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A brief introduction to Loop Quantum Cosmology
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In recent years, Loop Quantum Gravity has emerged as a solid candidate for a non-

perturbative quantum theory of General Relativity. It is a background independent

theory based on a description of the gravitational field in terms of holonomies and

fluxes. In order to discuss its physical implications, a lot of attention has been paid

to the application of the quantization techniques of Loop Quantum Gravity to sym-

metry reduced models with cosmological solutions, a line of research that has been

called Loop Quantum Cosmology. We summarize its fundamentals and the main

differences with respect to the more conventional quantization approaches employed

in cosmology until now. In addition, we comment on the most important results that

have been obtained in Loop Quantum Cosmology by analyzing simple homogeneous

and isotropic models. These results include the resolution of the classical big-bang

singularity, which is replaced by a quantum bounce.

PACS numbers: 04.60.Pp,04.60.Kz,98.80.Qc

1. MOTIVATION

Gravity is the only fundamental physical interaction which is not yet satisfactorily de-

scribed quantum mechanically. Even without adhering to the belief that all fundamental

interactions should finally be unified in a single theory, a strong motivation to search

for a quantum theory of gravity comes from the very own results of General Relativity.

The classical singularity theorems that arise in Einstein theory [1] imply that (in a vari-

ety of physically relevant situations) the predictability breaks down, so that the regime

of applicability of General Relativity has been surpassed. Therefore, a new and more
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fundamental theory is needed for a correct physical description.

In trying to quantize General Relativity, the first obstacle that one finds is that Einstein

theory is not renormalizable as a quantum field theory, so that a conventional perturbative

quantization cannot be performed. In this context, an alternative quantization program,

known as Loop Quantum Gravity (LQG), has recently been proposed for General Rel-

ativity [2, 3, 4]. LQG is an attempt to construct a nonperturbative quantum theory of

gravity using techniques similar to those of gauge field theories (e.g., Yang-Mills). The ap-

plication of these nonperturbative quantization techniques to simple gravitational models

with application in cosmology, such as homogeneous and isotropic spacetimes with differ-

ent types of matter content, has given rise to a new branch of gravitational physics called

Loop Quantum Cosmology (LQC) [5].

2. HAMILTONIAN FORMULATION OF GENERAL RELATIVITY AND

ASHTEKAR VARIABLES

LQG is a nonperturbative canonical quantization of General Relativity; therefore, it is

constructed starting from a Hamiltonian formulation of Einstein theory [6]. Let us review

very briefly this formulation.

We consider globally hyperbolic four-dimensional spacetimes (gαβ,M = IR×Σ), where

gαβ is a Lorentzian metric, Greek indices are spacetime indices, and Σ is a three-

dimensional manifold. For General Relativity, once Σ is given, the physically relevant

information to determine the classical solutions is contained in the spatial three-metric

hab induced on Σ, and in the corresponding extrinsic curvature Kab = 1
2
Lnhab, where

Latin indices from the beginning of the alphabet denote spatial indices, n is the unit

normal to Σ, and L is the Lie derivative. Equivalently, we can adopt co-triads ei
a (rather

than spatial metrics) to describe the system. This allows the coupling to fermionic matter

fields. With ηij being the Euclidean three-metric, we have the relations

hab = ei
aηije

j
b, Ki

a = Kabe
b
jη

ij. (1)

Here, the triad eb
j is the inverse of the co-triad, ei

ae
b
i = δb

a and ei
ae

a
j = δi

j , and Latin

indices from the middle of the alphabet are internal SU(2) indices, corresponding to the

symmetries of the Euclidean metric ηij under linear transformations.
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A set of canonical variables for General Relativity (in the sense that their Poisson

bracket is proportional to the identity) is given then by the densitized triad Ea
i and the

extrinsic curvature in triadic form Ki
a:

Ea
i :=

√
deth ea

i , Ki
a →

{
Ki

a(x), E
b
j (y)

}
= δb

aδ
i
jδ

(3)(x− y). (2)

In this expression, x and y are two generic points in Σ, and we have chosen units such

that 8πG = 1, where G is Newton constant.1

Actually, we can replace the triadic extrinsic curvature by a connection valued 1-form

taking values on su(2), and still obtain a canonical set of variables. For this, it suffices

to realize that the co-triad determines an su(2)-connection compatible with it, Γi
a, and

notice that the sum of this connection with any vector (both from the internal and spatial

viewpoints) provides again an su(2)-connection valued 1-form. Therefore, at the classical

level, we can simply replace Ki
a with A(γ) i

a = Γi
a + γKi

a. Here, γ is a nonzero constant

called the Immirzi parameter, and its presence can be seen to lead to an ambiguity in the

quantization [7, 8] which is usually resolved in LQG by appealing to the recovery of the

Bekenstein-Hawking law for the entropy of black holes [9]. For simplicity, we will set it

equal to one from now on. The calculations for general γ can be easily reproduced along

the lines explained below.

We will thus adopt as canonical variables the set formed by Ai
a = Γi

a +Ki
a and Ea

i . In

General Relativity, these variables are subject to three types of constraints [4, 6]. First,

there is a Gauss constraint which generates SU(2)-transformations,

Gi := ∂aE
a
i + ǫ k

ij A
j
aE

a
k = 0. (3)

In addition, the invariance of the theory under spatial diffeomorphisms is reflected in the

so-called vector or diffeomorphism constraint,

Va := F i
abE

b
i = 0, (4)

where F i
ab is the curvature of the connection Ai

a, namely

F i
ab = 2∂[aA

i
b] + ǫijkA

j
aA

k
b . (5)

1 In the following, we also set ~ = c = 1.

3



Here, ǫijk is the totally antisymmetric symbol. Finally, the invariance of General Rela-

tivity under time reparametrizations leads to a scalar constraint, also called Hamiltonian

constraint, which in vacuo takes the expression

S := Ea
i E

b
j

(
ǫijkF

k
ab − 4Ki

[aK
j
b]

)
= 0. (6)

Given the four-dimensional covariance of Einstein theory, General Relativity is a com-

pletely constrained system, i.e., the total Hamiltonian which generates the dynamics is

just a(n integrated) linear combination of constraints. In particular, apart from boundary

terms, the Hamiltonian vanishes on classical solutions. On the other hand, it is worth

pointing out that General Relativity is formulated in terms of connections and densitized

triads without introducing any metric background structure. This background indepen-

dence plays a fundamental role in the theory and will be a basic guideline for the selection

of a quantization procedure in the construction of LQG.

3. HOLONOMY AND FLUX ALGEBRA

Since SU(2)-transformations are symmetries of our gravitational systems, only the

gauge invariant information about the connection is physically relevant. Taking into

account that this information is captured by the Wilson loops [10, 11], we can then

replace the connection by SU(2)-holonomies. More specifically, from now on we will

consider holonomies along piecewise analytic2 edges e, where we understand that an edge

is an embedding of the interval [0,1] in Σ [4, 12]. We call he the corresponding holonomy,

he = P exp

∫

e

Ai
aτidx

a. (7)

Here, the symbol P denotes path ordering, and {τj = − i
2
σj ; j = 1, 2, 3} is a basis in

the algebra su(2), with σj being the Pauli matrices. Let us notice that the line integral

appearing in the holonomies implies a one-dimensional smearing of the connection, and

that no use of background structures has been made in the definition of the holonomy.

Since the most relevant field divergences in our theory are expected to come from the

appearance of the three-dimensional delta function in the basic Poisson brackets between

2 The restriction of piecewise analyticity ensures that the intersection between edges, as well as the

intersection of an edge with a (piecewise analytic) surface, occurs in a finite number of points [12].
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our variables, and we have already smeared the connection over one dimension, it seems

natural to try to smear now Ea
i over two dimensions. Once again, we want to carry out

this smearing without employing any background structure. Remarkably, this requirement

can be fulfilled because Ea
i is a vector density. Hence, for any piecewise analytic surface

S and any su(2)-valued smooth function f i on it, we introduce the associated flux of the

densitized triad,

E(S, f) =

∫

S

Ea
i f

iǫabc dx
bdxc. (8)

The defined holonomies and fluxes form an algebra under Poisson brackets. In the

following, we take this algebra as our algebra of elementary phase space variables. From

this perspective, the quantization of the system amounts to constructing a representa-

tion of this algebra. A keystone result in LQG is a uniqueness representation theorem

known as the LOST theorem (after the initials of its authors [13]). The LOST theorem

states that there exists only one cyclic representation of the holonomy-flux algebra with

a diffeomorphism-invariant state (interpretable as a “vacuum”). Therefore, the choice

of the algebra of elementary variables, motivated by background independence, together

with the identification of diffeomorphism invariance as a fundamental symmetry suffice

to pick out a unique quantization (up to unitary equivalence).

In order to gain insight into the kind of quantization adopted in LQG, let us first

call cylindrical those complex functions of the connection that depend on it only via the

holonomies along a finite number of edges (forming a graph [12]). We can identify the

commutative unital ∗-algebra of these functions as the algebra of configuration variables.

By completing it with respect to the sup-norm3 (i.e. the supremum norm), we obtain

a commutative C∗-algebra with identity. Gel’fand theory ensures then that this algebra

is (isomorphic to) that of continuous functions on a certain compact space, Ā, which

is usually called the spectrum [14]. Smooth connections are dense in this space Ā of

quantum generalized connections. Besides, the Hilbert space of any representation of the

C∗-configuration algebra is of the form L2(Ā, µ) for some measure µ. The LOST theorem

guarantees that there is a unique Hilbert space L2(Ā, µAL) supporting a representation

not just of the holonomies, but of the whole holonomy-flux algebra, and such that µAL

3 The use of this norm is motivated by the fact that, in a representation in which configuration variables

acted by multiplication, the operator norm would coincide with the sup-norm.
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(the so-called the Ashtekar-Lewandowski measure) is a diffeomorphism-invariant, regular

Borel measure. This representation turns out not to be continuous and, as an important

consequence, the connection itself cannot be defined as an operator valued distribution

[12].

4. LOOP QUANTUM COSMOLOGY: FLAT FRW MODEL

LQC confronts the quantum analysis of cosmological systems by applying similar quan-

tization techniques to those described for LQG. Here, we will focus our discussion on a

simple but physically relevant model, namely, the case of homogeneous and isotropic flat

(FRW) cosmologies. As the matter content, we will consider a massless minimally coupled

scalar field.

The spatial manifold Σ is topologically IR3, endowed with the action of the Euclidean

group. One can introduce a fiducial flat co-triad, 0ei
a, with the corresponding fiducial

metric and triad, 0hab and 0ea
i . Given the non-compactness of Σ, we also choose a

reference cell adapted to the fiducial triad in order to integrate homogenous quantities,

such as the symplectic structure or the Hamiltonian, without introducing infinities in our

formalism. We use the symbol V0 to denote the fiducial volume of this cell. Actually,

physical results can be proven independent of these choices under a suitable definition of

the elementary variables [15, 16]. In more detail, one can fix the gauge and diffeomorphism

freedom so that

Aa = c V
−1/3
0

0ei
aτi, and Ea = p V

−2/3
0

√
det 0h 0ea

i τ
i. (9)

Here, c and p are constant on Σ (but not under evolution), and describe the only remaining

degrees of freedom in our basic variables. In the following, we call ΓS the subspace of the

gravitational phase space (for full General Relativity) defined in this way.

The gravitational symplectic structure induced on Σ is just

ΩS = 3dc ∧ dp, so that {c, p} =
1

3
. (10)

The variables c and p are hence canonical, apart from the factor of 1/3. Holonomies along

straight edges µ 0ea
i in the fiducial directions suffice to separate symmetric connections,

i.e., given two different connections, there always exists an edge of this kind for which the
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corresponding holonomies differ [14]. We thus restrict our attention to those holonomies,

h 0ei
(µ), which have the form

h 0ei
(µ) = cos

(µc
2

)
1 + 2 sin

(µc
2

)
τi. (11)

Similarly, densitized triads can now be smeared just across squares with edges parallel to

the fiducial directions,

E(S, f) = p 0A(S, f)V
−2/3
0 . (12)

The factor 0A(S, f) measures only the fiducial area of S weighted with an orientation

factor. In this sense, fluxes are totally determined by p, which therefore plays the role

of a momentum. The configuration algebra, on the other hand, is generated by sums of

products of matrix elements of holonomies. Thus, it is the linear space of continuous and

bounded complex functions in IR provided by finite sums of the form f(c) =
∑

n fn e
iµnc.

Its completion with respect to the sup-norm is known to be (isomorphic to) the Bohr

C∗-algebra of almost periodic functions [14].

5. BOHR COMPACTIFICATION AND POLYMER REPRESENTATION

As we have commented, the configuration C∗-algebra is the algebra of almost periodic

functions. The (Gel’fand) spectrum of this algebra is the Bohr compactification of the

real line, IRBohr [14]. This compactification can be understood as the set of group homo-

morphisms from the group IR (with the sum) to the multiplicative group T of complex

numbers with unit norm. So, every x ∈ IRBohr is a map x : IR → T which satisfies

x(0) = 1, x(p1 + p2) = x(p1)x(p2) ∀p1, p2 ∈ IR. (13)

Since T is a commutative group, the operation xx̃(p) := x(p)x̃(p) provides a commutative

group structure in IRBohr. This group is compact with respect to the Tychonoff product

topology. We recall that the Tychonoff topology is the weakest topology for which the

functions Fp : IRBohr → T given by evaluation at p [i.e. Fp(x) := x(p)] are all continuous

for any p ∈ IR [14]. Besides, the real line is actually dense in IRBohr. This result follows

from the fact that the algebra of functions f(c) considered at the end of the previous

section separates points c ∈ IR [14].

The compact group IRBohr is equipped with a normalized invariant measure under the

group operation, namely, the Haar measure µH . The representation of the holonomy-flux
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algebra for LQC is given precisely by the Hilbert space L2(IRBohr, µH). In addition, since

µH is invariant under multiplication in the group, we get that, ∀x̃ ∈ IRBohr,

[1 − x̃(p)]

∫

IRBohr

Fp(x)dµH(x) = 0, (14)

from where it follows that ∫

IRBohr

Fp(x)dµH(x) = δ0
p. (15)

Taking into account that, from our definitions, Fp1
Fp2

= Fp1+p2
and F ∗

p = F−p, it is

straightforward to conclude that the set {Fp, p ∈ IR} is orthonormal (hence, the Hilbert

space L2(IRBohr, µH) is nonseparable). One can also see that this set is dense [14]. As

a consequence, the Hilbert space L2(IRBohr, µH) is isomorphic to the so-called “polymer”

space of functions of p ∈ IR that are square integrable with respect to the discrete measure.

The isomorphism is given by I : Fp → |p〉 ∀p ∈ IR.

Employing then the orthonormal basis

{
|p〉 ; p ∈ IR, 〈p̃|p〉 = δp̃

p

}
, (16)

and introducing the notationNµ := exp (iµc/2), the polymer “momentum” representation

is determined by the following action of the holonomy and flux operators:

p̂ |p〉 =
p

6
|p〉 , N̂µ |p〉 = |p+ µ〉 . (17)

In this representation, states take the general form

|ψ〉 :=
∑

p∈IR

ψ(p) |p〉 ;
∑

p∈IR

|ψ(p)|2 <∞. (18)

Note that normalizable states ψ(p) differ from zero only on a countable subset of the real

line for the label p, because the sequence {ψ(p)} is square summable. On the other hand,

it is worth noticing that the representation (of Nµ) fails to be continuous in µ, as can be

easily seen by realizing that the state |p〉 is always orthogonal to |p+ µ〉 regardless of the

value of µ 6= 0. Therefore, the connection operator ĉ is not well defined, in total parallelism

with the situation discussed for LQG. The failure of continuity makes evident that the

representation is inequivalent to the standard Schrdinger one of geometrodynamics [19]

(often called the Wheeler-DeWitt representation). This lack of continuity explains why

the Stone-von Neumann uniqueness theorem of Quantum Mechanics does not apply [17],

allowing the results of LQC to differ radically from those –physically unsatisfactory–

attained in geometrodynamics.
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6. QUANTUM FRW MODEL

With our symmetry reduction to the flat FRW model and our choice of fiducial struc-

tures, the triad adopts the expression ea
i = sign(p)|p|−1/2V

1/3
0

0ea
i . This triad diverges at

the big-bang singularity, corresponding to p = 0. In the quantum theory, on the other

hand, p̂ has just a point spectrum [18] which coincides with the whole real line, since the

basis states |p〉 have unit norm ∀p ∈ IR. Since zero is included in this point spectrum,

the related (inverse) operator |p̂|−1 is not well defined. However, it is actually possible

to define a triad operator in terms of our elementary ones [20]. Classically, we have the

following identity ∀µ̄ ∈ IR:

sign(p)√
|p|

=
4

µ̄
tr

(
3∑

i=1

τ ih 0ei
(µ̄)
{
h−1

0ei
(µ̄),

√
|p|
})

. (19)

Here, h 0ei
is again the holonomy along the edge 0ei, and the symbol tr denotes the trace.

Then, replacing Poisson brackets with −i times commutators, we obtain

µ̄

6

̂[
sign(p)√

|p|

]
= N̂−µ̄|p̂|1/2N̂µ̄ − N̂µ̄|p̂|1/2N̂−µ̄. (20)

It is not difficult to check that this operator is diagonal in the p-basis. Furthermore, it

is bounded from above, so that the classical divergence at p = 0 disappears quantum

mechanically with this regularization of the triad [20]. In fact, this triad operator is such

that it annihilates the state |p = 0〉.
Since we have already fixed the gauge and diffeomorphism freedom, the only constraint

remaining in the system is the Hamiltonian one. For flat FRW spacetimes with a massless

scalar field φ (and unit lapse), this constraint can be obtained from the evaluation of the

following expression in the symmetry reduced model [15, 16]

H :=
1

2

∫

IR3

|detE|−1/2
(
P 2

φ − ǫijkE
a
i E

b
jF

k
ab

)
= 0. (21)

To define the operator corresponding to |detE|−1/2 (or to |detE|−1/2ǫijkE
a
i E

b
j in the gravi-

tational part of the constraint [20]) we proceed as we have explained above when discussing

the triad operator. In addition, to introduce an operator representation for the curvature

F k
ab, we first recall the classical relation

F k
ab = −2 lim

µ̄→0
tr

(
h[ij](µ̄) − 1

µ̄2V
2/3
0

τk 0ei
a

0ej
b

)
, (22)

9



which is valid for any real value of µ̄ and where

h[ij](µ̄) := h 0ei
(µ̄)h 0ej

(µ̄)h−1
0ei

(µ̄)h−1
0ej

(µ̄). (23)

Nonetheless, after substituting classical holonomies by their quantum counterparts, the

limit of zero regulator µ̄ cannot be taken in the resulting curvature operator. This cir-

cumstance is interpreted as a manifestation of the fact that, in LQG, the area spectrum

is discrete with a minimum nonzero eigenvalue [4, 21], so that the square with edges µ̄ 0ei

and µ̄ 0ej , employed to define h[ij](µ̄), cannot be shrunk to zero. The regulator is then

fixed by demanding that the physical area of this square equals the minimum nonvan-

ishing eigenvalue allowed in LQG, which we call ∆ from now on. Hence, one gets the

operator relation µ̄2|p̂| = ∆.

At this stage, it is convenient to relabel the p-basis by introducing the affine parameter

associated with the vector field 1
6
µ̄∂p [16]. This vector field can be regarded as that

corresponding to the exponent 1
2
µ̄c in the holonomy Nµ̄. Taking into account that the

physical volume of the fiducial cell is given by the operator V̂ = |p̂|3/2, the above relabeling

leads to a basis of volume eigenstates |ν〉, where ν = 4 sign(p)|p|3/2/
√

∆. The operator

N̂µ̄ is then defined to produce a constant unit shift in the new label [16],

N̂µ̄ |ν〉 := |ν + 1〉 . (24)

Using the standard Schrdinger representation for the matter field, so that the total

Hilbert space is the tensor product of the polymeric one and of L2(IR, dφ), and adopt-

ing a suitable factor ordering, one finally arrives at the following quantum Hamiltonian

constraint:

Ĥ :=
1

2

̂[
1√
|p|

]3/2 (
−6Ω̂2 + P̂ 2

φ

) ̂[
1√
|p|

]3/2

, (25)

Ω̂ :=
1

4
√

∆i

[
1̂√
|p|

]−1/2 √̂
|p|
[(
N̂2µ̄ − N̂−2µ̄

)
ŝign(p) + ŝign(p)

(
N̂2µ̄ − N̂−2µ̄

)]

·
√̂
|p|
[

1̂√
|p|

]−1/2

. (26)

The symmetric factor ordering adopted for Ω̂ arises naturally from the consideration of

homogeneous but anisotropic models of Bianchi I type, where the ordering is well moti-

vated, regarding the flat FRW cosmologies as a special case with vanishing anisotropies
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[22]. It is straightforward to check that the above quantum constraint annihilates the

state |p = 0〉 (or equivalently |ν = 0〉) and leaves invariant its orthogonal complement. In

the search for nontrivial solutions to the constraint, one can then restrict all considera-

tions to this orthogonal complement, so that the classical singularity, corresponding to

p = 0, can be removed from the kinematical (gravitational) Hilbert space [22, 23]. In this

sense, the big-bang singularity is already resolved quantum mechanically (see also [24]).

7. DENSITIZED CONSTRAINT

Once the state |ν = 0〉 has been removed, let us call Cyl 6=S the linear span of the nonzero

volume eigenstates {|ν〉 ; ν 6= 0, ν ∈ IR}. Based on previous experience with gravitational

models, we expect nontrivial solutions to the constraint to live in the algebraic dual of

Cyl 6=S . Since the operator ̂[1/
√

|p|] is invertible in the orthogonal complement of |ν = 0〉,
it is easy to check that one gets a bijection between the considered solutions and those of

the alternative “densitized” constraint [22]

Ĉ := −6Ω̂2 + P̂ 2
φ . (27)

The operator Ω̂2 (with domain Cyl 6=S ) has the following action:

Ω̂2 |ν〉 = − f+(ν)f+(ν + 2) |ν + 4〉 +
[
f 2

+(ν) + f 2
−(ν)

]
|ν〉

− f−(ν)f−(ν − 2) |ν − 4〉 , (28)

where

f±(ν) =
1

4
√

6∆1/4
g(ν ± 2)s±(ν)g(ν), s±(ν) = sign(ν ± 2) + sign(ν), (29)

and

g(ν) =

∣∣∣∣∣

∣∣∣∣1 +
1

ν

∣∣∣∣
1

3

−
∣∣∣∣1 − 1

ν

∣∣∣∣
1

3

∣∣∣∣∣

− 1

2

if ν 6= 0, (30)

while g(ν = 0) = 0. We notice that Ω̂2 relates only states |ν〉 whose label differ by a

multiple of four. Moreover, owing to the linear combination of signs in s±(ν), one can see

that the real function f+(ν)f+(ν + 2) has a remarkable property, namely, it vanishes in

the whole interval [-4,0]. Something similar happens with f−(ν)f−(ν− 2), which vanishes

in [0,4]. As a consequence, for the label ν, the action of the operator Ω̂2 does not mix any
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of the semilattices L±
ε := {±(ε+ 4n), n ∈ IN}, with ε ∈ (0, 4] –but otherwise unspecified.

In the following, we call H±
ε the corresponding Hilbert subspaces of states with support in

these semilattices (i.e., the completion of the linear span of ν-states with ν ∈ L±
ε ). Each

of these subspaces can be considered a superselection sector for the quantum theory,

inasmuch as they provide irreducible representations for the physically relevant operators

of the model [15, 16].

On the other hand, it is possible to prove that (up to a global multiplicative factor) Ω̂2,

restricted to H+
ε ∪H−

4−ε, differs by a symmetric, trace-class operator from an operator which

is unitarily related with the Hamiltonian of a point particle in a Psch-Teller potential

[22, 25]. From the properties of this Hamiltonian and Kato perturbation theory [26], it

then follows that Ω̂2 is essentially self-adjoint and that its absolutely continuous spectrum4

is IR+. The rest of the spectrum can be proven empty [22]. Moreover, Ω̂2 commutes with

the projections to H+
ε and H−

4−ε. One can then see that the operator on any of these

Hilbert spaces is positive with an absolutely continuous spectrum of unit degeneracy [22].

Hence, on any superselection sector H±
ε , one obtains a spectral decomposition of the

identity of the form

1±ǫ =

∫ ∞

0

dλ|e±ǫ
λ 〉〈e±ǫ

λ |, (31)

where |e±ǫ
λ 〉 is a generalized eigenstate of Ω̂2 with eigenvalue equal to λ. Finally, let us

comment that, expressing |e±ǫ
λ 〉 in the ν-basis, the corresponding generalized eigenfunc-

tions e±ǫ
λ (ν) can always be chosen real.

8. PHYSICAL STATES

Employing the above spectral decomposition associated with Ω̂2, elements of the poly-

mer space H±
ε can be identified with elements of the Hilbert space L2(IR+, dλ). It is now

straightforward to solve the densitized constraint −6Ω̂2 + P̂ 2
φ = 0. Starting from the

kinematical Hilbert space H±
ε ⊗ L2(IR, dφ), the solutions adopt the form

ψ(ν, φ) =

∫ ∞

0

dλ e±ε
λ (ν)

[
ψ+(λ)ei

√
6λφ + ψ−(λ)e−i

√
6λφ
]
. (32)

Physical states can be identified with positive frequency solutions, and hence with

wavefunctions in L2(IR+, dλ). A complete set of Dirac observables (acting on physical

4 See, e.g., Appendix C in reference [18] for a summary on operator theory.
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states) is given by P̂φ and, e.g., |ν̂|φ0
, the latter being defined by the action of |ν̂| when

φ = φ0.
5 In this way, the LQC approach succeeds in achieving a complete quantization

of the flat FRW model with massless scalar field.

Rather than in general physical states, one is usually interested in states which display

a semiclassical behavior in the region of large spatial volumes and matter fields, so that

they can be regarded as potential candidates to explain the properties of universes like

the one which we observe. With this motivation, we can concentrate our considerations

on positive frequency states which, for a fixed large value of the scalar field φ = φ0 ≫ 1,

are peaked on certain values Pφ = P 0
φ and ν = ν0 of the Dirac observables such that

|ν0| ≫ 1 and |P 0
φ | ≫ 1 [16]. In more detail, one analyzes Gaussians of the form

ψ+

(
λ =

ω2

6

)
∝ e−(ω+P 0

φ
)2/(2σ2)e−iωφ1 , with φ1 = φ0 −

√
2

3
ln |ν0|. (33)

Numerical integration of the quantum evolution dictated by the densitized Hamiltonian

constraint shows that the state remains peaked on a trajectory which coincides with the

union of a contracting and a expanding classical solutions except in the region where

the matter energy density becomes comparable to the Planck density in order of magni-

tude [16]. At that moment, the effective trajectory on which the state is concentrated

passes from a contraction to an expansion phase in such a way that the classical singu-

larity is avoided. This quantum phenomenon which allows the resolution of the big bang

singularity is usually called big bounce [15, 16].

9. CONCLUSION

We have seen that the quantization techniques of LQG prove to be successful in achiev-

ing a rigorous and complete quantum theory of simple cosmological models, like e.g. the

case of flat FRW spacetimes provided with a minimally coupled scalar field. The result-

ing quantization adopted in LQC is inequivalent to the standard Schrdinger (or Wheeler-

DeWitt) quantization which has been traditionally employed in geometrodynamics, a fact

that explains why the emerging physics is radically different and allows LQC to supply

5 Recalling expression (32), this suffices to determine the action of the operator on positive frequency

solutions for all values of φ.
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satisfactory answers to fundamental problems that had remained open in Quantum Cos-

mology. In particular, this explains why, while the standard quantization fails to solve the

cosmological singularities, these are cured in LQC. Actually, the singularities are resolved

already at the kinematical level. Nonetheless, the resolution is much stronger. For physi-

cal states with good semiclassical behavior, numerical simulations show that the universe

suffers a big bounce before reaching the big bang. This bounce occurs when the energy

density ρ = P 2
φ/(2|p|3) approaches a critical density of the order of the Planck density.

Away from the bounce, states are peaked on classical solutions. Quantum corrections are

strong close to the bounce, but even there the state remains peaked on a certain, modified

trajectory.
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