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Abstract. In this talk I will review the present status and future perspectives of some
popular extensions of the conventional three-neutrino oscillation scenario, from a purely
phenomenological point of view. For concreteness I will focus only on three specific scenarios:
non-standard neutrino interactions with matters, models with extra sterile neutrinos, and
neutrino decay and decoherence.

1. Introduction

Most of the talks presented at this conference are devoted to different aspects of what we
can call the “standard” neutrino oscillation scenario: only three neutrino flavors involved, no
interactions beyond those predicted by the Standard Model, and neutrino conversion completely
due to non-zero neutrino masses and mixing. In this talk I will instead focus on some of the
alternative models which along the years have been proposed as possible explanations of the
various neutrino anomalies. Since none of these models is presently able to account by itself for
all the experimental evidence, I will always consider the case where New Physics is introduced
in addition to the conventional neutrino masses, rather than in alternative to them. In this
context, I will discuss the implications of each model for neutrino oscillations, the bounds which
can be put on its parameter space from the analysis of present data, and the potentialities offered
by futures experiments to further improve these bounds.

The list of non-standard mechanisms for neutrino conversions proposed so far is very large:
it includes models of neutrino magnetic moment, long-range leptonic forces, mass-varying
neutrinos, violation of fundamental principles, and much more. For definiteness and lack
of space, I will focus here only on three models, which in my view have received most of
the attention during the last few years: non-standard interactions with matter, extra sterile
neutrinos, and neutrino decay and decoherence. Note that my approach in what follows will be
purely phenomenological: I will not make any reference to the theoretical motivations of each
model, focusing only on its experimental implications.

2. Non-standard interactions with matter

The effective low-energy Lagrangian for neutrino interactions with matter predicted by the
Standard Model is:

Leff
SM = −2

√
2GF

∑

β

(

[ν̄βγµLℓβ][f̄ γµLf ′] + h.c.
)

− 2
√

2GF

∑

P,β

gf
P [ν̄βγµLνβ][f̄ γµPf ] (1)
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Table 1. Present bounds at 90% CL on the NC-like NSI couplings εfP
αβ from non-oscillation

experiments. Limits have been obtained by varying each εαβ one at a time, with all the others
set to zero.

Left-handed Right-handed Process Experiment Reference

−0.03 < εeL
ee < 0.08 0.004 < εeR

ee < 0.15 νee → νe
ν̄ee → ν̄e

LSND
Reactors [5, 6]

−1 < εuL
ee < 0.3 −0.4 < εuR

ee < 0.7 νeq → νq CHARM [7]

−0.3 < εdL
ee < 0.3 −0.6 < εdR

ee < 0.5 νeq → νq CHARM [7]

|εeL
µµ| < 0.03 |εeR

µµ| < 0.03 νµe → νe CHARM II [6, 7]

|εuL
µµ | < 0.003 −0.008 < εuR

µµ < 0.003 νµq → νq NuTeV [7]

|εdL
µµ| < 0.003 −0.008 < εdR

µµ < 0.015 νµq → νq NuTeV [7]

−0.5 < εeL
ττ < 0.2 −0.3 < εeR

ττ < 0.4 e+e− → νν̄γ LEP [6,8]

|εuL
ττ | < 1.4 |εuR

ττ | < 3 rad. corrections τ decay [7]

|εdL
ττ | < 1.1 |εdR

ττ | < 6 rad. corrections τ decay [7]

|εeL
eµ | < 0.0005 |εeR

eµ | < 0.0005 rad. corrections µ → 3e [7]

|εuL
eµ | < 0.0008 |εuR

eµ | < 0.0008 rad. corrections Tiµ → Ti e [7]

|εdL
eµ | < 0.0008 |εdR

eµ | < 0.0008 rad. corrections Tiµ → Ti e [7]

|εeL
eτ | < 0.33 |εeR

eτ | < 0.28 νee → νe LEP+LSND+Rea [6,8]

|εuL
eτ | < 0.5 |εuR

eτ | < 0.5 νeq → νq CHARM [7]

|εdL
eτ | < 0.5 |εdR

eτ | < 0.5 νeq → νq CHARM [7]

|εeL
µτ | < 0.1 |εeR

µτ | < 0.1 νµe → νe CHARM II [6, 7]

|εuL
µτ | < 0.05 |εuR

µτ | < 0.05 νµq → νq NuTeV [7]

|εdL
µτ | < 0.05 |εdR

µτ | < 0.05 νµq → νq NuTeV [7]

where the first and the second term describe charged-current (CC) and neutral-current (NC)

interactions, respectively. Here P ∈ {L,R}, (f, f ′) form an SU(2) doublet, and gf
P is the Z

coupling to the fermion f . Non-standard neutrino-matter interactions (NSI) can be introduced
by generalizing each term of Eq. (1). CC-like NSI are severely constrained by their implications
in the charged-lepton sector, and although it has been shown that there is still room for sizable
effects at neutrino experiments [1–4], they are usually ignored in the literature, so I will not
discuss them here. As for NC-like NSI, a common parametrization is:

Leff
NSI = −2

√
2GF

∑

P,α,β

εfP
αβ [ν̄αγµLνβ][f̄ γµPf ] with εfP

βα = (εfP
αβ )∗ (2)

where εfP
αβ denotes the strength of the non-standard interactions between the neutrinos of flavors

α and β and the left-handed or right-handed components of the fermion f .

In Table 1 we summarize the present limits on εfP
αβ from various non-oscillation experiments.

Clearly only the interactions of neutrinos with the constituents of ordinary matter, f = e, u, d,
are experimentally accessible. As can be seen, the bounds are usually at the percent level when
a νµ is involved, weak but still relevant (better than unity) when a νe is present, and almost
nonexistent for ντ . Note that these limits have been obtained by varying each εαβ one at a time;



in general, when correlations among different εαβ are included the bounds become weaker [5,6].
What can we learn on non-standard interactions from oscillation experiments? Neutrino

production usually occurs through CC processes, hence it is not affected by NC-like NSI. High-
energy (above 100 MeV) neutrinos are detected through the observation of the charged lepton
produced in CC interactions, but some solar neutrino experiment uses signatures sensitive to NC
processes (for example, ν +e → ν +e elastic scattering in SK and Borexino, or ν +d → ν +p+n
in SNO). As for neutrino propagation, in the presence of NSI an extra term appears in the

matter potential, V NSI
αβ =

√
2GF

∑

f NfεfV
αβ , with εfV

αβ = εfL
αβ + εfR

αβ . Hence neutrino oscillation
experiments can provide information on non-standard interactions. Note that due to the very

strong bounds on εfP
µµ and εfP

eµ (see Table 1) it is common practice in numerical analyses to

assume εfV
µµ = 0 and εfV

eµ = 0 from the very beginning.
The impact of NSI on solar neutrinos has been studied in detail. One interesting fact is that

the observed deficit of solar ν can be perfectly explained by NSI only, i.e. without the need
of mass-induced oscillations [9, 10]. However, KamLAND is not affected by NSI and requires
∆m2

21 6= 0, hence this pure NSI solution is no longer interesting. Combined oscillation + NSI
analyses of solar and KamLAND data have therefore been performed [11–13], but the bounds
they impose on the NSI parameters are very weak. Hence at present no interesting information
on NSI can be extracted from solar data. Note, however, that none of these analyses takes into
account the Borexino result presented at this conference.

The situation for atmospheric neutrinos is quite different. Although a complete three-neutrino
analysis cannot be done due to the very high number of parameters involved, partial analyses
have been performed. NSI in the µ − τ sector (εeα = εαe = 0) have been studied in [14, 15],
finding that the bounds on the NSI parameters implied by atmospheric data are very strong. The
most recent fit including also accelerator experiments [16] gives |εV

µτ | ≤ 0.038 and |εV
ττ | ≤ 0.12 at

90% CL, with εV
αβ ≡ εeV

αβ +3εuV
αβ +3εdV

αβ (the factor 3 is the approximate Nu/Ne and Nd/Ne ratio

in the Earth matter). Note that the bounds on εττ listed in Table 1 are more than one order
of magnitude weaker. NSI in the e − τ sector (εµα = εαµ = 0) have been considered in [17–19],
and in this case the sensitivity to the NSI parameters is much poorer. In particular, the bound
on εV

eτ is of order unity, hence worse than those imposed by non-oscillation experiments. As for
the bound on εV

ττ previously quoted, it still hold provided that it is reinterpreted as a bound
on the combination εV

ττ − |εV
eτ |2/(1 + εV

ee). This demonstrates that correlations among different
parameters can have very important consequences.

Let us now turn to future experiments. The potentialities of neutrino factories for the
determination of NSI parameters was first considered in [20], where it was shown that they
will provide complementary information to atmospheric neutrino experiments. However, it was
soon realized that due to degeneracies between NSI and oscillation parameters the sensitivity
of a neutrino factory to θ13 could be seriously spoiled in the presence of NSI [1, 21]. The
situation became less dramatic if data from two different baselines were combined [21]. More
recent studies confirm these results, and show that while an experiment with a single baseline
is strongly affected by degeneracies [2], a two-baseline configuration (e.g., 3000–4000 and 7000–
7500 km) can simultaneously provide a robust determination of the oscillation parameters and
strong constraints on non-standard interactions [22–24].

The potentialities of forthcoming and long-term facilities have been discussed in a number of
papers. Coherent scattering of low energy neutrinos is very sensitive to NSI with quarks, and
offers the possibility to improve dramatically the bounds on εqV

ee and εqV
eτ [25,26]. In the context of

solar neutrinos, the precise measurement of the 7Be line in Borexino can provide very important
information on NSI [27]. The sensitivity to θ13 of MINOS [28] and of beta-beams [29] can be
seriously spoiled if NSI are present; this problem, which affects all single-baseline experiments,
can be efficiently resolved by the combination with a reactor experiment [3]. OPERA is too small
to provide any useful information on εV

eτ and εV
ττ [30], but it may help in the determination of



εV
µτ [31], to which T2KK will also have a good sensitivity [32].

3. Models with extra sterile neutrinos

In April 2007 the MiniBooNE collaboration released their first data [33] on a search for νµ → νe

appearance with a baseline of 540 m and a mean neutrino energy of about 700 MeV. This
experiment did not find any signal compatible with two-neutrino oscillations, however an
unexplained 3.6σ excess was observed in the low-energy region. The primary purpose of this
experiment was to test the evidence of ν̄µ → ν̄e transitions reported by the LSND experiment at
Los Alamos [34] with a very similar L/E range. Since the mass-squared differences required to
explain the solar, atmospheric and LSND experimental results in terms of neutrino oscillations
differ from one another by various orders of magnitude, there is no consistent way to reconcile
these three signals using only oscillations among the three known neutrinos. A popular way to
solve the LSND problem is to invoke an extension of the three-neutrino mixing scenario, where
at least three mass-square differences are available due to the introduction of one or more extra
(sterile) neutrino states. An updated analysis of such models including also the MiniBooNE
result was presented in Ref. [35]. It was found that:

• four-neutrino models are ruled out since (a) the don’t allow to account for the low energy
event excess in MiniBooNE, (b) MiniBooNE result cannot be reconciled with LSND, and
(c) there is severe tension between appearance (νe → νµ and νµ → νe) and disappearance

(νe → νe and νµ → νµ) experiments;

• five-neutrino models provide a nice way out for problems (a) and (b), but fail to resolve (c);

• six-neutrino models do not offer qualitatively new effects with respect to the previous case.

In all the cases the authors find severe tension between different sub-samples of the data, hence
they conclude that at the light of present experimental results it is not possible to explain the
LSND evidence in terms of sterile neutrinos.

Since the existence of sterile neutrinos beyond the three known ones is a very interesting issue
by itself, it is worth to consider it irrespectively of whether the LSND anomaly is confirmed or
not. A number of studies discussing the sensitivity of future experiments to extra sterile states
have been presented, in the context of Opera [36], of neutrino factories [37–39], of β-decay
experiments [40], and of neutrino telescopes [41–43]. It should be noted that all these works still
assume that the extra neutrinos are heavier than about 1 eV, whereas once LSND is dropped
there is no reason to make any assumption on the mass of the sterile states. However, this
general case has been considered only in a very few works [44–47].

4. Neutrino decay and decoherence

Although the theoretical motivations for neutrino decay and neutrino decoherence are very
different, they are characterized by the same phenomenological signature: an exponential
damping of the flavor conversion probabilities. Hence we will discuss them together.

Concerning neutrino decay, from the phenomenological point of view we should distinguish
two possible situation: νi →

(−)
νj +X, i.e. when the decay product include one (or more) detectable

neutrinos, and νi → X, i.e. when the decay products are completely invisible. In the first case,
the energy distribution of the daughter neutrino(s) is model-dependent, whereas in the second
case the process is completely described by the neutrino lifetime τi and the evolution equation
is obtained by adding an imaginary part to the vacuum Hamiltonian, Hm

0 → Hm
0 − iΓm

0 , with

Hm
0 =

1

2Eν
diag

(

0,∆m2
21,∆m2

31

)

and Γm
0 =

1

2Eν
diag

(

m1

τ1

,
m2

τ2

,
m3

τ3

)

. (3)

Note that since the neutrino masses mi are unknown, one typically quotes τi/mi as the neutrino
lifetime. Interference effects between oscillations and decay [48] are usually neglected.



Table 2. Present bounds on neutrino decoherence in different two-neutrino oscillation channels,
assuming a power law dependence γ(Eν) = κn(Eν/GeV)n. Bounds marked as “old” are in the
same units as the corresponding “new” ones, and are taken from [59,60].

νe → νx (95% CL) νµ → ντ (90% CL)

κsol
−2 < 8.1 × 10−29 GeV κatm

−2 < 1.9 × 10−22 GeV

κsol
−1 < 7.8 × 10−27 GeV κatm

−1 < 1.2 × 10−22 GeV (old: 20)

κsol
0 < 6.7 × 10−25 GeV κatm

0 < 2.7 × 10−24 GeV (old: 35)

κsol
+1 < 5.8 × 10−23 GeV κatm

+1 < 3.8 × 10−27 GeV

κsol
+2 < 4.7 × 10−21 GeV κatm

+2 < 2.4 × 10−30 GeV (old: 900)

In general, the strength of the bounds on the neutrino lifetimes increases with the baseline of
the experiment imposing them. The best limit follows from the observation of neutrino events
associated with the explosion of SN1987A, which leads to a bound τ1/m1 & 105 s/eV [49] on
the lifetime of the lightest neutrino state ν1. Bounds on ν2 lifetime are much weaker, and
are dominated by solar neutrino data. For the case of invisible decay, the non-observation
of ν2 disappearance implies τ2/m2 & 8.7 × 10−5 s/eV at 99% CL [50, 51], although it has been
pointed out that this limit may not hold for quasi-degenerate neutrinos [52]. As for decay modes
with secondary ν̄e appearance, KamLAND [53] and SNO [54] performed dedicated searches for
antineutrinos coming from the Sun, yielding τ2/m2 > 1.1 × 10−3 s/eV for hierarchical masses
and τ2/m2 > 6.7 × 10−2 s/eV for quasi-degenerate masses [53]. Limits on ν3 lifetime follow
from the analysis of atmospheric and long-baseline neutrino data, and given the much shorter
path length they are considerably weaker than those quoted so far. A pure decay solution
(∆m2

31 = 0) of the atmospheric deficit was still possible until a few years ago [55], but it is
now ruled out by Super-Kamiokande [56]. Interestingly, atmospheric data also admit an hybrid
oscillation + decay solution [57] with τ3/m3 ≃ 2.6×10−12 s/eV and θ23 = 34◦, which is however
ruled out by MINOS, leading to the bound τ3/m3 > 2.9 × 10−10 s/eV at 90% CL [58].

Neutrino decoherence can arise from a number of very different phenomena: averaging due to
finite detector resolution, finite-size of the neutrino wave-packet, quantum-gravity interactions
of neutrinos with the space-time “foam”, and so on. Phenomenologically, decoherence lead to
the appearance of a damping term D[ρ] in the evolution equation of the neutrino density matrix
ρ: dρ/dt = −i[H, ρ]−D[ρ]. The specific form of D[ρ] is model-dependent, however it is common
in the literature to make a number of conservative assumptions (complete positivity, unitarity,
increase of the Von Neumann entropy, and conservation of energy in vacuum) which lead to
the simple expression D[ρ] =

∑

ℓ[Dℓ, [Dℓ, ρ]] with Dℓ = diag(dℓ1, dℓ2, dℓ3) in the vacuum mass
basis. In this case the evolution equation in vacuum can be solved analytically, and three new
parameters γji =

∑

ℓ(dℓj − dℓi)
2 appear in addition to the usual ones. Note that in general γji

can depend on the neutrino energy.
Phenomenological analyses performed so far focus on two-neutrino oscillations, for which only

one γ at a time is relevant. Decoherence involving νe is constrained by KamLAND [61] as well
as solar neutrino data [62]. For KamLAND, the relevant probability can be written explicitly,

Pee = 1 − 1

2
sin2(2θ)

[

1 − e−γsolL cos

(

∆m2L

2Eν

)]

, (4)

whereas for solar neutrinos matter effects cannot be neglected. The limits implied by a combined
analysis of both experiments [62] assuming a power law dependence γsol(Eν) = κsol

n (Eν/GeV)n

are listed in Table 2. Decoherence in the νµ → ντ channel has been studied in the context



of atmospheric and accelerator neutrino experiments. Similarly to the case of neutrino decay,
a pure decoherence solution was originally allowed [59], but it is now ruled out at more than
3σ [56]. A combined oscillation + decoherence fit for γatm(Eν) = κatm

n (Eν/GeV)n was first
presented in [59, 60]; updated results including the latest SK-I and SK-II data as well as K2K
and MINOS are reported in Table 2.

Various attempts have been made to explain the LSND results in terms of neutrino decay
or decoherence in combination with oscillations, but usually other kinds of New Physics are
needed as well: for example, decay + sterile neutrinos [63], decoherence + CPT-violation [64],
decoherence with unusual L dependence [65], and so on. A very interesting model recently
proposed [66] involves oscillations plus decoherence in the general three-neutrino scenario:
assuming γ21 = 0 and γ31(Eν) = γ32(Eν) = κatm

−4 (Eν/GeV)−4, this model succeeds to reconcile
all the experimental evidence, except for the MiniBooNE low-energy excess, provided that
κatm
−4 = 1.7 × 10−23 GeV and sin2 θ13 > (2.6 ± 0.8) × 10−3.

Only a few studies have been performed to investigate the sensitivity of future neutrino
facilities to neutrino decay and decoherence. In [67] it was shown that decoherence effects can
fake the determination of θ13 at reactor experiments, and that a neutrino factory can easily
identify the presence of neutrino decay, whereas its ability to recognize decoherence depends on
the specific shape of γ(Eν). In [68] it was found that the bounds on decoherence parameters
which can be put by CNGS and T2K are comparable with those derived from atmospheric
neutrinos. A similar result also holds for T2KK [32], which in the context of decoherence
models it is shown to be systematically better than the separate Kamioka-only and Korea-only
configurations. On the other hand, the potentialities of future neutrino telescopes to detect
decay and decoherence signatures have received considerable attention. Concerning neutrino
decay [69–72], due to the extremely long distance traveled by astrophysical neutrinos their
sensitivity to the neutrino lifetime is many orders of magnitude larger than conventional ground-
based experiments. Moreover, neutrino decay can break the 1 : 1 : 1 flavor ratio expected from
a π-decay source, hence opening the possibility to measure oscillation parameters at neutrino
telescopes [72]. As for decoherence, under our restrictive assumptions it is indistinguishable
from averaged oscillations, however more general scenarios predicting unique signatures have
been considered [73,74].

5. Conclusions

In this talk I have discussed the phenomenological implications of different non-standard
mechanisms for neutrino conversion. I have focused on three specific cases: non-standard
neutrino interactions with matters, models with extra sterile neutrinos, and neutrino decay and
decoherence. For what concerns non-standard interactions, we have shown that present bounds
on NSI parameters are affected by strong degeneracies, which could spoil the sensitivity to θ13

of future long-baseline experiment and neutrino factories, but which can be efficiently resolved
by the combination of experiments with two different baselines. Concerning sterile neutrino
models, we have proved that none of them succeed in reconciling LSND with the results of
the other neutrino oscillation experiments. As for neutrino decay and decoherence, we have
reviewed and updated the present limits on the damping parameters, pointing out that future
reactor and accelerator facilities can further enhance these limits and that neutrino decay can
have non-trivial implications for neutrino telescopes.
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