, which can be interpreted
as Lagrange multipliers, there appears a gap ‘in between’. For instance, the D = 5 gauged
supergravity actions of [25, 26] do not contain a 3-form. In contrast, at the level of the
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duality hierarchy one is forced to introduce this 3-form in order to recover the correct
second-order field equations [7].

One may wonder whether it is possible to also obtain the Einstein equations as compat-
ibility conditions from duality relations. Remarkably, this turns out to be possible upon
introducing the dual graviton transforming in the mixed-Young tableaux representation
(D− 3, 1), as has been shown recently [28]. At first sight one would think that one cannot
write first-order duality relations since it is not possible to ‘pull out a derivative’ of the
energy-momentum tensor [29]. This is similar to the scalar equations of motion discussed
in this paper, where it was not possible to pull out a derivative of the scalar potential. The
resolution to this obstruction is in precise analogy to the scalar equations: it requires the
introduction of an extra higher rank tensor field, which in this case contains the (D− 2, 1)
Young tableaux. Thus, like in (6.17), a second duality relation has to be imposed, that
explicitly contains the energy-momentum tensor. It is intriguing that, therefore, all su-
pergravity equations can be written as first-order duality relations (assuming a sufficiently
large symmetry in the scalar sector).

Finally, it is interesting to contemplate the possible relation of our findings to the
E11 approach to supergravity [4–7]. In that context the formulation in terms of duality
relations seems to be more natural and thus the present analysis may be of relevance. In
this context we note the different status of the higher p-forms in the action and the duality
hierarchy. For instance, the incorporation of the top-form and next-to-top form potentials
in an action leads to complicated gauge transformation rules with an on-shell closed gauge
algebra [21]. It is unlikely that such a structure has a direct Kac-Moody origin. In contrast,
the gauge symmetries realized on the duality relations close off-shell in agreement with the
tensor hierarchy, and therefore a possible connection to Kac-Moody algebras appears to
be more promising. The Kac-Moody approach to supergravity has only been developed so
far for supergravities whose scalar sector is given by a coset manifold. It is precisely for
these cases that the duality hierarchy reproduces the full set of scalar equations of motion
and not just the projected ones. It would be of interest to extend both the Kac-Moody
approach as well as the duality hierarchy to supergravities whose scalar sector is given by
more general manifolds.

Note added: We would like to mention ref. [31], which was brought to our attention
after this paper has been submitted to the bulletin board. Section 4 of [31] also deals with
the D = 4 tensor hierarchy and has some overlap with our section 3.
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A Properties of the W tensors

The W tensors defined in Eqs. (3.57)-(3.59) satisfy the following properties:

ΘM
CWC

MAB = 2QAB , (A.1)

ΘM
CWCNPQ

M = LNPQ , (A.2)

ΘM
CWCNP

EM = 2QNP
E , (A.3)

∂QAB

∂ΘM
C

= WC
MAB , (A.4)

∂LNPQ

∂ΘM
C

= WCNPQ
M , (A.5)

∂QNP
E

∂ΘM
C

= WCNP
EM , (A.6)

δΘM
CWC

MAB = ΘM
CδWC

MAB = 1
2
δ(ΘM

CWC
MAB) = δQAB , (A.7)

δΘM
CWCNPQ

M = δLNPQ , (A.8)

δΘM
CWCNP

EM = ΘM
CδWCNP

EM = 1
2
δ(ΘM

CWCNP
EM) = δQNP

E , (A.9)

where QAB, QNP
E and LNPQ are the quadratic and linear constraints Eqs. (3.10), (3.13)

and (3.16) imposed on the embedding tensor and where we have not used the constraints
themselves.
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B Transformations and field strengths in the D = 4

tensor hierarchy

The gauge transformations of the different fields of the tensor hierarchy are

δhA
M = −DΛM − ZMAΛA , (B.1)

δhBA = DΛA + 2TA NP [ΛNF P + 1
2
AN ∧ δhA

P ] − YAM
CΛC

M , (B.2)

δhCA
M = DΛA

M − F M ∧ ΛA − δhA
M ∧ BA − 1

3
TA NPAM ∧ AN ∧ δhA

P + ΛMHA

−WA
MABΛAB − WANPQ

MΛNPQ − WANP
EMΛE

NP ,

δhDAB = DΛAB + αB[A ∧ YB]P
EΛE

P + DΛ[A ∧ BB] − 2Λ[A ∧ HB]

+2T[A|NP [ΛNF P − 1
2
AN ∧ δhA

P ] ∧ B|B] , (B.3)

δhDE
NP = DΛE

NP − [F N − 1
2
(1 − α)ZNABA] ∧ ΛE

P

+CE
P ∧ δhA

N + 1
12

TEQRAN ∧ AP ∧ AQ ∧ δhA
R + ΛNGE

P , (B.4)

δhD
NPQ = DΛNPQ − 2A(N ∧ dAP ∧ δhA

Q) − 3
4
XRS

(NAP | ∧ AR ∧ AS ∧ δhA
|Q)

−3Λ(NF P ∧ F Q) , (B.5)

and their gauge-covariant field strengths are

F M = dAM + 1
2
X[NP ]

MAN ∧ AP + ZMABA , (B.6)

HA = DBA + TA RSAR ∧ [dAS + 1
3
XNP

SAN ∧ AP ] + YAM
CCC

M , (B.7)

GC
M = DCC

M + [F M − 1
2
ZMABA] ∧ BC + 1

3
TC SQAM ∧ AS ∧ dAQ

+ 1
12

TC SQXNT
QAM ∧ AS ∧ AN ∧ AT

+WC
MABDAB + WCNPQ

MDNPQ + WCNP
EMDE

NP . (B.8)
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These field strengths are related by the following hierarchical Bianchi identities

DF M = ZMAHA , (B.9)

DHA = YAM
CGC

M + TA MNF M ∧ F N . (B.10)

C Gauge transformations in the D = 4 duality hierar-

chy and action

In hierarchy variables, the total action takes the form

S =

∫

{

⋆R − 2Gij∗DZ i ∧ ⋆DZ∗ j∗ + 2FΣ ∧ GΣ − ⋆V

−4ZΣABA ∧
(

FΣ − 1
2
ZΣ

BBB

)

− 4
3
X[MN ]ΣAM ∧ AN ∧

(

FΣ − ZΣBBB

)

−2
3
X[MN ]

ΣAM ∧ AN ∧
(

dAΣ − 1
4
X[PQ]ΣAP ∧ AQ

)

−2DϑM
A ∧ (CA

M + AM ∧ BA) + 2QNP
E(DE

NP − 1
2
AN ∧ AP ∧ BE)

+2QABDAB + 2LNPQDNPQ
}

.

(C.1)

A general variation of this action is given by

δS =

∫
{

δgµν
δS

δgµν
+

(

δZ i
δS

δZ i
+ c.c.

)

− δAM ∧ ⋆
δS

δAM
+ 2δBA ∧ ⋆

δS

δBA

−2DϑM
A ∧ δCA

M + 2QNP
EδDE

NP + 2QABδDAB + 2LNPQδDNPQ

+δϑM
A

δS

δϑM
A

}

,

(C.2)

where
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δS

δgµν
= ⋆I

{

Gµν + 2Gij∗ [DµZ
i
DνZ

∗ j∗ − 1
2
gµνDρZ

i
D

ρZ∗ j∗] − GM
(µ|

ρ ⋆ GM |ν)ρ

+1
2
gµνV

}

, (C.3)

1
2

δS

δZ i
= Gij∗D ⋆ DZ∗ j∗ − ∂iGM

+ ∧ GM+ − ⋆1
2
∂iV , (C.4)

−1
4
⋆

δS

δAM
= DFM − 1

4
ϑM

A ⋆ jA − 1
3
dX[PQ]M ∧ AP ∧ AQ + 1

2
QMP

ECE
P − 1

2
Q(NM)

EAN ∧ BE

−LMNP AN ∧
(

dAP + 3
8
X[RS]

P AR ∧ AS
)

+ 1
8
QNP

ETE QMAN ∧ AP ∧ AQ

−d(FM − GM) − X[MN ]
P AN ∧ (FP − GP ) + 1

2
DϑM

A ∧ BA , (C.5)

⋆
δS

δBA

= ϑPA(FP − GP ) + QABBB − DϑM
A ∧ AM − 1

2
QNP

AAN ∧ AP , (C.6)

1
2

δS

δϑM
A

= (GA
M − 1

2
⋆ ∂V/∂ϑM

A) − AM ∧ (HA + 1
2

⋆ jA)

+1
2
TANP AM ∧ AN ∧ (F P − GP ) − (F M − GM) ∧ BA , (C.7)

and vanishes, up to total derivatives, for the gauge transformations
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δaϑM
A = 0 , (C.8)

δaZ
i = ΛMϑM

AkA
i , (C.9)

δaA
M = δhA

M , (C.10)

δaBA = δhBA − 2TA NP ΛN(F P − GP ) , (C.11)

δaCA
M = δhCA

M + ΛA ∧ (F M − GM) − ΛM(HA + 1
2

⋆ jA) , (C.12)

δaDAB = δhDAB + 2Λ[A ∧ (HB] + 1
2

⋆ jB]) − 2T[A|NP ΛN(F P − GP ) ∧ B|B] ,(C.13)

δaDE
NP = δhDE

NP − ΛN(GE
P − 1

2
⋆ ∂V/∂ϑP

E) + 2(F N − GN) ∧ ΛE
P , (C.14)

δaD
NPQ = δhD

NPQ − 3δA(N ∧ AP ∧ (F Q) − GQ)) + 6Λ(NF P ∧ (F Q) − GQ))

−3Λ(N (F P − GP ) ∧ (F Q) − GQ)) . (C.15)
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