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Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain

PH-TH Department CERN, 1211 Genève 23, Switzerland
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Abstract: Gravitational waves were copiously produced in the early Universe whenever

the processes taking place were sufficiently violent. The spectra of several of these gravita-

tional wave backgrounds on subhorizon scales have been extensively studied in the litera-

ture. In this paper we analyze the shape and amplitude of the gravitational wave spectrum

on scales which are superhorizon at the time of production. Such gravitational waves are

expected from the self ordering of randomly oriented scalar fields which can be present

during a thermal phase transition or during preheating after hybrid inflation. We find

that, if the gravitational wave source acts only during a small fraction of the Hubble time,

the gravitational wave spectrum at frequencies lower than the expansion rate at the time

of production behaves as ΩGW(f) ∝ f3 with an amplitude much too small to be observable

by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the

source is active for a much longer time, until a given mode which is initially superhorizon

(kη∗ ≪ 1), enters the horizon, for kη & 1, we find that the gravitational wave energy

density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT

scale scenario turns out to be within the range and sensitivity of BBO and marginally

detectable by LIGO and LISA. This new gravitational wave background can compete with

the one generated during inflation, and distinguishing both may require extra information.

Keywords: Gravitational wave background, inflationary cosmology, reheating the

Universe, thermal phase transitions.
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1. Introduction

Gravitational waves (GWs) are produced in the late Universe via cataclismic astrophysical

events like hypernovae and inspiralling binaries. Because gravity is so weak, it is extremely

difficult to detect directly with present day interferometers [1]. On the other hand, dur-

ing the violent processes which we expect took place in the very early Universe, several

stochastic backgrounds of GWs of significant energy may be produced, although their am-

plitude today is drastically reduced by the expansion of the Universe, making them equally

difficult to detect [2]. Their discovery may however be possible in the near future, opening

a completely new window into the uncharted territory of the very early Universe. For this

we must determine the detailed GW spectrum, which strongly depends on the physical

processes generating them.

In the last few years there has been significant progress in the experimental prospects

for detecting GWs with interferometers like LIGO and VIRGO and the future satellite

mission LISA. This has stimulated research for sources of primordial GWs from the early

Universe, either from hypothetical first order phase transitions [3, 4, 5, 6, 7, 8] or from the

process of reheating after inflation [9, 10, 11, 12, 13, 14, 15, 16].

The mechanism responsible for GW production during these early Universe phenomena

is typically a causal process, like bubble collisions or turbulence, giving rise to spectra

which peak at wavelengths that are well within the causal horizon during their generation.

Thus, most of past analyses concentrate on contributions of GWs with wavelengths smaller
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than the horizon at the time of production, with the exception of those generated during

inflation [17], which are stretched by the inflationary expansion.

In this paper we study the infrared behaviour of the GW spectrum produced either

during preheating or during first order phase transitions, on scales which are superhorizon

at the time of formation, i.e. k < H∗, where k and H∗ are the comoving momentum

and inverse horizon. We want to study a causal process of symmetry breaking like hybrid

preheating [18, 19, 20, 21, 22, 23], where the order parameter has global O(N) symmetry

in the false vacuum and, upon symmetry breaking, the N fields undergo self-ordering on a

given scale as soon as they enter the horizon, in particular on scales much larger than the

inverse mass of the field in the true vacuum.

We consider a multi-component scalar field which obtains a non-zero vacuum expecta-

tion value (vev) v and a mass m, during a symmetry breaking process. We shall assume

that this mass m is much larger than the Hubble parameter H∗ at the time of the tran-

sition, since if the vev in the true vacuum is much smaller than the Planck scale, then

H∗ ∼ m v/Mp ≪ m. Such a model could describe the symmetry breaking process which

triggers the end of hybrid inflation or a thermal phase transition. As long as we are only

interested in superhorizon scales, k ≫ H∗, we can neglect the radial, massive mode and

treat the dynamics within the non-linear sigma-model (NLSM) approximation. On large

scales, the anisotropic stresses are determined by gradient energy and the typical (comov-

ing) scale is simply the time dependent horizon scale H−1. The field self-orders at the

horizon scale, and the source of GWs decays inside the horizon. For scalar metric pertur-

bations this process has been studied e.g. in Ref. [24]. It is very closely related to the

scaling of global topological defects [25] even though for a number of components N > 4

there are no topological defects associated with such a scalar field in 3 + 1 dimensions.

We work in the large N approximation within which the scalar field equation of motion,

for scales larger than the inverse mass, k ≪ m, can be solved analytically. The GW

spectrum will then be estimated by analytical approximations, introducing the anisotropic

stress tensor sourced by the field fluctuations at different scales.

Tensor perturbations from a NLSM in the large N approximation have also been stud-

ied in Ref. [26, 27], see also [28]. There the authors have calculated the tensor perturbation

spectrum for scales which enter the horizon in the matter era and they have compared this

with the inflationary signal in the CMB. Here we shall concentrate on the radiation dom-

inated era and the detection of the signal in direct gravitational wave experiments like

advanced LIGO [29], LISA [30] and BBO [31].

The paper is organized as follows. In the next section we describe the formalism, derive

the scalar field solutions and calculate the unequal time anisotropic stress correlators which

source GWs. In Section 3 we study the production of GWs from long wavelength modes

of this source. We derive a general formula that can be applied to different situations,

depending how long the GW source is acting. In Section 4 we use this result to determine

the shape and amplitude of the GW spectrum in two situations, first the case of a source

producing GWs only during a small fraction of the Hubble time and, second, the case in

which the source producing GWs acts for a much longer time, until a given mode which

is initially superhorizon, kη∗ ≪ 1, enters the Hubble radius, kη ≃ 1. In Section 5 we

summarize our results and conclude.

Notation Throughout this paper we assume a spatially flat Friedmann Universe with
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metric

ds2 = a2(η)
(

−dη2 + δijdxidxj
)

, (1.1)

where η denotes conformal time and we normalize the scale factor to unity today, a(η0) = 1.

The comoving Hubble rate is H = a′/a, while H = a′/a2 is the physical one. The prime

denotes derivative w.r.t. conformal time η.

2. Formalism

We first introduce the NLSM and the large N limit of a global O(N) symmetric scalar

field, then we study the physics of the correlators of the anisotropic stress tensor.

2.1 The model

We consider an N -component scalar field with a Lagrangian

L = L0 + L1 = −∂µΦT∂µΦ − λ

(

ΦTΦ − v2

2

)2

+ L1 , (2.1)

where ΦT = (φ1, φ2, ..., φN )/
√

2, λ is the dimensionless self-coupling of Φ and v is the vev

in the true vacuum. In the case of a thermal bath at high temperature, the Lagrangian

L0 obtains corrections of the form L1 ∼ −T 2Φ2, so that its minimum is at Φ = 0 which

respects the global O(N) symmetry of the Lagrangian. At low temperature, T < Tc ≃ v,

the thermal corrections are too small to the keep the minimum at Φ = 0 and the global

O(N) symmetry is spontaneously broken to O(N −1). In the context of hybrid preheating,

there is no need for thermal restoration of the symmetry. The field Φ acquires a large mass

during inflation through its coupling to the inflaton χ, L1 = −g2ΦTΦχ2. Above a critical

value, χ > χc ≡
√

λv/g, the effective quadratic mass of Φ is positive and the field is fixed at

Φ = 0. When the quadratic mass becomes negative, χ < χc, a tachyonic instability triggers

the end of inflation and symmetry breaking. Soon after the symmetry is broken, thermal

corrections and tachyonic effects can be neglected, and Φ is closely confined (in most of

space) to the vacuum manifold, given by
∑

a φ2
a(x, η) = v2. Nevertheless, in positions

such that their comoving distance is |x − x′| > H−1, the values Φ(x, η) and Φ(x′, η) are

uncorrelated, which leads to a gradient energy density associated to the N − 1 Goldstone

modes, ρ ∼ (∂iΦ)2. For N > 2, the dynamics of the Goldstone modes is well described by

a NLSM [32, 25] where we force
∑

a φ2
a = v2 by a Lagrange multiplier. This corresponds

to the limit λ → ∞ in the above Lagrangian. This approximation is very good for physical

scales with are much larger than m−1 ≡ 1/(
√

λv). Of course, on small scales the field

fluctuations still oscillates around the true vev, but in this paper we only focus on the

superhorizon modes which are free to wander around in the vacuum manifold, giving rise

to a gradient energy density which will generate GWs on these scales.

Normalizing the symmetry breaking field to its vev, β ≡ Φ/v, each component of the

field obeys the non-linear sigma model evolution equation [24]

�βa − (∂µβ · ∂µβ)βa = 0 , (2.2)

where (∂µβ ·∂µβ) =
∑

a ηµν∂µβa(x, η)∂νβa(x, η) and
∑

a βa(x, η)βa(x, η) = 1. In the large

N -limit, we assume that the sum over components can be replaced by an ensemble average,

T (x) =
∑

a

ηµν∂µβa∂νβ
a = N〈ηµν∂µβa∂νβa〉 = T̄ (η) . (2.3)
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By dimensional considerations, T ∝ H2, or

T̄ (η) = Toη
−2 , (2.4)

with To > 0. Replacing the non-linearity in the sigma-model by this expectation value we

obtain a linear equation which can be solved exactly. In Fourier space it reads

βa ′′

k +
2γ

η
βa ′

k +

(

k2 − To

η2

)

βa
k = 0 , (2.5)

where γ = d log a/d log η and primes denote derivatives w.r.t. η. In a radiation dominated

Universe γ = 1 while in a matter dominated Universe γ = 2. The solution to Eq. (2.5) for

constant γ is given by

βa(k, η) = (kη)
1
2
−γ
[

C1(k)Jν(kη) + C2(k)Yν(kη)
]

, (2.6)

where

ν2 =

(

1

2
− γ

)2

+ To , (2.7)

and C1, C2 are constants of integration. Thus, ν > 1/2 for a radiation dominated Universe

and ν > 3/2 for matter domination. Since in general we have that ν > 0, Yν diverges for

small argument, so we will keep only the regular mode of the solution Jν , which can be

written as

βa(k, η) =
√

A

(

η

η∗

)
1
2
−γ Jν(kη)

(kη∗)ν
βa(k, η∗) , (2.8)

where βa(k, η∗) is the a-th component of the field at the initial time η∗. We assume that β is

initially Gaussian distributed with a scale-invariant spectrum on large scales and vanishing

power on small scales

〈βa(k, η∗)β
∗b(k′, η∗)〉 =

{

(2π)3C δab

N δ(k − k′) , kη∗ ≪ 1
0 , kη∗ > 1 .

(2.9)

This means that the field is aligned on scales smaller than the comoving horizon η∗ and

has arbitrary orientation on scales larger than η∗. The condition that β2 = 1 actually

introduces correlations between the different components of β but these lead to corrections

of order 1/N to the above expression which we will neglect here. We also do not enter into

the details of the decay of this function around kη∗ = 1. The constant C is chosen such

that the normalization condition is satisfied (up to corrections of order 1/N),

β2(x, η∗) ≡ 〈β2(x, η∗)〉
(

1 + O(1/N)
)

≃
∫

d3k

(2π)3
d3k′

(2π)3
〈βa(k, η∗)β

∗a(k′, η∗)〉eix·(k−k
′) ≃ C

6π2η3
∗

= 1 . (2.10)

In the large N -limit we neglect the corrections of order 1/N which come from the fluctua-

tions in β2. On large scales this is a very good approximation. However, on small scales,
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and in particular, on scales comparable with the inverse of the mass of the symmetry break-

ing field, m−1, the fluctuations are certainly not negligible. In our analysis we consider

only large scales, where the above approximation is valid.

In order for 〈β2〉 to be time independent we need that the equal time correlator be

fixed to one:

〈β2(k, η)〉 = A C
∫

d3k

(2π)3

(

η

η∗

)(1−2γ) J2
ν (kη)

(kη∗)2ν

≃ 3A

(

η∗
η

)2(1+γ−ν) ∫ ∞

0
dyy2(1−ν)J2

ν (y) = 1 , (2.11)

where we have substituted C = 6π2η3
∗ and we have set y = kη. Note that the upper limit

is actually η/η∗, but at late times, the (dimensionless) integral is insensitive to the upper

boundary, so we can take it to infinity and thus make the integral free of any time scale.

In order to obtain a time-independent vev, we then just require

ν = γ + 1 . (2.12)

Introducing this relation into Eq. (2.7), one obtains To in terms of γ as

To = 3(γ + 1/4) . (2.13)

The constant A is determined then by the condition

1 = 3A

∫

∞

0
dyy2(1−ν)J2

ν (y) , hence A =
4Γ(2ν − 1/2)Γ(ν − 1/2)

3Γ(ν − 1)
. (2.14)

Since ν = γ + 1, we can also write the amplitude of the field fluctuations, as

βa(k, η) =
√

A

(

η

η∗

)3/2 Jν(kη)

(kη)ν
βa(k, η∗) . (2.15)

2.2 Unequal time correlators

From Eqs. (2.9) and (2.15) we obtain the following expression for the unequal time corre-

lator of the field:

〈

βa(k, η)β∗b(k′, η′)
〉

= A

(

ηη′

η2
∗

)3/2 Jν(kη)Jν(k′η′)

(kη)ν(k′η′)ν

〈

βa(k, η∗)β
∗b(k′, η∗)

〉

= (2π)36π2A(ηη′)3/2 Jν(kη)Jν(kη′)

(kη)ν(kη′)ν
δab

N
δ(k − k′)

≡ (2π)3δ(k − k′)Pab
β (k, η, η′) . (2.16)

We assume that the field β is Gaussian distributed initially. As its time evolution

is linear, it will remain a Gaussian field and we can determine higher order correlators

via Wick’s theorem. This will be important in the next section when we determine the

unequal time correlator of the anisotropic stresses which source the production of GWs.

– 5 –



Furthermore, this source is totally coherent [25] in the sense that its unequal time correlator

Pab
β (k, η, η′) is a product of a function of η and η′,

Pab
β (k, η, η′) =

δab

N
6π2A(ηη′)3/2 Jν(kη)Jν(kη′)

(kη)ν(kη′)ν
≡ δab

N
f(k, η)f(k, η′) , (2.17)

with f(k, η) =
√

6π2A k3/2 Jν(kη)

(kη)ν−3/2
.

Note the k3/2 scaling law at horizon crossing (kη ∼ 1) which is characteristic for quantum

fluctuations from de Sitter, i.e. inflation. This already hints to the fact that we will find

a scale-invariant spectrum also in this case.

3. The production of gravitational waves

In this section we derive a general formula for the GW power spectrum sourced by super-

horizon modes of a self ordering field. We also comment about the frequency range for the

GW background produced in this way.

Let us consider tensor perturbations (GWs) of the metric,

ds2 = a2(η)(ηµν + 2hµν)dxµdxν , (3.1)

where hij is traceless, hi
i = 0, and divergence free, ∂ihij = 0. Linearizing Einstein’s

equations yields the evolution equation of GWs sourced by the anisotropic stresses of the

scalar fields Φ,

h′′
ij(x, η) + 2H h′

ij(x, η) −∇2hij(x, η) = 8πGΠij(x, η) , (3.2)

where Πij represents the TT part of the (effective) anisotropic stress tensor

Tij(x, η) = ∂iφ
a(x, η)∂jφ

a(x, η) − 1

3
δij [∇φa(x, η)]2 . (3.3)

Fourier transforming the GW evolution equation (3.2) we obtain

h′′
ij(k, η) + 2H h′

ij(k, η) + k2hij(k, η) = 8πGΛij,lm(k̂)Tlm(k, η) (3.4)

where the projector

Λij,lm(k̂) ≡ Pil(k̂)Pjm(k̂) − 1

2
Pij(k̂)Plm(k̂) ,

Pij(k̂) ≡ δij − k̂ik̂j , k̂ ≡ k/k ,

filters out the TT part of the Fourier transformed effective anisotropic stress tensor

Πij(k, η) = Λij,lm(k̂)

∫

d3q

(2π)3
qlqm φa(q, η)φa(k − q, η) . (3.5)

Note that we are summing over repeated indices both in coordinates and in field compo-

nents.
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The 2-point correlation function of the tensorial part of the anisotropic stress-tensor

is of the form
〈

Πij(k, η)Π∗
lm(k′, η′)

〉

≡ (2π)3δ(k − k′)Π2(k, η, η′)Mijlm(k̂) , (3.6)

where

Mijlm(k̂) =
1

4

[

Λij,lm(k̂) + Λij,ml(k̂)
]

. (3.7)

Since the trace Mijij = 1,

〈

Πij(k, η)Π∗
ij(k

′, η′)
〉

≡ (2π)3δ(k − k′)Π2(k, η, η′) . (3.8)

To determine Π2(k, η, η′), we compute
〈

Πij(k, η)Π∗
ij(k

′, η′)
〉

explicitly using Wick’s theo-

rem to reduce 4-point functions of the field to products of 2-point functions

〈

Πij(k, η)Π∗
lm(k′, η′)

〉

=

= Λij,pq(k̂)Λlm,rs(k̂
′)

∫

d3q

(2π)3
d3q′

(2π)3
qpqqq

′
rq

′
s

〈

φa(q, η)φa(k− q, η)φ∗b(q′, η′)φ∗b(k − q, η′)
〉

=

∫

d3q d3q′

(2π)6
(

qTΛq
)

ij

(

q′
T
Λq′
)

lm

[〈

φa(q, η)φ∗a(q − k, η)〉〈φb(−q′, η′)φ∗b(k′ − q′, η′)
〉

+

+
〈

φa(q, η)φ∗b(q′, η′)
〉〈

φa(k − q, η)φ∗b(k′ − q′, η′)
〉

+

+
〈

φa(q, η)φ∗b(k′ − q′, η′)
〉〈

φa(k− q, η)φ∗b(q′, η′)
〉]

=

∫

d3q d3q′
(

qTΛq
)

ij

(

q′
T
Λq′
)

lm

[

Paa
φ (|q|, η, η)Pbb

φ (|q′|, η′, η′) δ(k)δ(k′)

+ Pab
φ (|q|, η, η′)Pab

φ (|k − q|, η, η′) δ(q − q′)δ(k − q − k′ + q′)

+ Pab
φ (|q|, η, η′)Pab

φ (|k − q|, η, η′) δ(q′ + q − k′)δ(q′ + q − k)
]

(3.9)

where we use the notation
(

qTΛq
)

ij
≡ qlΛij,lmqm and we have introduced the reality

condition φ∗(k) = φ(−k) and the unequal time correlator of the field φ which is defined in

the same way as the one for β,

〈φa(k, η)φ∗b(k′, η′)〉 = (2π)3δ(k − k′)Pab
φ (k, η, η′) . (3.10)

The zero-mode of the anisotropic stresses vanishes due to isotropy so that the first term in

the square bracket of the integral (3.9) does not contribute.

We now can compute the unequal time correlator
〈

Πij(k, η)Π∗
ij(k

′, η′)
〉

. Using

(

qTΛq
)

ij

(

qTΛq
)

ij
=

1

2
q4
(

1 − (k̂ · q̂)2
)2

, (3.11)

we obtain

Π2(k, η, η′) =

∫

d3q

(2π)3
q4
[

1 − (k̂ · q̂)2
]2

Pab
φ (|q|, η, η′)Pab

φ (|k − q|, η, η′) . (3.12)
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We now relate the GW energy density spectrum to the unequal time anisotropic stress

spectrum of the source, Π2(k, η, η′). For this we first write the GW evolution equation in

momentum space,

h′′
ij + 2

a′

a
h′

ij + k2hij = 8πGΠij . (3.13)

Defining a new variable h̄ij ≡ ahij , one obtains

h̄′′
ij +

(

k2 − a′′

a

)

h̄ij = 8πGaΠij . (3.14)

In a radiation dominated background (a ∝ η) this reduces to

h̄′′
ij + k2h̄ij = 8πGaΠij . (3.15)

The solution of this differential equation with the initial conditions hij = h′
ij = 0 is given

by the convolution of the source with the Green function G(k, η, η′) = sin(kη − kη′),

h̄ij(k, η < ηfin) =
8πG

k2

∫ x

x∗

dy a(y/k)Πij(k, y/k) sin(x − y) , (3.16)

where we have set x ≡ kη and y ≡ kη′. The source of gravity waves is acting for a time

interval δη∗ = (ηfin − η∗) = ǫη∗. If ǫ < 1 we call the process short-lasting. This is the

relevant case for example for GWs produced during a symmetry breaking phase transition

where the source disappears after the phase transition since the latter typically lasts only

for a fraction of the Hubble time. However, the Goldstone modes considered in this work

may very well be long lived as they are not expected to interact with ordinary matter. In

this case therefore a long lasting source may be better motivated. We discuss both cases

below.

After the source has decayed, GWs are freely propagating, and thus described by the

homogeneous solution of Eq. (3.15),

h̄ij(k, η > ηfin) = Aij(k) sin(kη − kηfin) + Bij(k) cos(kη − kηfin) . (3.17)

The coefficients Aij and Bij are fixed by matching the homogeneous solution to the inho-

mogeneous one at η = ηfin. Matching both h̄ij and its derivative h̄′
ij yields

Aij(k) =
8πG

k2

∫ xfin

x∗

dy a(y/k)Πij(k, y/k) cos(xfin − y) ,

Bij(k) =
8πG

k2

∫ xfin

x∗

dy a(y/k)Πij(k, y/k) sin(xfin − y) . (3.18)

The GW energy density is given by (see e.g. [6])

dρGW

d log k
=

k3|h′|2(k, η)

2(2π)3Ga2
, (3.19)

where the GW power spectrum has been normalized as follows:
〈

h′
ij(k, η)h′∗

ij(q, η)
〉

= 2
〈

h′
+(k, η)h′∗

+(q, η)+h′
×(k, η)h′∗

×(q, η)
〉

= (2π)3δ3(k−q) |h′|2(k, η) .

(3.20)
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Here our normalization differs from that of Ref. [27]. Their definition of the power spectrum

is related to ours by

P(k, η) ≡ 2πk3|h|2(k, η) (3.21)

and they infer dΩGW (k,η0)
d log k = k2P(k,η)

6H2
0

whereas we obtain, with (3.19) and h′ = kh for sub-

horizon modes,
dΩGW (k, η0)

d log k
=

k5|h|2(k, η)

6π2H2
0

=
k2P(k, η)

12π3H2
0

.

This difference in the normalization, which we attribute to an error in Ref. [27], leads to a

reduction of the final result by about a factor 60, which may be relevant for observations.

With the solution for h̄ij above, we obtain for η > ηfin

|h′|2(k, η) =
1

2a2

(

k2 + H2
)(

〈AijA
∗
ij〉 + 〈BijB

∗
ij〉
)

=
k2 + H2

2a2

(

8πG

k2

)2 ∫ xfin

x∗

dy

∫ xfin

x∗

dz a
(y

k

)

a
( z

k

)

cos(z − y)Π2
(

k,
y

k
,
z

k

)

,(3.22)

where we have used Eq. (3.8). The GW energy density at time η is of course well defined

only for waves with a wavelength well within the horizon, k ≫ H. Therefore we shall

approximate k2 + H2 ≃ k2 in the following.

The GWs are sourced by the anisotropic stress of the scalar field φa = vβa. The

correlators are simply related by

Pab
φ = v2Pab

β .

With Eq. (3.12) we obtain the following expression for the GW energy density after the

decay of the source, η > ηfin,

dρGW(k, η)

d log k
=

Gv4

4π4

k3

a4(η)

∫ ηfin

η∗

dτ

∫ ηfin

η∗

dξ a(τ)a(ξ) cos(kξ − kτ)

×
∫

d3p p4 sin4 θ Pab
β (p, τ, ξ)Pab

β (|k − p|, τ, ξ) , (3.23)

where cos θ ≡ k̂·p̂. Inserting the power spectrum of β in the above expression and summing

over the field components, we find

dρGW(k, η)

d log k
=

Gv4

4π4

k3

a4(η)

36π4A2

N

∫ ηfin

η∗

dτ

∫ ηfin

η∗

dξ a(τ)a(ξ) cos(kξ − kτ)

×
∫

p < 1/η∗

|k − p| < 1/η∗

d3p p4 sin4 θ τ3ξ3 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν .(3.24)

Here the constant A comes from the normalization of β, and it is given by Eq. (2.14). In

the radiation dominated background considered here, we have ν = 1+γ = 2 and A = 5π/4.

Note also that we choose the normalization of the scale factor such that a(η0) = 1. Hence

the comoving wave number k is simply related to the present frequency of the GW by

f =
k

2π
.
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In the next section we evaluate the present amplitude and frequency dependence of

the GW spectrum generated in this way explicitly. For this, the following relation between

temperature and time in a radiation dominated Universe are useful [34],

H2(t) =
1

η2 a(η)2
=

8πG

3

π2

30
geff (η)T 4(η) . (3.25)

Assuming an adiabatic expansion, geff(aT )3 = const., one finds

η =
MPl

T (η)T0

(

geff (η)

2

)1/3( 45

4π3geff(η)

)1/2

= 1.6 × 107sec

(

GeV

T

)

g
−1/6
eff (T ) . (3.26)

On the other hand, the expression for the temperature associated to a global O(N) sym-

metry breaking is [33]

T∗ =

√

24

N + 2
v , (3.27)

independent of the coupling λ.

Before moving to the evaluation of Eq. (3.24), let us briefly determine the frequencies

for the GW sources discussed in this paper. We are studying the IR modes kη∗ < 1 of the

GW spectrum, corresponding to frequencies smaller than the expansion rate at the time

of production, f∗ = H∗/(2π),

f∗ =
1

2πη∗
≈ 10−8

(

T∗

GeV

)

Hz . (3.28)

For the EW scale this corresponds to fEW
∗ ∼ 10−6 Hz, while for the GUT scale the asso-

ciated frequency is fGUT
∗ ∼ 108 Hz. For a given energy scale M ≃ T∗ at the time of pro-

duction, we are describing one frequency range or another, but always frequencies smaller

than the one corresponding today to that energy scale, f < f∗(M) ∼ 10−8Hz(M/GeV).

Clearly, only processes taking place in the radiation dominated Universe generate GWs

with sufficiently high frequencies such that they can be observed by direct GW detection

experiments. Indeed the frequency associated to the horizon at the matter-radiation equal-

ity is far too small, f eq
∗ ∼ 10−17 Hz, to be observed by direct GW detectors, like LIGO,

LISA or BBO will be working. Therefore we consider only processes in the radiation

dominated Universe and γ = 1 and ν = 2 are assumed for the rest of the paper.

4. The gravitational wave spectrum today

In this section we study two different cases, first the situation in which the source producing

GWs lasts only a small fraction of the Hubble time at the moment of production and,

second, the case in which the GW source acts for a much longer time, until the moment at

which a given mode enters the horizon.

4.1 Short lived source

We first estimate the amplitude of the GW spectrum for large wavelengths, k < H∗, from

a short lived source which lasts from η∗ to ηfin, such that (ηfin −η∗)/η∗ ≡ ǫ ≪ 1 (as e.g. for

the radial mode of φ in hybrid preheating [12, 14]). Let us first note the following facts:
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1) From Eq. (3.24) we see immediately that for small wavenumbers, kηfin ≪ 1, the re-

sult scales like
dρGW

d log k
∝ k3 .

2) Since the source is short lived, η∗ ≈ ηfin, and we deal with superhorizon modes, kη∗ ≪ 1,

we may set cos(kη − kη′) ≈ 1 and the time integral can be replaced simply by a factor ǫη∗.

3) To estimate the momentum integral, we use that Bessel functions at small arguments,

x ≡ kη < 1, can be approximated by Jν(x) ≈ (x/2)ν/Γ(1 + ν). To obtain the dominant

contribution at large wavelength (i.e. the least blue part) we may also set |k−q|η∗ ≃ qη∗.

Using all the above considerations, we are left with a simple integral for the evaluation

of the spectra of the IR modes (kη∗ ≪ 1) of GWs, at any time η ≫ η∗ for which those

modes have already crossed the horizon

dρGW(η)

d log k

∣

∣

∣

∣

kη∗≪1

≃ Gv4

4π4
36π4A2 k3

a4(η)

2π

N

∫ 1

−1
d cos θ sin4 θ

∫ 1/η∗

0
dp

p6

22νΓ4(ν + 1)

×
(
∫ ηfin

η∗

dτ a(τ)τ3

)2

=
3 · 5π3

7 · 211

Gv4

N

(

a∗
a(η)

)4

ǫ2H2
∗ (kη∗)

3 , (4.1)

where we used A = 5π/4, ν = 2 and we approximated
∫ ηfin

η∗
dτa(τ)τ3 ≈ a(η∗)η

3
∗δη∗ =

ǫ a(η∗)η
4
∗ , since we have set ηfin − η∗ = δη∗ ≃ ǫη∗.

With this we can now evaluate the ratio of the GW energy density to the critical

density today, for the IR modes kη∗ ≪ 1, as

ΩGW(f) =
1

ρc

dρGW(η0)

d log k
≈ 5π4

7 · 28

(

v

MPl

)4 ǫ2

N
Ωrad(kη∗)

3

∼ 10−5

(

v

MPl

)4 ǫ2

N
(kη∗)

3 , (4.2)

where we used H2
∗ = 8πGρ∗/3, we expressed the radiation density today as ρrad ≈

ρ∗(a∗/a0)
4 and we introduced the the radiation density parameter today as Ωrad ≈ 4.2 ×

10−5. We have also neglected the factors coming from the ratio of the effective relativistic

degrees of freedom since they appear only with the power 1/3.

Note that this formula is general for the IR spectrum of GWs generated at any process

in which the source, a N -component scalar field, has rapidly acquired its true vev v at η∗
and undergoes a short phase of self-ordering which lasts for a fraction ǫ < 1 of the Hubble

time.

Finally, note also that very generically we have η∗ ∝ T−1
∗ ∝ 1/v so that ΩGW ∝

v4η3
∗k

3 ∝ v k3 and not as v4, as one could naively have concluded from Eq. (4.2).

4.1.1 The electroweak phase transition

The comoving horizon size at the electroweak (EW) phase transition is given by the EW

energy scale T∗ ∼ 100 GeV, geff(T∗) = 106.75,

η∗ ≃ 7.5 × 104 sec .
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Inserting this above with f = k/(2π), we find

ΩGW(f) ≈ 4.2 × 105 5π4(2π)3

7 · 28
Ωrad

(

v

MPl

)4 ǫ2

N

(

f

mHz

)3

∼ 10−65 ǫ2

N

(

f

mHz

)3

. (4.3)

For the last expression we have used v ≃ T∗. This result is of course unmeasurably small.

4.1.2 A GUT scale phase transition

To have any chance to measure this spectrum, we need a vev which is not too many orders

of magnitude below that Planck scale, since the GW energy density is suppressed by a

fourth power of the ratio of the vev to MPl. The best change might be a GUT scale with a

vev of the order of v ≃ 1016GeV. But then of course η∗ will be very small and the dominant

contribution will come from very high frequencies, lower frequencies being suppressed by

the factor (kη∗)
3. For T∗ = 1016GeV we have

η∗ ≃ 5 × 10−10 sec ,

leading to

ΩGW(f) ≈ 0.125
5π4(2π)3

7 · 28
Ωrad

(

v

MPl

)4 ǫ2

N

(

f

GHz

)3

∼ 10−16 ǫ2

N

(

f

GHz

)3

. (4.4)

Apart from the fact that this result suffers severe additional suppression at measurable

frequencies which are significantly below 1GHz = 109Hz, the sensitivity of 10−12Ωrad ≃
10−16 cannot be reached with any presently proposed experiment at those frequencies.

Therefore, we can only conclude that the superhorizon GW spectrum generated from

a short lived self ordering scalar field is much below presently proposed experimental sen-

sitivities.

4.2 A long lived source

As we have seen in the previous subsection, short lived Goldstone modes cannot lead to a

significant GW background. But since Goldstone modes are typically non-interacting and

long lived, it is more natural to consider them for a time which is much longer than the

horizon scale η∗. To compute the GW energy density produced by such a self ordering

scalar field, we consider Eq. (3.24) and set ηfin = ηk ≡ 1/k, since the solution (2.15) decays

inside the horizon, when kη > 1. We then have to compute the following integral

dρGW(k, ηk)

d log k
=

Gv4

4π4

k3

a4(ηk)

36π4A2

N

∫ 1/k

η∗

dτ

∫ 1/k

η∗

dξ a(τ)a(ξ) cos(kξ − kτ) ×
∫

pη∗ < 1
|p − k|η∗ < 1

d3p p4 sin4 θ τ3ξ3 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν , (4.5)

Note that the range of integration of the variable p in the above expression is set to be

{pη∗ < 1, |p − k|η∗ < 1} since the initial two point correlator of the scalar field turns out

to be different from zero only in this range of momenta [c.f. Eq. (2.9)].

In order to obtain an analytical result for the above integral, we perform the following

approximations:

– 12 –



• We are interested in scales k that are superhorizon for all the time of GW production,

namely kτ < 1 and kξ < 1 for times τ, ξ between η∗ and ηfin = 1/k, therefore we

approximate cos(kξ − kτ) ≃ 1 .

• We neglect the angular dependence of |p− k| so that the angular integral reduces to

2π
∫

sin4 θd cos θ = 32π/15.

• In the range of integration where pτ ≫ 1 we substitute |k − p|τ ≃ pτ , while when

pτ ≪ 1 we approximate |k − p|τ ≪ 1.

• The range of momenta for which we can expand the Bessel functions in terms of small

arguments is p < min(1/τ, 1/ξ), while in the range min(1/τ, 1/ξ) < p < max(1/τ, 1/ξ)

we should distinguish between large and small argument expansions of the Bessel

functions. Finally, in the range max(1/τ, 1/ξ) < p < 1/η∗ one can consider the large

argument limit for all the four Bessel functions of the above integral.

Taking into account all the above considerations, we find that the complete integral

becomes

∫ 1/k

η∗

dτ

∫ 1/k

η∗

dξ

∫

∞

0
dp f(p, τ, ξ) = 2

∫ 1/k

η∗

dτ

∫ τ

η∗

dξ

(

∫ 1/τ

0
dp f +

∫ 1/ξ

1/τ
dp f +

∫ 1/η∗

1/ξ
dp f

)

,

which allows us to separate the integral in p using the asymptotic behaviour of the Bessel

functions,

Jν(x) ≃ xν

2νΓ(ν + 1)
for x ≪ 1 ,

Jν(x) ≃
√

2

xπ
cos

(

x − (2ν + 1)π

4

)

for x ≫ 1 .

We can distinguish three different intervals:

• The IR contribution, I1(k), for 0 < p < 1/τ , with |k − p|τ < 1 and |k− p|ξ < 1 .

• The mixed (UV+IR) contribution, I2(k), for 1/τ < p < 1/ξ, with |k − p|τ ≃ pτ > 1

but |k − p|ξ ≃ pξ < 1 .

• The UV contribution, I3(k), for 1/ξ < p < 1/η∗, with |k − p|τ ≃ pτ > 1 and

|k− p|ξ ≃ pξ > 1 .

Therefore we can finally write

dρGW(k, ηk)

d log k
= D(k) [I1(k) + I2(k) + I3(k)] , (4.6)

where the pre-factor D(k) contains the coefficients in front of the integral in Eq. (4.5), the

factor coming from the angular integration (32π/15) and the factor 2 that comes from the

symmetry of the double time integration, namely

D(k) ≡ Gv4

4π4

k3

a4(ηk)

36π4A2

N
× 32π

15
× 2 =

Gv4

N

k3

a4(ηk)
15 · 4π3 . (4.7)
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The three integrals of Eq. (4.6) are given by

I1(k) ≡
∫ 1/k

η∗

dτ

∫ τ

η∗

dξ a(τ) a(ξ) τ3 ξ3

∫ 1/τ

0
dp p6 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν

≃ H2
0Ωrad

4096

∫ 1/k

η∗

dτ

∫ τ

η∗

dξ τ4 ξ4

∫ 1/τ

0
dp p6

=
H2

0Ωrad

4096 k3

1

35

[

1

3
− 5

6
(kη∗)

3 +
1

2
(kη∗)

5

]

, (4.8)

I2(k) ≡
∫ 1/k

η∗

dτ

∫ τ

η∗

dξ a(τ) a(ξ) τ3 ξ3

∫ 1/ξ

1/τ
dp p6 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν

≃ H2
0Ωrad

32π

∫ 1/k

η∗

dτ

∫ τ

η∗

dξ τ4 ξ4

∫ 1/ξ

1/τ

dp p6

(pτ)5
cos2

(

pτ − 5π

4

)

=
H2

0Ωrad

128π k3

[

2

45
+

1

18
(kη∗)

3 − 1

10
(kη∗)

5 +
(kη∗)

3

3
log(kη∗)

]

, (4.9)

and

I3(k) ≡
∫ 1/k

η∗

dτ

∫ τ

η∗

dξ a(τ) a(ξ) τ3 ξ3

∫ 1/η∗

1/ξ
dp p6 Jν(pτ)

(pτ)ν
Jν(pξ)

(pξ)ν
Jν(|k − p|τ)

(|k − p|τ)ν
Jν(|k − p|ξ)
(|k − p|ξ)ν

≃ 4H2
0Ωrad

π2

∫ 1/k

η∗

dτ

∫ τ

η∗

dξ τ4 ξ4

∫ 1/η∗

1/ξ

dp p6

(pτ)5(pξ)5
cos2

(

pτ − 5π

4

)

cos2

(

pξ − 5π

4

)

=
H2

0Ωrad

3π2 k3

[

1

9
− 1

9
(kη∗)

3 − (kη∗)
3

(

1

2
log2(kη∗) −

1

3
log(kη∗)

)]

. (4.10)

More precisely, in the above computation we substituted each cos2 x by its mean value
〈

cos2 x
〉

= 1/2 averaged over a few oscillations, and we introduced the usual expression

for the scale factor in a radiation dominated background, a(η) ≃ H0

√
Ωradη, which is

consistent with a0 = 1 today.

All three terms have a scale-invariant spectrum. Actually, the ”UV” contribution

given in Eq. (4.10) is the largest. Summing all the three contribution and considering

the dominant part in the limit kη∗ ≪ 1 [hence also (kη∗)
3 log(kη∗) ≪ 1], we obtain the

following scale-invariant spectrum

dρGW(k, ηk)

d log k
≃ 5 · 25π4 Ωrad ρc

Na4(ηk)

(

v

MPl

)4( 1

212 · 105 +
1

26π · 45 +
1

27π2

)

≃ 60 × Ωrad ρc

Na4(ηk)

(

v

MPl

)4

, (4.11)

where we have used the Friedmann equation H2
0 = 8πGρc/3. Redshifting the above ex-

pression until today, we obtain for the GW energy density parameter,

ΩGW(k, η0) ≡
dρGW(k, η0)

ρcd log k
=

dρGW(k, ηk)

ρcd log k
a4(ηk) ≃

60

N
Ωrad

(

v

MPl

)4

. (4.12)
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Figure 1: The sensitivity of present and future GW experiments are compared with our results for
a long lasting source and inflation. We show, the amplitude of the scale-invariant GW background
expected from a GUT scale inflation (blue, dashed) and from a self-ordering long lived source
as studied in this paper, for a symmetry breaking field with N = 4 real components and a vev
v = 10−2MPl (top, red line), v = 10−3MPl (middle, blue line, overlying with inflation) and v =
10−4MPl (bottom, green line). The big dot at the right end of the horizontal lines represents the
frequency (3.28) associated to the horizon at the initial time of production.

This corresponds to a scale-invariant GW spectrum produced by a self-ordering scalar field

in the large N -limit. This result is valid for all wave numbers k which enter the horizon

when the Goldstone modes of our N -component field are still massless and the field has not

yet decayed. Scales which enter the horizon after this time ηfin, i.e. scales with kηfin < 1,

are suppressed by a factor (kηfin)3, as for them the result for a short lived source with η∗
replaced by ηfin applies.

4.3 Numerical integration

In order to obtain more accurate results, and to check the validity of our analytical ap-

proximations, we have also performed a numerical evaluation of the integrals in Eq. (3.24).

If we set the final time of integration to be the horizon crossing, ηfin = 1/k, as we did in

the analytical evaluation for the long lasting source (4.5), we obtain the following result

for the final GW density parameter today

ΩGW(k, η0) ≃
22

N
Ωrad

(

v

MPl

)4

, ηfin = 1/k . (4.13)

This suggests that the analytical approximation somewhat overestimates the result. How-

ever, we can continue the integration to later times when the wavelength has already

entered the horizon.
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Figure 2: The density parameter in gravitational waves as a function of kη. For scales outside the
horizon, kη < π, we observe the (kη)3 dependence (short dashed line), while for scales that have
entered the horizon, kη > π, the GW energy density saturates, at a normalized value of 511 (long
dashed line). This result implies a significant scale-invariant GW spectrum today.

The integral in Eq. (4.5) allows us to compute the GW energy density in the limit

kη∗ ≪ 1, using the change of variables u = cos θ, q = p/k, x = kτ ,

ΩGW(k, η) =
G2v4Ωrad

Na4(η)
75π4

∫

∞

0
dq q2F (q)

{

[
∫ kη

0
dx cos xJ2

2 (qx)

]2

+

[
∫ kη

0
dx sin xJ2

2 (qx)

]2
}

(4.14)

where the kernel F (q) comes from the integration over angles,

F (q) =

∫ 1

−1

du (1 − u2)2

(q2 + 1 − 2qu)2
=

1

24q5

[

16q + 12q(q2 − 1)2 + 3(q2 − 1)2(q2 + 1) log
(q − 1)2

(q + 1)2

]

and we have made the approximation, J2(x
√

q2 + 1 − 2qu) → J2(qx), inside the time

integration. We have checked that for large times the result is correct within 0.1%.

Numerically evaluating (4.14), we find that the GW energy density continues to grow

until horizon crossing, kη ≃ π, and saturates thereafter, see Fig. 2. This agrees with the

result of Ref. [27], who find a peak in the power spectrum P(k, η) at approximately this

value, and also explains the 1/a(η)2 dependence of the Power spectrum, P ∝ ΩGW/a2, for

scales that have already entered the horizon.

For kη ≫ 4 the gravitational wave energy density saturates at a value

ΩGW(k, η0) ≃
511

N
Ωrad

(

v

MPl

)4

, (4.15)

where we used again the usual normalization of the scale factor in a radiation dominated

background. These results suggest that the GW spectrum produced by this mechanism
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still grows inside the horizon and reaches its final value somewhat after horizon crossing.

This is consistent with the fact that the power of the scalar field that sources these GWs is

not absent inside the horizon, but it is indeed given by the Bessel functions in Eq. (2.17),

which decay rather slowly as functions of kη.

In the following analysis we will consider the numbers arising from the numerical

integration, as given in Eq. (4.15).

4.4 Observational constraints

Our result for the amplitude of the GW spectrum (4.15) is inside the range of detectability

of the BBO [31] experiment (ΩGW(k) & 10−17) and is marginally detectable by LISA [30]

or advanced LIGO [29] (ΩGW(k) & 10−10). Indeed, with Ωrad ≃ 4.2 × 10−5, we find that

BBO would detect this signal if the symmetry breaking scale v satisfies

(

v

MPl

)4

& 4.7 · 10−16N ⇒ v

MPl
& 1.5 · 10−4N1/4 .

Concerning the sensitivity of LIGO or LISA, the signal is detectable if

(

v

MPl

)4

& 4.7 · 10−9N ⇒ v

MPl
& 0.008N1/4 .

In other words, for scales higher or around the GUT scale, v & 1016GeV, the very long

wavelength tail which we have studied here could be observed.

In order to relate the above scale-invariant GW energy density to the GW spectrum

from inflation, we compute the relative tensor-to-scalar ratio r. Following Ref. [35], one

has the following expression for the GW density parameter from inflation

ΩGW(k, η0) = 4.36 × 10−15 r

(

k

k0

)nT

, r ≡ PT(k0)

PS(k0)
, (4.16)

where k0 = 0.002hMpc−1, PT(k) = rPS(k0)(k/k0)
nT and we used the WMAP result,

PS(k0) = 2.21 × 10−9. This concerns only the wavelengths which enter the horizon in the

radiation dominated era, before equality. Comparing the above expression for nT ≃ 0 with

our Eq. (4.15), we obtain in our case

r ≃ 3

N

( v

1016GeV

)4
. (4.17)

Another usefull comparison with inflation is the relative strength of the GW energy den-

sities produced by the above two different mechanisms. Considering always wavelengths

which enter the horizon in the radiation dominated epoch, we have [36]

Ω
(inf)
GW = 10−13

(

H∗

10−4MPl

)2

= 8.4 × 10−5

(

M

MPl

)4

, (4.18)

where M denotes the energy scale of inflation, H2
∗ ≡ 8πGM4/3. The ratio between the

GW energy density produced by our mechanism and the one from inflation is then

R ≡ ΩGW(k, η0)

Ω
(inf)
GW (k, η0)

≃ 256

N

( v

M

)4
. (4.19)
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Comparing these results with those of Ref. [27], where the authors mainly concentrate

on the spectrum of GWs produced in a matter dominated universe, we reproduce perfectly

the amplitude of their spectrum P(k, η) defined as in Eq. (3.21), but their final relative

strength R is nearly 2 orders of magnitude larger than what we find in Eq. (4.19). We

believe this is due to the factor 1/(2π3) missing in their expression for ΩGW(k, η0) which

has to be introduced for consistency with the definition of the power spectrum P(k).

5. Conclusions

In this paper we have estimated the contributions to the gravitational wave background

from a symmetry breaking phase transition on large scales, kη∗ < 1. We have concentrated

on the analysis of the Goldstone modes and we obtained the following main conclusions.

If the modes are short lived with duration ǫη∗, ǫ < 1 their contribution is blue and

suppressed by a factor ǫ2(kη∗)
3. This result is actually generic, independent of the nature

of the short lived source. Indeed, one typically obtains

ΩGW(k) ≃ (kη∗)
3ΩradΩ

2
Xǫ2 , (5.1)

where ΩX is the density parameter of the source of anisotropic stresses at the moment of

creation. For the Goldstone modes the factor Ω2
X is replaced by (v/MPl)

4. This strong

suppression factor renders GWs from short-lived Goldstone modes entirely unobservable.

The situation is different for long lived Goldstone modes. There the suppression factor

(kη∗)
3 is absent. Therefore, if the Goldstone modes remain massless until a time ηfin, for

modes with kηfin
>∼ 1 the spectrum is scale invariant and the amplitude is given by

ΩGW(k) ≃ 511

N
Ωrad

(

v

MPl

)4

, (5.2)

which is marginally detectable with the experimental sensitivity of advanced LIGO or LISA

and is well within the range of BBO for a GUT scale phase transition. The results for the

long-lived source are summarized in Fig. 1.

If the Goldstone modes are still present at decoupling, ηfin
>∼ ηdec, these GWs will also

leave a signature in the cosmic microwave background where they lead to a scale-invariant

contribution very similar to the one of global textures, i.e. a N = 4 global O(N) model [25].

Note that this new GW background from self-ordering fields after inflation (e.g. from

hybrid preheating) has a power spectrum very similar to that coming from inflation, and

therefore it may become important to disentangle both if they are present simultaneously,

that is if the scale of inflation and that of symmetry breaking are related by parameters of

order one, like in hybrid inflation.
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