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Abstract 

This study reports the vertical distribution of fish larvae during the 1999 summer 

upwelling season in the Canaries-African Coastal Transition Zone (the Canaries-

ACTZ). The transition between the African coastal upwelling and the typical 

subtropical offshore conditions is a region of intense mesoscale activity that supports a 

larval fish population dominated by African neritic species. During the study, the 

thermal stratification extended almost to the surface everywhere, and the surface mixed 

layer was typically shallow or non-existent. Upwelling occurred on the African shelf in 

a limited coastal sub-area of our sampling. The vertical distributions of the entire larval 

fish population, as well as of individual species, were independent of the seasonal 

thermocline. Fish larvae and mesozooplankton were concentrated at intermediate depths 

regardless of the thermocline position, probably because of its weak signature and 

spatial and temporal variability. Day/night vertical distributions suggest that some 

species did not perform diel vertical migration (DVM), whereas others showed either 

type I DVM or type II DVM. The opposing DVM patterns of different species 

compensate for each other resulting in no net DVM for the larval fish population as a 

whole. 
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Introduction 

Most neritic and oceanic fish larvae have been reported to occur in the surface mixed 

layer and upper part of the thermocline (e.g. Ahlstrom 1959; Loeb 1979; Palomera 

1991; Boehlert and Mundy 1994; Olivar and Sabates 1997; Smith and Suthers 1999; 

Coombs et al. 2001), where patterns of vertical distributions and daily migrations are 

taxon-specific (e.g. Ahlstrom 1959; Roepke 1989; Leis 1991; Gray 1996; Olivar and 

Sabates 1997; Gray and Kingsford 2003). Temperature and light are important factors in 

determining these patterns (Roepke 1989; Olla and Davis 1990; Heath et al. 1991; 

Brodeur and Rugen 1994). Other studies have suggested that vertical distributions and 

migrations are independent of the thermal stratification and are determined by feeding 

conditions in the water column (Fortier and Leggett 1983; Southward and Barret 1983; 

Munk et al. 1989; Palomera 1991; Roepke 1993).  

The vertical distributions of fish eggs and larvae and larval migration patterns must be 

known to understand and predict horizontal distributions in the presence of vertical 

shear. The interaction between vertical distributions, migrations and hydrodynamic 

processes is of special importance to the horizontal distribution of fish larvae in coastal 

upwelling regions and adjacent areas (Parrish et al. 1981; Norcross and Shaw 1984; 

Olivar 1990; Smith and Suthers 1999). Fish eggs and larvae with near-surface 

distributions are more susceptible to transport offshore in the Ekman layer associated 

with coastal upwelling (John 1985; John and Re 1995; Smith and Suthers 1999). 

Advection of larvae of African neritic species, by Ekman transport and upwelling 

filaments, is considered the principal cause of domination of the Canaries-ACTZ larval 

fish population by these larvae during the summer upwelling season (Rodriguez et al. 

1999; Rodriguez et al. 2004). In contrast, deeper distributions render eggs and larvae 

liable to shoreward transport in the deep onshore flow that is also associated with 

coastal upwelling (Hamann et al. 1981; John 1985; John and Re 1995; Smith and 

Suthers 1999). In some cases, fish larvae migrate vertically between the two flow 

regimes daily (Parrish et al. 1981; Myers and Drinkwater 1989) or ontogenetically 

(Norcross and Shaw 1984; John 1985; Gorbunova et al. 1986) to avoid advection from 

suitable nursery grounds.  

Knowledge of vertical distributions of early life stages of fishes also has practical 

implications for developing sampling strategies. Sampling to inappropriate depths can 
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lead to undersampling if the entire depth range of the distribution of target species is not 

covered, or to wasted sampling time in the case of surface dwelling species. 

In this paper, we examine the vertical distributions of the whole larval fish population 

and of the most common larval fish species that inhabit Canaries-African Coastal 

Transition Zone (the Canaries-ACTZ) in summer, in relation to the thermal structure of 

the water column. We also contribute some new information about the daily vertical 

migrations of these groups.  

 

Oceanography of the Canaries-ACTZ in summer 

During the summer upwelling season, the transition (Fig. 1) between the NW African 

coastal upwelling and typical offshore conditions is characterised by intense mesoscale 

activity. The Canary Islands’ abrupt topography acts as a barrier to the Canary Current 

and trade winds. This introduces a strong variability in the atmospheric and oceanic 

flows. Warm lees are formed downwind of the islands, and cyclonic and anticyclonic 

eddies are shed continuously from the islands to drift southward with the general flow 

(Aristegui et al. 1994; Aristegui et al. 1997; Barton et al. 1998). Also, upwelling 

filaments originating on the African shelf may reach the eastern islands of the Canary 

archipelago to interact with the warm lees and the island-shed eddies (Barton et al. 

2000; Basterretxea et al. 2002). Like eddies, these upwelling filaments are structures 

changing in space and time (Barton et al. 1998; Barton et al. 2004), contributing to the 

high variability of environmental conditions in the Canaries-ACTZ. 

 

Materials and methods 

Sampling procedures. Sampling of the Canaries-ACTZ was conducted aboard the R/V 

Hesperides, from 5 to 27 August, 1999 (Fig. 1). Hydrographic conditions were 

measured at every station by means of a CTD (Barton et al. 2004). Zooplankton and 

ichthyoplankton were sampled at 37 stations (19 at night and 18 during the day). These 

stations (Fig. 1) were arranged in one long section (LS), seven short transects (S, F, Q, 

W and Y) and two isolated stations (D). Five of the short transects (S, F, Q -F repeated-, 

W and Y) crossed upwelling filaments perpendicularly at different distances from the 

African coast. The stations were arranged with one north of an upwelling filament, one 

or two in the filament itself, and the last south of the filament. Transect V crossed 

filament F2 and the anticyclonic eddy (A7) located southwest of Fuerteventura and 
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transect Z crossed the anticyclonic eddy (A6) and the warm island wake south-southeast 

of Gran Canaria (Fig. 1). All of these structures were apparent in the satellite imagery of 

the region obtained during the cruise (Barton et al. 2004). The two isolated stations (D2 

and D4), corresponded to 24-hour samplings following surface drifters. Only two of the 

ichthyoplankton stations (D2 and LS24) were located over the African neritic region, 

while the remainder  were in the oceanic region beyond the 200 m isobath. 

Zooplankton and ichthyoplankton samples were collected with a Longhurst-Hardy 

Plankton Recorder (LHPR) (Williams et al. 1983) fitted with a calibrated flow meter. 

On station, oblique tows, at a speed of 3-4 knots, were made to 200 m depth or to 10 m 

above the bottom where shallower. The 200 µm mesh screen in the sampler was 

programmed to increment at 2 minutes intervals during the descent of the net, collecting 

a series of consecutive samples with a vertical resolution from 10 to 30 m. After 

recovering the gear, plankton was removed from the meshes and the resulting samples 

were preserved in a buffered 4% solution of formalin and seawater. At every station, the 

individual 2-minute strata were aggregated into 9 strata corresponding to the following 

depth ranges: 0-20, 20-35, 35-50, 50-66, 66-82, 82-100, 100-124, 124-151 and 151-200. 

At the shallower stations D2 and 24, the bottom depth permitted sampling only to 85 

and 80 m, respectively.  

Laboratory procedures. All fish eggs and larvae were sorted and counted in the 

laboratory. Fish larvae were identified to the lowest taxonomic level possible. Engraulis 

encrasicolus larvae were measured to 0.1 mm (standard length) under a microscope, 

using an ocular micrometer. For all the other fishes, their developmental stage (larvae or 

juvenile) was determined. Juvenile fishes were only identified to the family level (81 

myctophids and 5 gonostomatids) and they were not included in the analysis of average 

vertical distribution or daily migrations of individual larval fish species. The 

composition of the entire larval fish assemblage can be found in Rodriguez et al. (2004). 

The term “larval fish assemblage” used here refers to all larval fish caught at every 

ichthyoplankton station. Mesozooplankton individuals were counted using a laboratory 

Optical Plankton Counter (OPC). However, when using an OPC to count zooplanktonic 

individuals, the fractions of the zooplankton population <250 µm and >2 mm in 

diameter are lost. The smaller zooplankton, eggs and naupliar through adult stages of 

copepods constitute the main food items for fish larvae (Hunter 1984). The number of 

individuals collected in the different sampling strata was standardised to number unit-1 
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of filtered water (densities): m3 for mesozooplankton, 10 m3 for fish eggs, and 1000 m3 

for fish larvae (densities). The number of larval fish taxa recorded at every stratum was 

standardised to number 100 m-3, and this value was taken as a approximate measure of 

the taxonomic diversity. Average vertical distributions were calculated using all the 

stations. Fish larvae caught in the different sampling strata were also integrated to 

obtain the number of individuals 10 m-2 of sea surface (abundances).  

The weighted mean depth (WMD) of the vertical distributions of mesozooplankton and 

fish larvae at each station was calculated as the centre of density: 
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where pi and Ci are, respectively, the proportion and the concentration of 

mesozooplankton individuals (number m-3) and fish larvae (number 1000 m-3) in the ith 

stratum, and Zi is the mid-depth of the ith stratum (e.g. Fortier and Leggett 1983; Heath 

et al. 1991; Gronkjaer and Wieland 1997). 

Data analysis. The relationship between variables was assessed through correlation 

analysis. We calculated the Pearson’s correlation coefficient between the horizontal 

distributions of mesozooplankton densities and larval fish abundances and also between 

thermocline depths, fluorescence maximum depths, WMDs of mesozooplankton, 

WMDs of the larval fish assemblages and WMDs of single larval fish species. The 

thermocline depth was calculated as the depth of the strongest temperature gradient in 

the upper 200 m. The gradient was calculated over 5 m-intervals to eliminate small-

scale structures that could give anomalous results. The bottom of the thermocline was 

defined as the depth where a strong change in the slope of the temperature profile was 

observed. This change coincided in general with the 18.5 ºC isotherm and we choose 

this isotherm depth as the thermocline bottom.  

The amplitude of daily vertical migration (DVM) was calculated as the difference 

between the average WMD between day and night. A positive value indicated 

movement towards the surface during the night, or type I DVM, and a negative value 

indicated reverse vertical migration, or type II DVM (Neilson and Perry 1990). 

Following Irigoeien et al. (2004), only those organisms whose mean depth varied by 

more than 10 m between day and night were considered to perform significant DVM.  

One-way ANOVA was used to compare the difference in size with depth of Engraulis 

encrasicolus larvae for day and night catches independently. The absence of larvae 
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during daytime from the two deepest strata prevented us from using a two-way 

ANOVA.  

 

Results 

Hydrographic conditions 

The hydrography of the study area during the sampling period was summarised in 

Barton et al. (2004) on the basis of extensive in situ sampling and remote sensing. 

Features described (Fig. 1) included an anticyclonic eddy (A1) shed from Tenerife, an 

anticyclone (A6) and a cyclone (C2) shed from Gran Canaria, an eddy spinning 

anticyclonically south of Fuerteventura (A7) and an upwelling filament (F1). A second 

filament (F2) subsequently developed further north to merge with F1 some 100 km 

offshore. The filaments were partially entrained over the slope around a topographically 

trapped cyclonic eddy (C7). Two more eddies, one cyclonic (C8) and the other 

anticyclonic (A8), were observed between the filament branches and the African coast. 

Moreover, the characteristic warm regions in the lee of Gran Canaria and Fuerteventura 

were also evident.  

The water column was thermally stratified. In this subtropical region, off the continental 

shelf, the seasonal summer thermocline is contiguous with the permanent thermocline. 

The surface mixed layer, where there was one, was in general shallow. The depth and, 

to a lesser extent, the intensity of the seasonal thermocline varied greatly between 

stations. The thermocline was shallow in the core of the cyclonic eddies and in 

filaments, but deeper in the core of the anticyclonic eddies and warm wakes, and 

gradually rose to the surface as it approached the coastal upwelling region (Figs. 2-4).  

Overall vertical distributions 

Chlorophyll-a was highly stratified. All the fluorescence profiles showed a maximum 

consistently located at the bottom of the thermocline. Differences between maximum 

fluorescence depths and bottom of the thermocline depths were not significant (T-

Student for paired samples, p=0.82, p<0.01). The dependence of the vertical distribution 

of phytoplankton on the vertical thermal structure of the water column was corroborated 

by the high and significant correlation found between thermocline depths and maximum 

fluorescence depths (r=0.82, p<0.01). 

Mesozooplankton (Fig. 2) and fish larvae (Fig. 3) were distributed throughout the 

sampled water column, with the highest densities found at intermediate depths. In some 
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cases (e.g. stations S14 and V8), the vertical distributions were quite uniform. Greatest 

larval fish diversity was also found at intermediate depths, except at station D2, where it 

occurred in the surface stratum (Fig. 4).  

The mean concentration of mesozooplankton (Fig. 5a) increased from the surface to a 

maximum at the 35-50 m stratum, then decreased gradually towards deeper layers. 

However, the average vertical distribution shows that fish larvae were more stratified; 

most larvae were concentrated between 20 and 66 m depth (Fig. 5b). The maximum 

larval fish density was recorded in the same stratum (35-50 m) as mesozooplankton. 

The average vertical distribution shows that maximum larval diversity was found in the 

50-66 m stratum, below the maximum larval density (Fig. 5c).  

Individual larval fish species followed different patterns of vertical distribution. The 

vertical distribution of E. encrasicolus larvae (Fig. 5d) and Sardine pilchardus larvae 

(Fig. 5f) were similar, although no S. pilchardus larvae were found below 151 m. E. 

encrasicolus dominated the larval fish population of the Canaries-ACTZ at the time of 

our sampling, comprising 29.3% of the total larval fish catch (Rodriguez et al. 2004). 

Over 97% of the E. encrasicolus and all S. pilchardus larvae (2.1% of the total larval 

fish catch) were caught in the oceanic region, outside the 200 m isobath. Also, 1780 E. 

encrasicolus eggs were collected at the two stations located over the African continental 

shelf, most of which were concentrated in the surface layer (Fig. 5e). Below 35 m, 

densities were uniformly low. Most of the E. encrasicolus eggs (>83%) and all of the 

smallest larvae (those <3.0 mm in size) were caught in the 0-35 m layers of station D2, 

located near the root of filament F2. 

Anthias anthias (13.0% of the total larval fish catch) was the species that showed the 

least stratified vertical distribution (Fig. 5g), distinct from the other neritic and oceanic 

species. All the larvae of this neritic species were caught in the oceanic region.  

Most larvae of the mesopelagic species Cyclothone braueri (6.3% of the total larval fish 

catch) were concentrated between 20 and 66 m (Fig. 5h), and they were absent or 

present in very low densities in the two deepest strata (124-200 m).  

Ceratoscopelus maderensis (3.9% of the larval fish catch) had the shallowest 

distribution of all myctophids studied (Fig. 5i). The maximum density occurred in the 

35-50 m stratum, and larvae were almost absent below 82 m. The other myctophid 

species, Notolichnus valdiviae (Fig. 5j), Diogenicthys atlanticus (Fig. 5k) and 

Myctophum punctatum (Fig. 5l), with 1.8%, 3.5% and 3.2% of the total larval fish 

catches respectively, showed vertical distributions with few or no larvae above 35 m. 
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Their maximum densities were found in the 66-82 m stratum. Almost all of the larvae 

classified as oceanic species (99.7%) were caught in the oceanic region.  

The WMDs of all larvae and individual larval fish species were generally not related to 

the thermocline or maximum fluorescence depths, but they were positively, and in most 

cases significantly, related to the WMD of mesozooplankton (Table I). The significant 

correlation found between the WMD of D. atlanticus and thermocline depth must be 

viewed with caution because the correlation coefficient was small, this significant 

relation only represented 11.0% of the larval fish groups implicated in the analysis and 

the number of larvae of this species was relatively low. These considerations are also 

applicable to the significant correlations found between WMDs of D. atlanticus and N. 

valdiviae with maximum fluorescence depths.  

The horizontal distribution of larval fish abundances was significantly correlated with 

the horizontal distribution of the mesozooplankton densities (r=0.42, p=0.01). 

 

Diel vertical migrations 

Mesozooplankton (Fig. 6a) and total larvae (Fig. 6b) followed almost identical patterns 

of vertical distribution during day and night, although densities in every stratum were 

higher at night than during the day. Neither group showed daily vertical migration 

(Table II). Individual larval fish species showed relatively different patterns of vertical 

distributions for day and night. The neritic species, E. encrasicolus (Fig. 6c), S. 

pilchardus (Fig. 6d) and A. anthias (Fig. 6e), exhibited a more stratified vertical 

distribution during day than night. However, only S. pilchardus larvae performed 

significant diel vertical migration (Table II). As for mesopelagic species, N. valdiviae 

and D. atlanticus larvae showed normal or type I DVM and M. punctatum showed 

reverse or type II DVM (Table II). It is also apparent from Figure 6 that more 

mesozooplankton and fish larvae of all groups were caught at night than during the day.  

A total of 808 E. encrasicolus larvae were measured. They ranged in size from 2.5 to 

23.0 mm, with a mean of 9.9 mm. Of these larvae, the 656 specimens caught at night 

were significantly larger (mean size 10.1 mm), than the 152 caught during the day 

(mean size 9.1 mm) (T-test, p < 0.01). During daytime, the size of the larvae increased 

steadily with depth, from a mean of 8.1 mm in the surface stratum to 13.0 mm in the 82-

100 m stratum. Differences in size between strata were significant (ANOVA, p < 0.01). 

At night, the largest larvae (up to 23.0 mm in length and with a mean size 11.3 mm) 
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were caught in the surface stratum. In the remaining strata, the mean size ranged from 

9.1 to 10.3 mm. The differences in larval E. encrasicolus size between strata were also 

significant (ANOVA, p < 0.01). 

 

Discussion 

Physical conditions 

The continuous permanent and seasonal thermoclines found in the oceanic area, where 

the great majority of the larvae were caught, is typical of summer conditions in 

subtropical waters. The distinctive characteristic of the Canaries-ACTZ is the strong 

mesoscale oceanographic activity in the region, apparent in the satellite imagery of the 

area at the time of the sampling (Barton et al. 2004), and also reflected in the variability 

in the distribution of temperature along the different transects (Figs. 2, 3 and 4). 

Upwelling episodes, with the consequent formation of Ekman transport and upwelling 

filaments, and eddy shedding from the Canary Islands result in great variability in 

thermocline depth over short distances (Figs. 2, 3 and 4) and times.  

 

Larval vertical distributions 

The distribution of fish larvae was vertically stratified. This was consistent with the 

vertical distributions reported for fish larvae in coastal (e.g. Ahlstrom 1959; Boehlert et 

al. 1985; Olivar 1990; Leis 1991; Gray 1993; Conway et al. 1997) and oceanic waters 

(e.g. Ahlstrom 1959; Loeb 1979; Roepke 1993). The observation that maximum larval 

diversity occurred below the depth of maximum larval density suggests that the 

maximum diversity was found where species with shallower distribution met species 

with deeper distribution. 

Vertical distributions of fish larvae have often been related to the thermal stratification 

of the water column (Loeb 1980; Hamann et al. 1981; Roepke et al. 1993; Boehlert and 

Mundy 1994; Moser and Pommeranz 1999). The presence of a thermocline was 

considered important (Loeb 1979; Kendall and Naplin 1981; Boehlert et al. 1985; 

Roepke et al. 1993; Smith and Suthers 1999) in acting as an upper or a lower barrier for 

the vertical distribution of the larvae of some species (Ahlstrom 1959; Coombs et al. 

1981; Davis et al. 1990; Olla and Davis 1990). However, in the Canaries-ACTZ, the 

vertical distribution of fish larvae was not conditioned by the thermocline. 

Independence of vertical distributions from the vertical thermal structure of the water 
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column has been observed for coastal and oceanic waters in different regions of the 

world (Southward and Barret 1983; Roepke 1993; Gray 1996; Conway et al. 1997; Gray 

1998). According to Olla and Davis (1990), fish larvae possess behavioural mechanisms 

that enable them to alter position in the water column to deal with environmental 

gradients and select favourable ones. Gray (1996) argued that larval behaviour, not 

thermocline location, is the major influence determining vertical distributions of fish 

larvae in waters characterized by strong physical variability. Gray and Kingsford (2003) 

provided evidence that thermoclines had no detectable effect on vertical distributions of 

fish larvae and mesozooplankton in dynamic coastal waters. In the Canaries-ACTZ the 

seasonal thermocline is relatively weak compared to, say, the sub-tropical Pacific, the 

Benguela upwelling or temperate seas in summer, and so fish larvae would experience 

only gradual temperature changes with depth, which may explain the negligible 

influence of the thermocline on the vertical distribution of fish larvae. However, It 

should be borne in mind that the combining of data from areas of different stratification 

and from different species, inevitable because of the sparse sampling, will tend to 

obscure any particular relationships in different features. 

Vertical distributions of individual fish species, apart from the neritic species E. 

encrasicolus and S. pilchardus (no information is available concerning the vertical 

distribution of A. Anthias), were similar to patterns previously reported for the same or 

congener mesopelagic larval fish species in different regions of the world (Gorbunova 

1973; Badcock and Merret 1976; Gorbunova 1977; Loeb 1979; Hamann et al. 1981; 

John 1984; John 1985; Boehlert et al. 1992; Roepke 1993). E. encrasicolus and S. 

pilchardus larvae had a deeper and a wider vertical distribution than previously found 

for these species in the NE Atlantic (Southward and Barret 1983; John 1985; John and 

Re 1995), in the NW Mediterranean (Palomera 1991; Olivar and Sabates 1997; Olivar 

et al. 2001) or in the Adriatic Sea (Regner 1972; Coombs et al. 1997). Species within 

these genres, such as Engraulis mordax and Sardinops coerulea in the California 

Current (Ahlstrom 1959; Boehlert et al. 1985; Moser and Pommeranz 1999), Engraulis 

capensis and Sardinops ocellatus in the Northern Benguela Region (Olivar 1990), and 

Engraulis rigens and Sardinops sagax in the Peru Current (Sameoto 1982) showed also 

shallower and narrower distribution than that found in this study. However, it must be 

emphasized that the above studies were carried out in neritic temperate regions or in 

subtropical upwelling regions, with different vertical distributions of abiotic and biotic 

properties from those found in this study. In Peruvian waters, Gorbunova et al. (1986) 
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found for S. sagax a shallow distribution in the coastal area but a deep distribution, even 

more so that in this study, in open ocean waters under conditions of convergent 

currents. E. encrasicolus eggs, all of them collected in the region of coastal upwelling, 

showed a pattern of vertical distribution similar to that observed for this species in the 

NE Atlantic ocean (Coombs et al. 2004), and the NW Mediterranean (Palomera 1991; 

Olivar et al. 2001) and Adriatic (Regner 1972; Coombs et al. 1997; Coombs et al. 2003) 

seas. The near-surface concentration of anchovy eggs has been related to the spawning 

location of this species in the water column (Olivar et al. 2001). This near surface 

location of most E. encrasicolus eggs and all of the smallest larvae within the Ekman 

layer, which in this region has a thickness between 20 and 60 m (Mittelstaedt 1983), 

results in them being transported away from the spawning site on the African 

continental shelf (Furnestin and Furnestin 1959). The larvae were then spread 

throughout the Canaries-ACTZ, in the Ekman layer and in upwelling filaments, where 

they dominated the larval fish population at the time of our sampling (Rodriguez et al. 

2004). 

From the above it follows that larval fish species, under similar environmental 

conditions, seem to occupy similar depth ranges in different regions of the world. This 

indicates a species-specific depth selection behaviour dependent on some particular 

environmental conditions of the water column. Ahlstrom (1959) reported that many of 

the differences observed in depth distributions of larvae of the same species in various 

sampling series were due to differences in the position of the thermocline. Other authors 

have reported the importance of vertical distribution of prey to the vertical distribution 

of fish larvae (Coombs et al. 1981; Sameoto 1982; Fortier and Leggett 1983; Fortier and 

Harris 1989; Munk et al. 1989; Palomera 1991; Ponton and Fortier 1992; Roepke 1993; 

Mullin and Cass-Calay 1997). In this study, the significant correlation found between 

the spatial distributions of fish larvae and mesozooplankton suggests some kind of 

relationship between them, perhaps trophic. If so, prey distribution would be an 

important environmental factor influencing the vertical distribution of fish larvae in the 

Canaries-ACTZ. But we have data neither about the composition of the 

mesozooplankton population nor about the gut content of the larvae to draw any 

conclusion. Further studies are required to elucidate this question. In any case, as in 

other dynamical regions (Gray and Kingsford 2003), the thermocline seems not be an 

important interface for trophic interactions between zooplankton and fish larvae.  
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Finally, we must add that to sample adequately the larval fish population in this region, 

it is necessary to carry out deeper hauls than we did in this study. Only the vertical 

distribution of S. pilchardus larvae seems to have been adequately covered by sampling 

to 200 m in depth. 

 

Diel vertical migrations 

The difficulties involved in the study of daily vertical migration (DVM) of fish larvae 

are significant (see Pearre 1979), especially considering the four main limitations of our 

sampling strategy: (1) This sampling was not specifically designated to study DVM. We 

compared samples collected at different times of day and night and at different locations 

with quite different environmental conditions. (2) The thickness of the strata could 

exceed the migration range of some individuals. (3) As we have seen above, our 

sampling depth did not cover the entire distribution range of most of the organisms 

studied. And (4) the accuracy of the amplitude estimation is related to the abundance of 

organisms. Apart from the whole populations of mesozooplankton and fish larvae and, 

perhaps, E. encrasicolus larvae, the other taxa were in relatively low abundance. 

Despite these limitations, given the particular lack of previous studies on the subject in 

the Canaries-ACTZ and the general paucity of studies about DVM in oceanic waters, 

such an investigation is fully warranted. 

Although type I DVM is the most common pattern of DVM followed by larval fish 

species, type II DVM and no DVM have also been reported (Boehlert et al.1985, 

Neilson and Perry 1990; Olivar 1990; Brodeur and Rugen 1994; Conway et al. 1997). 

Ontogenetic differences in diel vertical migration have also been observed with more 

extensive DVM carried out by larger larvae (Fortier and Leggett 1983; Fortier and 

Harris 1989). In our study, the increase in size with depth during the day and the 

presence in the surface stratum of the largest E. encrasicolus larvae at night suggest 

normal or type I DVM of larger sized individuals. The size-related DVM has been 

reported for E. encrasiclous larvae (Palomera 1991; Olivar and Sabates 1997; Olivar et 

al. 2001) and other anchovy species (Hunter and Sanchez 1976; Brewer and Kleppel 

1986). According to Hunter and Sanchez (1976), larger anchovy larvae would move to 

the surface to swallow air and fill their swim bladder in order to save the energy 

required to maintain a position in the water column during the night, when the larvae do 

not feed. However, in the absence of a strong physical barrier, even larvae with gas in 



 13

their swim bladders might passively sink during the resting period (Sogard et al. 1987; 

Munk et al. 1989; Brodeur and Rugen 1994; Olivar et al. 2001). This would result in the 

broader night-time distributions observed for E. encrasicolus against the more stratified, 

light gradient dependent daytime patterns actively maintained by larvae (Heath et al. 

1988; Leis 1991; Ponton and Fortier 1992). The net result of active migrations to 

conform daytime patterns, and passive sinking at night would be no DVM, as found for 

E. encrasicolus larvae in this study (Table II) 

The normal or model I of DVM found for S. pilchardus contradicts the DVM pattern 

previously found for this species (Olivar et al. 2001) and Sardinops sagax (Fletcher 

1999). However, the size of the larvae (between 5.0 and 15.5 mm, mean 9.7 mm) and 

the size related DVM also reported for the larvae of this species (Olivar et al. 2001) 

must be considered. Neither, the low number of S. pilchardus larvae available for the 

analysis (67) must be not forgotten. For mesopelagic species there are few studies about 

larval DVM (see Neilson and Perry, 1990, for a review). In a recent study about diel 

vertical distribution of fish larvae in the Northwestern Mediterranean, Sabates (2004) 

reported that most of the mesopelagic species larvae were closer to the surface during 

the day than at night. 

In the Canaries-ACTZ in summer, larval fish species seem to carry out little or no 

DVM. For those that migrate, the opposed DVM followed by different species 

compensate each other to produce an overall result of no net DVM for the total larval 

fish population. Fish larvae generally seem to maintain positions at intermediate depths 

coinciding with depths of maximum mesozooplankton densities. Perhaps feeding 

conditions there are optimal, and light levels reduce the predation risk and allow visual 

avoidance of the sampling gear by the larvae during the daytime. The last point would 

explain the differences in day/night catches for fish larvae.  
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Figure legends 
 
Figure 1. Geographic location of the study area, sampling stations, eddies and filaments 
as discussed in the text. (• ) night stations, (o) day stations. 
 
Figure 2. Vertical profiles of temperature (ºC) and vertical distributions of 
mesozooplankton (number of individuals m-3) along the sampled transects. Circle size is 
proportional to densities and circles are centred in the middle of each of the 9 resulting 
strata for every ichthyoplankton station. The bottom of the thermocline is indicated by 
the thicker isoline. Station labelled in bold and italic are night stations. The approximate 
location of the different eddies and filaments discussed in the text is indicated. 
 
Figure 3. Vertical profiles of temperature (ºC) and vertical distributions of larval fish 
densities (nº of individuals 1000 m-3) along the sampled transects. Circle size is 
proportional to densities and circles are centred in the middle of each of the 9 resulting 
strata for every ichthyoplankton station. The bottom of the thermocline is indicated by 
the thicker isoline. Station labelled in bold and italic are night stations. The approximate 
location of the different eddies and filaments discussed in the text is indicated. 
 
Figure 4. Vertical profiles of temperature (ºC) and vertical distribution of taxonomic 
diversity (nº of larval fish taxa 100 m-3) along the sampled transects. Circle size is 
proportional to densities and circles are centred in the middle of each of the 9 resulting 
strata for every ichthyoplankton station. The bottom of the thermocline is indicated by 
the thicker isoline. Station labelled in bold and italic are night stations. The approximate 
location of the different eddies and filaments discussed in the text is indicated.. 
 
Figure 5. Mean vertical concentrations of a) mesozooplankton, b) total fish larvae, c) 
larval taxonomic diversity, d) Engraulis encrasicolus larvae, e) E. encrasiclous eggs, f) 
Sardina pilchardus larvae, g) Anthias anthias larvae, h) Cyclothone braueri larvae, i) 
Ceratoscopelus maderensis larvae, j) Notolichnus valdiviae larvae, k) Diogenichthys 
atlanticus larvae and l) Myctophum punctatum larvae (horizontal lines indicate positive 
values of standard error). The mean vertical profile of temperatures recorded at the 
ichthyoplankton stations is overlapped to the vertical distributions of mesozooplankton 
and fish larvae. 
 
Figure 6. Mean day (open bars)/night (filled bars) vertical concentrations of a) 
mesozooplankton, b) total fish larvae, c) Engraulis encrasicolus larvae, d) Sardina 
pilchardus larvae, e) Anthias anthias larvae, f) Cyclothone braueri larvae, g) 
Ceratoscopelus maderensis larvae, h) Notolichnus valdiviae larvae, i) Diogenichthys 
atlanticus larvae and j) Myctophum punctatum larvae. 
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Table. I. Correlation coefficients between weighted mean depths (WDMs) of 
mesozooplankton, larval fish assemblages, and single larval fish species, and depth of 
the thermocline.  

 Thermocline 
Depths 

Maximum 
fluorescence 
depths 

WMDs of 
mesozooplankton 

Maximum fluorescence depths 0.82** − −
WMDs of mesozooplankton 0.09 0.09 −
WMDs of larval fish assemblages 0.15 0.18 0.67**
WMDs of Engraulis encrasicolus 0.10 0.09 0.30
WMDs of Sardina pilchardus 0.28 0.23 -0.05
WMDs of Anthias anthias 0.04 -0.16 0.18
WMDs of Cyclothone braueri 0.23 0.03 0.53**
WMDs of Ceratoscopelus maderensis -0.12 0.05 0.22
WMDs of Myctophum punctatum 0.20 0.32 0.63**
WMDs of Diogenichthys atlanticus 0.43* 0.40* 0.49**
WMDs of Notolichnus valdiviae 0.44 0.57** 0.63**

    *significant to the 0.05 level, **significant to the 0.01 level 
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Table II. Daytime weighted mean depth (DWMD) and amplitude of diel vertical 
migration (DVM, m) of the mesozooplankton, total fish larvae and individual larval fish 
species. Negative values indicate reverse vertical migration (deeper at night than during 
the day ). Only those organisms whose mean depth varied by more 10 m between day 
and night were considered to perform DVM. 

 DWMD DVM

Mesozooplankton 65.0 -3.3
Total fish larvae 52.8 -2.1
Engraulis encrasicolus 46.9 4.4
Sardina pilchardus 40.9 15.9*
Anthias anthias 49.8 7.3
Cyclothone braueri 43.6 -6.2
Ceratoscopelus maderensis 45.4 -8.7
Myctophum punctatum 70.8 -12.4*
Diogenichthys atlanticus 96.0 18.6*
Notolichnus valdiviae 84.8 20.0*

* perform significant diel vertical migration 
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Figure 1. Geographic location of the study area, sampling stations, eddies and filaments 
as discussed in the text. (• ) night stations, (o) day stations. 
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Figure 2. Vertical profiles of temperature (ºC) and vertical distributions of 
mesozooplankton (number of individuals m-3) along the sampled transects. Circle size is 
proportional to densities and circles are centred in the middle of each of the 9 resulting 
strata for every ichthyoplankton station. The bottom of the thermocline is indicated by 
the thicker isoline. Station labelled in bold and italic are night stations. The approximate 
location of the different eddies and filaments discussed in the text is indicated. 
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Figure 3. Vertical profiles of temperature (ºC) and vertical distributions of larval fish 
densities (nº of individuals 1000 m-3) along the sampled transects. Circle size is 
proportional to densities and circles are centred in the middle of each of the 9 resulting 
strata for every ichthyoplankton station. The bottom of the thermocline is indicated by 
the thicker isoline. Station labelled in bold and italic are night stations. The approximate 
location of the different eddies and filaments discussed in the text is indicated. 
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Figure 4. Vertical profiles of temperature (ºC) and vertical distribution of taxonomic 
diversity (nº of larval fish taxa 100 m-3) along the sampled transects. Circle size is 
proportional to densities and circles are centred in the middle of each of the 9 resulting 
strata for every ichthyoplankton station. The bottom of the thermocline is indicated by 
the thicker isoline. Station labelled in bold and italic are night stations. The approximate 
location of the different eddies and filaments discussed in the text is indicated.. 
 



 25

 

 
 
Figure 5. Mean vertical concentrations of a) mesozooplankton, b) total fish larvae, c) 
larval taxonomic diversity, d) Engraulis encrasicolus larvae, e) E. encrasiclous eggs, f) 
Sardina pilchardus larvae, g) Anthias anthias larvae, h) Cyclothone braueri larvae, i) 
Ceratoscopelus maderensis larvae, j) Notolichnus valdiviae larvae, k) Diogenichthys 
atlanticus larvae and l) Myctophum punctatum larvae (horizontal lines indicate positive 
values of standard error). The mean vertical profile of temperatures recorded at the 
ichthyoplankton stations is overlapped to the vertical distributions of mesozooplankton 
and fish larvae. 
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Figure 6. Mean day (open bars)/night (filled bars) vertical concentrations of a) 
mesozooplankton, b) total fish larvae, c) Engraulis encrasicolus larvae, d) Sardina 
pilchardus larvae, e) Anthias anthias larvae, f) Cyclothone braueri larvae, g) 
Ceratoscopelus maderensis larvae, h) Notolichnus valdiviae larvae, i) Diogenichthys 
atlanticus larvae and j) Myctophum punctatum larvae. 
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