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Abstract

A photosynthetic microbial mat was investigated in a large pond of a Mediterranean saltern (Salins-de-Giraud, Camargue,

France) having water salinity from 70& to 150& (w/v). Analysis of characteristic biomarkers (e.g., major microbial fatty acids,

hydrocarbons, alcohols and alkenones) revealed that cyanobacteria were the major component of the pond, in addition to diatoms

and other algae. Functional bacterial groups involved in the sulfur cycle could be correlated to these biomarkers, i.e. sulfate-reduc-

ing, sulfur-oxidizing and anoxygenic phototrophic bacteria. In the first 0.5 mm of the mat, a high rate of photosynthesis showed the

activity of oxygenic phototrophs in the surface layer. Ten different cyanobacterial populations were detected with confocal laser

scanning microscopy: six filamentous species, with Microcoleus chthonoplastes and Halomicronema excentricum as dominant

(73% of total counts); and four unicellular types affiliated to Microcystis, Chroococcus, Gloeocapsa, and Synechocystis (27% of total

counts). Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments confirmed the presence of Microco-

leus, Oscillatoria, and Leptolyngbya strains (Halomicronema was not detected here) and revealed additional presence of Phormidium,

Pleurocapsa and Calotrix types. Spectral scalar irradiance measurements did not reveal a particular zonation of cyanobacteria, pur-

ple or green bacteria in the first millimeter of the mat. Terminal-restriction fragment length polymorphism analysis of PCR-ampli-

fied 16S rRNA gene fragments of bacteria depicted the community composition and a fine-scale depth-distribution of at least five

different populations of anoxygenic phototrophs and at least three types of sulfate-reducing bacteria along the microgradients of

oxygen and light inside the microbial mat.
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1. Introduction

Photosynthetic microbial mats develop at the water–

sediment interface in shallow environments such as
. Published by Elsevier B.V. All rights reserved.
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estuaries [1,2], sheltered sandy beaches [3,4], or hypersa-

line salterns [5,6]. Most of these microbial mats are

formed of horizontally stratified, multicolored and cohe-

sive thin layers of several functional groups of microor-

ganisms, such as cyanobacteria, colorless sulfur

bacteria, purple sulfur bacteria and sulfate-reducing
bacteria, distributed along vertical microgradients of

oxygen, sulfide and light [7,8].

Hypersaline mats from salterns represent interesting

ecosystems adapted to fluctuating salinity conditions.

Microbial mats existing in the most hypersaline ponds

of the salterns of Salins-de-Giraud (Camargue, French

Mediterranean coast) have been described in ecological

and microbiological, and recently molecular studies over
the last 10 years [5,9–11]. These saline ponds with water

salinity between 150& and 300& (w/v) contain micro-

bial mats similar to those previously described in other

hypersaline habitats [6,12]. They are formed of an upper

layer of cyanobacteria belonging to the genus Phormi-

dium, covering a purple layer of phototrophic bacteria

mainly composed of members of the genera Halochro-

matium [13] andHalothiocapsa [14], well adapted to such
high salinities. Molecular studies [9] showed that the

bacterial composition of these mats was more diverse

than expected both in Bacterial and in Archaeal groups.

In the present study, we investigated another mat

from the same salterns growing in ponds with lower

salinity (70–150& (w/v)). This mat developed over sev-

eral decades in large areas used by the Saltern Company

as water reservoirs for salt production. The aim of this
analysis was to characterize the composition of the func-

tional bacterial groups developing in the Camargue

microbial mat. The simultaneous use of different meth-

ods for analysis of bacterial composition and microenvi-

ronment, allowed a precise in situ analysis of the

Camargue mat. In the mat, the major bacterial groups

were investigated by characteristic biomarkers, confocal

laser scanning microscopy (CLSM), denaturing gradient
gel electrophoresis (DGGE) and terminal-restriction

fragment length polymorphism (T-RFLP) analysis of

PCR amplified 16S rRNA genes or functional gene frag-

ments. In order to understand the bacterial occurrence

and distribution at the microscale level, all the microbio-

logical results were related to microenvironmental gradi-

ents determined by in situ microsensor measurements.
2. Materials and methods

2.1. Sampling site description

The sampling site was in a very large shallow pond at

the saltern of Salins-de-Giraud, close to the sand barrier

and the sea coast (43�27 03500 N, 04�41 02800 E, Camargue,
France). This pond was used for the storage of pre-con-

centrated seawater. In this pond of about 10 km2 area,
the water column never exceeded 20 cm depth and its

salinity ranged from 70& to 150& (w/v). The photosyn-

thetic microbial mat covered a large proportion of this

pond and also of other adjacent ponds, and was consti-

tuted of thin laminated cohesive layers. Due to its devel-

opment over several decades, the mat was about 5–10
cm thick. The underlying sediment was mostly com-

posed of a mixture of sand and clay.

2.2. Sampling procedure

All mat samples analyzed were collected in May 2000,

by mean of plexiglass cores. For biomarker analysis,

mat cores of 26 mm inner diamater were immediately
frozen until further analysis. For confocal laser scanning

microscopy, two cores (18 mm i.d.) were transferred into

small plastic tubes containing 2.5% (v/v) glutaraldehyde

in phosphate buffer (0.2 M, pH 7.4, adjusted to the

appropriate salinity with NaCl), and stored at 4 �C until

further processing. For DGGE and T-RFLP, the upper

10 mm of the mat cores (35 mm i.d.) were sliced off asep-

tically, transferred to sterile Petri dishes, frozen in liquid
nitrogen, and then stored at �80 �C.

2.3. Microsensor measurements of O2 and oxygenic

photosynthesis profiles

Depth profiles of O2 and gross oxygenic photosynthe-

sis were measured in May 2000. Microsensor measure-

ments were done in situ from a small measuring
platform placed above the mat. A Clark-type O2 micro-

sensor [15] connected to a picoammeter (UniSense A/S,

Aarhus, Denmark) was manually operated with a

micromanipulator (Märzhäuser, Wetzlar, Germany)

mounted on a heavy solid stand. Microsensor signals

were recorded with a strip battery-operated chart recor-

der (Servogor, Leeds, UK) operated via batteries. The

O2 microsensor had a tip diameter of 6 lm, a stirring
sensitivity of �2% and a response time, t90, of 0.2 s.

The O2 microsensor was linearly calibrated on site from

readings of microsensor current in the overlying water

and in the anoxic part of the mat (2% O2). Dissolved

O2 concentrations in the overlying water were deter-

mined by Winkler titration [16]. Experimental light–

dark shifts for in situ measurements of oxygenic gross

photosynthesis [17] were performed with a custom-
made, light-impermeable box, which was deployed by

avoiding physical contact with the sensor and thus dis-

turbance of microsensor readings.

2.4. Spectral scalar irradiance measurements with fiber-

optic microprobes

Mat samples were collected in February 2001 for
spectral scalar irradiance measurements under control-

led conditions in a laboratory. Due to the time difference
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between the sampling times (May 2000 for all other

analyses), some seasonal changes in the small-scale ver-

tical location of the different photosynthetic microor-

ganisms in the mat cannot be excluded, despite a

similar macroscopic appearance of the mat at both

times. For spectral light measurements, a fiber-optic sca-
lar irradiance microprobe [18], was connected to a sensi-

tive fiber-optic diode array spectrometer with a spectral

range of 250–950 nm (PMA-11, Hamamatsu Photonics,

Toyooku, Japan). Profiles of spectral scalar irradiance

were measured in the mat by stepwise inserting the

microprobe with a motor-driven micromanipulator

(Märzhäuser, Eugene, USA) at a zenith angle of 140�
relative to the incident light beam. The downwelling
spectral scalar irradiance at the mat surface was meas-

ured by positioning the scalar irradiance microprobe

over a black light trap at the same position relative to

the incident light as the mat surface. Scalar irradiance

spectra in the mat were normalized to the downwelling

spectral scalar irradiance at the mat surface. Attenua-

tion spectra of scalar irradiance were calculated over dis-

crete depth intervals from the scalar irradiance profiles
according to Kühl and Fenchel [19].

2.5. Analysis of fatty acids, hydrocarbons, alcohols and

alkenones

The microbial mat samples were extracted after

homogenization with methanol, dichloromethane and

n-hexane. Fatty acids were separated from the extracts
after saponification. Afterwards the neutral lipids were

fractionated by column chromatography with silica

and alumina into different compound classes. Hydrocar-

bons and polar fractions were analyzed by gas chroma-

tography (GC) and gas chromatography mass

spectrometry (GC-MS) after derivatisation. The meth-

odology was described in detail recently by Wieland

et al. [4].

2.6. Confocal laser scanning microscopy

The mat samples were analyzed with a microscope

(Olympus BH2, Tokyo, Japan) and a confocal laser-

scanning microscope (Leica TCS 4d, Heidelberg,

Germany) equipped with an argon–krypton laser. For

confocal analysis, slices of defined dimensions were
placed on cavity slides, sealed with cover slips and ob-

served under an excitation beam of 568 nm. Pigment flu-

orescence emission was detected with a 590 nm long pass

filter. Different 512 · 512 pixel confocal images in two

(optical sections) and three-dimensions (sum of projec-

tions and stereoscopic images) were obtained from these

samples. The cyanobacteria were identified using differ-

ent morphological criteria according to Castenholz [20],
i.e. diameter (lm), cell division patterns, and the pres-

ence or absence of a sheath for unicellular morphotypes.
Presence of septation and gas vacuoles was also consid-

ered for filamentous cyanobacteria. In addition, the

abundance of each cyanobacterial genera was deter-

mined by counting the different morphotypes obtained

from CLSM images. A total of 663 filamentous and

237 unicellular cyanobacteria were analyzed.

2.7. DGGE analysis

Genomic DNA was extracted from the mat samples

using the UltraClean Soil DNA Isolation Kit (Mobio

Laboratories, Carlsbad, USA) according to manufac-

turer�s instructions. Serial dilutions of genomic DNA

(up to 10�4) were made in sterile water and stored at
�20 �C. To specifically amplify the 16S rRNA gene frag-

ments of oxygenic phototrophs, 1 or 2 ll of the DNA

dilutions were used as templates in 50 or 100 ll PCR
reactions using primer pair CYA359F + GC/CYA781R

and PCR conditions as described by Nübel et al. [21].

The two different reverse primers CYA781RA and CY-

A781RC were added in separate PCR reactions. DGGE

was performed according to Schäfer and Muyzer [22]
with conditions optimized for the oxygenic phototroph

specific PCR fragments [21], on 1 mm thick 6% acryla-

mide/bisacrylamide gels with urea-formamide (UF) gra-

dient of 20–80%. On top of the gradient gel, an

acrylamide gel without UF was cast to obtain loading

slots. Gels were run in TAE (40 mM Tris-acetate pH

8.5, 1 mM EDTA) buffer for 3.5 h at 200 V and at a con-

stant temperature of 60 �C. Subsequently, the gels were
stained in an ethidium bromide solution (0.5 lgml�1)

and inspected under UV illumination using a Fluor-S

Multi Imager (Bio-Rad, Hercules, USA). Contrast and

brightness of the photographs were optimized using

Adobe PhotoShop software (Adobe, San Jose, USA).

DNA fragments separated by DGGE were excised from

the gel [23], re-amplified, purified using the Qiaquick gel

extraction kit (Qiagen, Hilden, Germany), and then se-
quenced. Purified bands were sequenced in two direc-

tions using the BigDye Terminator cycle sequencing

kit (Applied Biosystem, Foster City, USA) on an ABI

PRISM 310 genetic analyzer (Applied Biosystem). Close

relatives to consensus sequences were searched in the

GenBank Database maintained by the NCBI using

BLAST search [24]. Subsequently, new sequences and

their closest relatives were added to the ARB database
[25] and aligned using the automatic alignment tool.

Alignments were then checked and corrected manually

taking the alignments of oxygenic phototrophs that were

already in the ARB database as templates. Phylogenetic

analysis was performed in ARB using several different

algorithms (e.g., maximum parsimony, neighbour-join-

ing, maximum likelihood) to check the consistency of

the tree structure. All three methods gave similar topol-
ogy. Neighbour joining was used to draw the phylo-

genetic tree. The GenBank accession numbers of each

http://femsec.oxfordjournals.org/
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partial 16S rRNA gene clone (SdG1 to SdG7) are

AY393850 to AY393856.

2.8. T-RFLP analysis

The upper 2 mm of the mat cores were sliced into 200
lm sections with a cryomicrotome (MICROM GmbH,

Walldorf, Germany), and from the third mm into 500

lm section for vertical depth resolution. The mat slices

were ground together with liquid nitrogen in a mortar

with a pestle and genomic DNA was extracted using

the UltraClean Soil DNA isolation kit (MoBio Labora-

tories, Carlsbad, USA) according to the manufacturer.

All extracted genomic DNA samples were stored at
�20 �C until further processing. T-RFLP analysis was

performed with different primer sets, 8f–926r [26,27],

8f–SRB385 [28], and pb557f–pb750r [29], according to

the experimental conditions described in Wieland et al.

[4]. Respectively, these primer sets targeted the whole

bacterial community, the sulfate-reducing bacteria

(SRB), and the phototrophic anoxygenic bacteria

(PAB). Restriction enzymes used in T-RFLP analysis
were HaeIII and RsaI (New England Biolabs, Beverly,

UK), for analysis of the entire bacterial diversity, and

HaeIII and Hin6I for the SRB and PAB. Triplicates

for each layer were analyzed to avoid analytical artifacts

and assure the reproducibility of the method. Dominant

terminal restriction fragments (T-RFs) over 100 fluores-

cent units in intensity and present in each replicate sam-

ple were selected. The size of each T-RF was determined
according to molecular weight standard TAMRA 500

(Applied Biosystem) with an acceptable error of ±1

bp. From T-RF values, genus or species identification

were made by predicted digestions using the TAP-

TRFLP program of the RDP (Ribosomal Database

Project) web site (http://rdp.cme.msu.edu/) [30]. T-

RFLP profiles were normalized by calculating relative

abundances of each T-RFs from height fluorescence
intensity. Combining data from each restriction enzyme,

we compared normalized T-RFLP profiles by corre-

spondence factorial analysis (CFA).
Table 1

Comparison of physical and chemical parameters in the water column of th

Dates Temperature (�C) O2 (lmol l�1)

23.05.00 20 17.0 ± 0.1

25.05.00 23 ND

ND, not determined.
a Surface.
b 10 mm depth.
2.9. Correspondence factorial analysis

CFA is an ordination method by similarity matrix

that reduces in two or three dimensions the dispersion

diagram of samples compared (in this case T-RFLP pro-

files). Axes correspond to synthetic variables (T-RFs)
and their influence (percent relative abundance) in the

distribution of samples analyzed [31]. Using CFA,

two-dimensional plots were prepared, showing variance

within data sets on a series of axes. To clearly present

the results two graphs were constructed using MVSP

v3.12d software (Kovach Computing Service, Anglesey,

Wales) [32]. One graph was constructed for T-RFs (or

OTUs, operational taxonomic units) and the other for
layers using the same axis.

The fact that some samples do not appear in the CFA

graph is due to insufficient DNA yield for some

analyses.
3. Results

3.1. Description and environmental conditions of the

microbial mat

3.1.1. Structure of the microbial mat

The microbial mat was composed of three distinct co-

lored layers. An upper, approximately 2 mm thick,

brown–green colored layer was composed of filamen-

tous cyanobacteria morphologically related to the genus
Microcoleus, and of unicellular cyanobacteria similar to

the form genus Synechocystis. Under this dense cyano-

bacterial layer, an �1 mm thick purple layer was com-

posed of purple non-sulfur bacteria morphologically

resembling members of Rhodospirillaceae and Chro-

matiaceae families (R. Guyoneaud, personal communi-

cation). Beneath these two layers a black zone of more

than 1 cm occurred with iron sulfide precipitates, indi-
cating intense sulfate-reduction activity. The physical

and chemical parameters measured in the sampling site

(Table 1) were generally constant.
e sampling site measured at 15 h each day of sampling

Redox (mV) pH Salinity (&)

+3a ± 1 8.39 ± 0.02 103 ± 1

�4b ± 1

+90a ± 1 8.50 ± 0.02 75 ± 1

NDb

http://rdp.cme.msu.edu/
http://femsec.oxfordjournals.org/
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3.1.2. Depth profiles of O2, gross photosynthesis, and

spectral scalar irradiance

High O2 consumption in the mat led to a low O2 con-

centration and O2 penetration in situ during the night

(5:32 h, 17 �C, 94& (v/w)), confining the oxic zone to

the top 0.2 mm of the mat (Fig. 1). In the afternoon
(15:50 h, 30 �C, 100& (v/w)), high rates of oxygenic

photosynthesis led to a strong increase in O2 concentra-

tion both in the overlying water and within the mat. The

O2 penetration depth in the mat increased to 2 mm.

Gross oxygenic photosynthesis was measurable in the

top 0.6 mm of the mat with a peak in photosynthetic

activity at 0.3–0.6 mm depth. An important photosyn-

thetic activity at 0.3–0.6 mm depth indicated the pres-
ence and/or activities of oxygenic phototrophs in the

upper mat layers.

From measured spectral scalar irradiance profiles,

distinct spectral regions of pronounced absorption could

be ascribed to the presence of different pigments (Fig. 2,

upper graph). The presence of cyanobacteria led to pro-

nounced scalar irradiance minima at around 630 and

680 nm, corresponding to phycocyanin and chlorophyll
a (Chl a) absorption, respectively. The scalar irradiance

minima in the region between 800 and 900 nm corre-

sponds to bacteriochlorophyll a (Bchl a) absorption,

indicating the presence of purple bacteria. A shoulder

at 740–750 nm indicated some absorption by Bchl c pre-

sent in green photosynthetic bacteria. In the spectral re-

gion of 400–550 nm, scalar irradiance was strongly

attenuated due to Chl a and carotenoid absorption.
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Fig. 1. In situ depth profiles of O2 and gross photosynthesis (bars)

measured during the afternoon (15:50 h) and night (5:32 h) in mats

from a pre-concentration pond of the Salins-de-Giraud saltern.

mat normalized to the downwelling spectral scalar irradiance at the

mat surface (upper graph). Numbers indicate depth (mm). Average

attenuation spectrum of scalar irradiance over the depth interval of 0–

0.8 mm (lower graph), calculated from the profile shown in the upper

graph. Broken lines indicate the standard deviations of the attenuation

coefficients, K0.
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Absorption by Chl a, phycocyanin, Bchl a, and Bchl c

occurred in all mat layers within the top 0.8 mm of
the mat, indicating a homogeneous distribution of these

photosynthetic groups. However, the spectral scalar

irradiance in the wavelength regions of Chl a, phycocy-

anin and carotenoid absorption were more strongly

attenuated than wavelengths corresponding to Bchl a

and Bchl c absorption (Fig. 2, lower graph), indicating

as expected a dominance of cyanobacteria in the surface

layer of the mat.

3.2. Bacterial community composition in the top active

layers of the microbial mat

3.2.1. Bacterial community composition estimated by

biomarkers

Fatty acids were the major lipid compounds found

in the microbial mat. Their distribution essentially
encompassed C14–C22 homologues, namely n-hexadec-

9(Z)-enoic, n-hexadecanoic, n-octadec-9(Z)-enoic,

http://femsec.oxfordjournals.org/
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n-octadec-11(Z)-enoic, iso-pentadecanoic and anteiso-

pentadecanoic acids (Fig. 3(a)), typically representative

of algal and bacterial communities [33,34].
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as Rhodobacter and Ectothiorhodospira where it occurs

together with significant amounts of n-octadec-11(Z)-

enoic acid [35]. Iso- and anteiso-pentadecanoic acids

are abundant in SRB and sulfur-oxidizing bacteria such

as Thiomicrospira [35]. The high abundance of iso- and

anteiso-pentadecanoic acids, as well as of cyclopropyl-
nonadecanoic and n-octadec-11(Z)-enoic acids likely re-

flects the dominance of two different populations

exchanging hydrogen sulfide, which could be sulfate-re-

ducing and purple phototrophic bacteria, respectively.

n-Heptadecane and n-heptadecenes were the main

hydrocarbons (Fig. 3(c)). These compounds are gener-

ally found in cyanobacteria [36,37] or in phototrophic

eukaryota [38]. Other hydrocarbons specific of cyano-
bacterial inputs, such as 9-methylhexadecane, were also

found in major proportions, indicating the dominance

of cyanobacteria in this mat.

The sterol distribution of this mat showed minor pro-

portions of sterols having the unsaturated positions at

D5, D22 and D5,22 (Fig. 3(b)), which could originate from

cyanobacteria [37,39,40], Chlorophyta [41,42], or dia-

toms [42–44]. However, the common diatom marker
24-methylcholesta-5,24(28)-dien-3b-ol [42–44] was only

found in minor proportion.

Phyt-1-ene, which occurred together with other phy-

tene homologues, also constituted one of the major

hydrocarbon groups (Fig. 3(d)). These hydrocarbons

are characteristic for methanogenic bacteria [45].

3.2.2. Diversity of oxygenic phototrophs

Confocal laser scanning microscopy and molecular

techniques were used to identify the cyanobacteria of

the Camargue microbial mat. Using CLSM, both fila-

mentous and unicellular cyanobacteria were found in

the mat (Table 2 and Fig. 4). Filamentous types were

the most abundant, accounting for 73.6% of the total

cyanobacteria present (Table 2). Microcoleus chthono-
Table 2

Morphological identification of cyanobacteria in microbial mats of Salins-

abundances

Microorganisms Diameter (lm) Septation Gas va

Filamentous cyanobacteria

Microcoleus chthonoplastes 3.13–3.75 + �
Halomicronema excentricum 0.96 + �
Unidentified <1.25 (short filaments) + �
Leptolyngbya sp. <1 (large filaments) + �
Limnothrix sp. 1.25 + �
Pseudanabaena sp. 2.5 + +

Unicellular cyanobacteria

Synechocystis-group

(marine cluster)

3.5 · 3.5 � �

Gloeocapsa-group 4 · 14 � �
Chroococcus sp. 19 · 28 � �
Microcystis sp. 1.9 · 1.9 � �
plastes (Fig. 4(b)) dominated the filamentous cyanobac-

terial community, as typically found in hypersaline mats

[1,46,47]. Halomicronema excentricum, characterized by

thin filaments and cylindrical shape (less than 1 lm wide

trichomes) (Fig. 4(c)) [48], and another filamentous

cyanobacterium (Fig. 4(c)) with thin filaments and short
trichomes that could not be identified, were the second

most frequent filamentous cyanobacteria. Leptolyngbya

sp., Limnothrix sp. and Pseudanabaena sp. filaments de-

tected in this study at abundances of 9.9% and 6.6%,

respectively, have also been found in other mats as well,

e.g. from the Ebro delta [1,46,47] and the Orkney Is-

lands [4]. Unicellular cyanobacteria Chroococcus sp.,

Microcystis sp. and members of Synechocystis (Fig.
4(d)) and Gloeocaspsa groups represented 26.4% of the

total cyanobacteria in the Camargue mat (Table 2).

In addition to CLSM analysis, a molecular approach

was used to describe the oxygenic phototroph commu-

nity composition. PCR amplified 16S rRNA gene prod-

ucts specific for cyanobacteria, were separated by

DGGE. Fifteen different bands were counted, and the

major bands were excised from the gel (bands 1–7 in
Fig. 5(a)) and retrieved for DNA sequencing. In combi-

nation with CLSM, phylogenetic analysis of these se-

quences (SdG1 to SdG7 in Fig. 5(b)) showed that the

pristine hypersaline Camargue mat was dominated by

the filamentous cyanobacteria: genera Microcoleus

(SdG5 and SdG6), Oscillatoria (SdG3) and Lep-

tolyngbya (SdG7 in Fig. 5(b)). Other cyanobacteria com-

posing this mat were related to the unicellular
Pleurocapsa sp. (SdG1), Calotrix sp. (SdG4), and Phor-

midium sp. (SdG2).
3.2.3. Bacterial community structure at a microscale level

The organization and composition of the bacterial

community in the mat was investigated by T-RFLP
de-Giraud by CLSM according to Castenholz [20], and their relative

cuole Sheath Cell division Abundance (%)

+ Perpendicular division 20.8

+ Perpendicular division 13.2

+ Perpendicular division 13.2

+ Perpendicular division 9.9

+ Perpendicular division 9.9

+ Perpendicular division 6.6

+ (thin) 2 or 3 planes 6.6

+ 2 or 3 planes 6.6

+ 2 planes 6.6

+ Binary fission in different planes 6.6

16
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Fig. 4. CLSM images in Salins-de-Giraud microbial mat. (a) Leptolyngbya sp., (b) Microcoleus chthonoplastes, (c) Halomicronema excentricum and

the unidentified filaments (indicated by arrow), (d) 1.Microcystis sp., 2. Synechocystis-group., 3. Chroococcus sp. (c) and (d) images are photographic

compositions. Scale bar = 10 lm.
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using the eubacterial primer set 8f-926r [26,27], targeting

a partial sequence of the 16S rRNA gene. For each

microlayer within the top 3 mm of the mat, and of the

underlying layer, characteristic T-RFLP profiles
(approximately 35 T-RFs with HaeIII digestion) were

obtained (data not shown). A CFA combining the data

from HaeIII and RsaI T-RFLP profiles revealed a par-

ticular distribution in three zones: a surface layer

(0–0.2 mm), a large mid layer (0.2–3 mm), and a deeper

region (underlying layer) (Fig. 6(a)). This distribution

was mostly explained by the first axis (27.8%) particu-

larly for the deep third millimeter. Plots of T-RFs in
Fig. 6(b) showed that T-RF 58 bp (RsaI), presumably

Desulfomicrobium baculatum, and T-RFs 205 and 244

pb (HaeIII), presumably members of the genera Desulfo-

bulbus and Streptomyces respectively, were dominant in

this deeper zone. In contrast, the structure of the surface

mat (0–0.2 mm) was explained by the second axis

(11.8%, Fig. 6(a)), which was influenced by T-RFs of

125 bp (RsaI digest), 200 and 297 bp (HaeIII digest)
(Fig. 6(b)). These T-RFs that match members of the

Neisseria, Chloroflexus andMycoplasma genera were

particularly present in this surface layer.

SRB were accessed by T-RFLP using the specific pri-
mer pair 8f–385r [28], and two restriction enzymes

HaeIII and Hin6I. The CFA of this data set also showed

a specific distribution of the SRB. Particularly, two dis-

tinct SRB communities were characteristic of the deeper

layer (2.5–3 mm) and of the layer at 1.4–1.6 mm (Fig.

7(a)). This later layer seemed to be independent, since

the first axis (40.7%) alone explained the distinct struc-

ture of the mid layer. Fig. 7(b) shows that this mid layer
was characterized by many T-RFs. Among them, T-RFs

of 200 and 270 bp (HaeIII) that could be related to gen-

era Desulfovibrio and Desulfobacter, respectively, were

dominant. The composition of the third millimeter of

the mat was essentially explained by the second axis

(14.8%, Fig. 7(a)), which was influenced by many T-

RFs (Fig. 7(b)). Among them, T-RFs of 72 and 197

bp (HaeIII) and of 55 bp (Hin6I) were dominant. The

http://femsec.oxfordjournals.org/


Fig. 5. (a) DGGE analysis of 16S rRNA gene fragments of oxygenic phototrophs. The PCR products were obtained with two different primer sets

and genomic DNA from the microbial mat of Salins-de-Giraud (SdG). Lanes 1 and 6, marker fragments; lanes 2 and 3, PCR products obtained with

primers CYA359F and GC/CYA781Rb; lanes 4 and 5 PCR products obtained with primers CYA359F + GC/CYA781Ra. 300 ng PCR product was

loaded in each lane. The numbers in figures refer to bands that were excised from the gel, sequenced and used for phylogenetic analysis. (b)

Neighbour-joining phylogenetic tree based on 16S rRNA gene sequence data showing the affiliation of predominant oxygenic phototrophs (i.e.,

cyanobacteria and diatoms) in the microbial mat of Salins-de-Giraud. Sequences determined in this study are shown in bold. The consistency of the

tree structure was checked using several different algorithms. The sequences of Thermus aquaticus and Chloroflexus aurantiacus were used as the

outgroup, but were pruned from the tree. The scale bar represents 10% estimated sequence divergence.
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Fig. 6. CFA of the whole bacterial communities. (a) CFA of each layer of the 3 mm of Salins-de-Giraud microbial mat. Each black triangle was

represented by a 5 0 end T-RFLP pattern corresponding to the combined digestsHaeIII and RsaI of the 16s rRNA genes. (b) CFA of variables, i.e., T-

RFs derived from the CFA in panel (a). Each number corresponds to the T-RF length in base pairs. Letters H and R, after this number, correspond

to HaeIII and RsaI T-RFs, respectively. Red and blue triangles correspond to T-RFs specific from the oxic (<2 mm) and anoxic zone (>2 mm) of the

mat, respectively. Black triangles correspond to T-RFs non-specific from the mat zonation.
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T-RF of 72 bp may possibly represent some Desulfovib-

rio communities.

In addition to SRB communities, the PAB were also

investigated in the same layers. Their presence in the mat

was detected with the primer pair pb557f–pb750r [29],
targeting the pufM gene, which encodes a subunit of

the photosynthetic center of purple sulfur and non-sul-

fur bacteria. CFA on T-RFLP patterns of these PAB
communities revealed their organization in five layers

through the top 3 mm of the mat (Fig. 8(a)). The distri-

bution of the layers from 0.2 to 0.4 mm and from 0.4 to

1.8 mm was explained by the first axis (38.4%) corre-

sponding to T-RF (199 pb, HaeIII) possibly related to
Halochromatium salexigens (Fig. 8(b)). The three other

layers, from 0 to 0.2 mm, from 1.8 to 2 mm, and from

2.5 to 3 mm, were mostly influenced by the second axis

http://femsec.oxfordjournals.org/
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Fig. 7. CFA of the sulfate-reducing communities. (a) CFA of each layer of the 3 mm of Salins-de-Giraud microbial mat. Each black triangle was

represented by a 5 0 end T-RFLP pattern corresponding to the combined digests HaeIII and Hin6I of the 16s rRNA genes. (b) CFA of variables, i.e.,

T-RFs derived from the CFA in panel (a). Each number corresponds to the T-RF length in base pairs. Letters H and Hi, after this number,

correspond to HaeIII and Hin6I T-RFs, respectively. Red and blue triangles correspond to T-RFs specific from the oxic (<2 mm) and anoxic zone

(>2 mm) of the mat, respectively. Black triangles correspond to T-RFs non-specific from the mat zonation.
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(12%). The CFA plots (Fig. 8(b)) showed that this sec-
ond axis was explained mainly by the presence of the

major T-RF of 137 bp (Hin6I) potentially corresponding

to Roseospira marina.
4. Discussion

The investigated photosynthetic microbial mat

showed a spatial distribution of different functional

http://femsec.oxfordjournals.org/
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Fig. 8. CFA of the phototrophic anoxygenic communities. (a) CFA of each layer of the 3 mm of Salins de Giraud microbial mat. Each black triangle

was represented by a 5 0 end T-RFLP pattern corresponding to the combined digests HaeIII and Hin6I of the PufM encoding gene. (b) CFA of

variables, i.e., T-RFs derived from the CFA in panel (a). Each number corresponds to the T-RF length in base pairs. Letters H and Hi, after this

number, correspond toHaeIII andHin6I T-RFs, respectively. Red and blue triangles correspond to T-RFs specific from the oxic (<2 mm) and anoxic

zone (>2 mm) of the mat, respectively. Black triangles correspond to T-RFs non-specific from the mat zonation.
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groups at the microscale level. As revealed by spectral

scalar irradiance (Fig. 2), by CLSM (Table 2), and by
DGGE (Fig. 5), the cyanobacteria were dominant and
rather diverse photosynthetic microorganisms active in

the first millimeter of the mat. Analyses of biomarkers
(Fig. 3) corroborated these observations of a dominance
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of oxygenic phototrophs, since major fatty acids (n-oct-

adec-9(Z)-enoic acid), alcohols (5a(H)-stanols), and

hydrocarbons (n-heptadecane, n-heptadecenes, and 9-

methylhexadecane) found in this mat corresponded to

cyanobacteria [49].

Identification of oxygenic phototrophs down to the
genus or even species level was done by confocal laser

scanning microscopy and sequencing analysis (PCR-

DGGE-sequencing). Two dominant filamentous cyano-

bacteria Microcoleus sp. and Leptolyngbya sp. were

identified by both techniques. Other oxygenic photo-

trophs were either identified by CLSM (Halomicronema,

Limnothrix, Pseudanabaena, Synechocystis – group, Glo-

eocapsa – group, Chroococcus, and Microcystis) or by
sequencing analysis (Phormidium, Calotrix, Pleurocapsa,

Oscillatoria). Thus, the combination of both CLSM and

DGGE was useful to fully describe the oxygenic photo-

trophic communities.

As described previously, bacterial biodiversity de-

pends on gradient salinity, with a decreasing bacterial

diversity when salinity increases [50–52]. However, in

this investigated halophilic microbial mat, the diversity
of oxygenic phototrophs is moderate in comparison to

those previously described [53] with the dominance of

M. chthonoplastes a typical inhabitant of halophilic

microbial mat [54–56]. At higher salinities, other cyano-

bacterial morphotypes, like Phormidium, could be

dominant [5].

Within the mat, analysis of biomarkers revealed the

presence of purple bacteria like Rhodobacter and
Ectothiorhodospira, and also of SRB. Iso- and anteiso-

pentadecanoic acids are abundant in SRB and sulfur-

oxidizing bacteria such as Thiomicrospira [35].

Cyclopropylnonadecanoic acid was also a major com-

pound in the distribution of fatty acids. This compound

is abundant in purple phototrophic bacteria such as

Rhodobacter and Ectothiorhodospira where it occurs to-

gether with significant amounts of n-octadec-11(Z)-
enoic acid [35]. The ratio between these two acids (0.5)

could be related to the growth status of the microbial

mat, with a high relative proportion of the cyclopropyl

acid being indicative of stationary growth [57]. The high

abundance of iso- and anteiso-pentadecanoic acids, as

well as of cyclopropylnonadecanoic and n-octadec-

11(Z)-enoic acids likely reflects the dominance of two

different populations exchanging hydrogen sulfide,
which could be sulfate-reducing and purple photo-

trophic bacteria, respectively. By the use of specific

primer sets, T-RFLP allowed us to distinguish photo-

synthetic anoxygenic bacteria (PAB) and SRB organ-

ized in five and three distinct bacterial groups

among the first 3 mm of this mat, respectively (Figs. 7

and 8).

Measurements of the spectral scalar irradiance re-
vealed the presence of purple bacteria in the surface

layer of the mat, especially in the zone at 0.5–0.8 mm
depth (Fig. 2). This confirms the observation with T-

RFLP, showing the presence of distinct populations at

0.4–1.8 mm. In contrast, only few PAB were observed

in the upper layer (0–0.4 mm) (Fig. 8(a)). Therefore,

the PAB developing at greater depths in the mat could

be adapted to lower light intensities, as compared to
the PAB community of the surface layer, since light is

strongly attenuated in the mat (Fig. 2). Moreover, oxy-

gen could also play a role in the stratification of the

PAB, discriminating populations of different tolerance

to the presence of oxygen, especially in the surface layer

of the mat with high oxygen concentrations (Fig. 1).

We could demonstrate the presence of Desulfobacter-

like and Desulfovibrio-like SRB, in the mid layer of the
mat, corresponding to the fluctuating oxic and anoxic

zone during the diel cycle (Fig. 1). Many Desulfovibrio

species were isolated from the oxic zone of microbial

mats, and were found to be able to tolerate and consume

oxygen [58,59]. An oxygen tolerant SRB community

that could not be correlated by T-RFLP to any known

SRB inhabited the 1.6 mm top layer that is completely

oxic during the day. Previous molecular studies have de-
scribed the presence of Desulfonema-like species in the

oxic surface layer of several microbial mats [60,61]. They

were found to be metabolically versatile with a high

affinity to oxygen. In the deeper 3 mm layer, our study

showed that one SRB population was specific to the an-

oxic layer, indicating probably a high sensitivity to oxy-

gen. Thus, T-RFLP analysis illustrated a vertical

stratification of the SRB within the top 3 mm layers of
the mat, that could be explained by their behavioral re-

sponses to oxygen including aggregation, migration to

anoxic zones, and aerotaxis [58].

The microscale zonation of these populations is

partly controlled by the microgradients of oxygen, sul-

fide and light. In the investigated mat, no free sulfide

was measurable with microsensors (Fig. 2), but iron sul-

fide precipitates, and measurements of sulfate reduction
rates (SRR) (Rod Herbert, unpublished results) indi-

cated high bacterial sulfate reduction activity and subse-

quent precipitation of the produced sulfide by iron.

Investigation of the biogeochemistry of the mat in year

2001 confirmed that this Camargue mat is characterized

by high sulfate reduction rates and a high iron and FeS

content [62]. Additionally, in this mat Chloroflexus-like

bacteria, detected by T-RFLP, were found as important
members in the surface layer community (Fig. 6). Their

presence was also indicated by the BChl c absorption de-

tected in the top layer of the mat (Fig. 2). These micro-

organisms could play an important role in hypersaline

and iron-rich microbial mats [63].

Biomarkers also evidenced organic matter contribu-

tions to these microbial mats from other origins. Thus,

C37–C38 di-, tri- and tetra-unsaturated alkenones (Fig.
3(b)) are specific of Hapthophyceae [64,65]. However,

their occurrence cannot be attributed to species typically

http://femsec.oxfordjournals.org/
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found in pelagic environments and are probably related

to unknown species. Moreover, a distribution of C23–

C35 n-alkanes predominated by the odd carbon num-

bered homologues, namely C29, C31 and C33, was found.

This distribution is representative of inputs from higher

plants [66] and is currently found in microbial sediments
from coastal environments [67]. The allochthonous ori-

gin of these n-alkanes is clear based on their biosynthetic

origin. The absence of higher plants nearby hypersaline

systems suggest that their presence in microbial mat sys-

tems such as the one in Camargue may reflect the influ-

ence of wind transported remains from nearby higher

plants, as already observed in other hypersaline areas

[67]. Further evidence of the external origin of these
C23–C35 n-alkanes has been obtained in other coastal

Mediterranean systems from comparison of the d13 C

isotopic composition of these n-alkanes and in situ gen-

erated microbial mat lipids. Whereas the former exhibit

the typical values of higher plant compounds, e.g.

<�20&, the latter reflect the intense use of CO2 as con-

sequence of the high productivity and therefore the d13

C isotopic values are much heavier, >�20& [68].
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5. Conclusions

The results presented here demonstrated a clear strat-

ification of the main photosynthetic and sulfur bacterial

populations in distinct and specific vertical microlayers

according to their physiological characteristics. The first
active millimeter of this photosynthetic microbial mat

was dominated by filamentous cyanobacteria such as

M. chtonoplastes. Beneath this cyanobacterial layer, sul-

fur oxidizing bacteria like Thiomicrospira were present.

Although diverse anoxygenic phototrophic bacteria

such as Rhodobacter and Ectothiorhodospira inhabited

this mat, H. salexigens and R. marina were dominant

in surface and deep zones, respectively. Sulfate reducing
bacteria responsible of high sulfate reduction rates were

distributed within the depth profile. Desulfonema domi-

nated the oxic surface, Desulfobacter and Desulfovibrio

the mid oxic–anoxic layer while oxygen sensitive SRB

were located in the deeper zone. Others organisms such

as algae and diatoms contributed to the microbial mat

structure and development.

In man-made artificial salterns, where such a type of
mat develops, environmental conditions can change dra-

matically on a short term [62]. The structures of bacte-

rial communities in microbial mats have mainly been

described globally at the macroscale level. In contrast,

this study of the hypersaline Camargue microbial mat

represents the first exhaustive investigation, which

clearly shows the structure and the distribution of the

main bacterial communities at the microscale level
according to the microgradients of oxygen and light.
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[50] Benlloch, S., López-López, A., Casamayor, E.O., Ovreas, L.,

Goddard, V., Daae, F.L., Smerdon, G., Massana, R., Joint, I.,

Thingstad, F., Pedros-Alio, C. and Rodriguez-Valera, F. (2002)

Prokaryotic genetic diversity throughout the salinity gradient of a

coastal solar saltern. Environ. Microbiol. 4, 349–360.

[51] Casamayor, E.O., Massana, R., Benlloch, S., Ovreas, L., Diez, B.,

Goddard, V.J., Gasol, J.M., Joint, I., Rodrı́guez-Valera, F. and
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