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Abstract 

The aim of this study was to examine the impact of predictability on dual-task performance by systematically manipu-
lating predictability in either one of two tasks, as well as between tasks. According to capacity-sharing accounts of 
multitasking, assuming a general pool of resources two tasks can draw upon, predictability should reduce the need 
for resources and allow more resources to be used by the other task. However, it is currently not well understood what 
drives resource-allocation policy in dual tasks and which resource allocation policies participants pursue. We used a 
continuous tracking task together with an audiomotor task and manipulated advance visual information about the 
tracking path in the first experiment and a sound sequence in the second experiments (2a/b). Results show that per-
formance predominantly improved in the predictable task but not in the unpredictable task, suggesting that partici-
pants did not invest more resources into the unpredictable task. One possible explanation was that the re-investment 
of resources into another task requires some relationship between the tasks. Therefore, in the third experiment, we 
covaried the two tasks by having sounds 250 ms before turning points in the tracking curve. This enabled participants 
to improve performance in both tasks, suggesting that resources were shared better between tasks.
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According to capacity-sharing accounts, people can flex-
ibly allocate generic processing resources to different 
competing tasks and stages of processing, which allows 
concurrent dual tasking (cf. Koch et al. 2018, regarding a 
flexibility perspective in multitasking; Meyer and Kieras 
1997). Limitations in dual-task processing may however 
occur because the total amount of utilizable resources is 
limited and may be depleted once different stimulus and 
response modalities draw on this pool of central atten-
tional resources [Kahneman 1973; Posner and Petersen 
1990; Tombu and Jolicœur 2003; but see Wickens (2002, 
2008), for a modality-specific resources account].

With a limited pool of processing resources, criti-
cal aspects to successful dual tasking would thus be the 

reduction of required resources and an effective resource 
allocation policy. In this study, we have examined the 
impact of predictability on dual-task performance and its 
potential implications for a reduction in resource needs 
and resource allocation policy. Considering that predic-
tion is a permanently ongoing process of the human per-
ceptual, cognitive and motor system (Bubic et  al. 2010; 
de Oliveira et al. 2014) and single-task (ST) studies have 
shown that predictable tasks are processed more effi-
ciently and require fewer attentional resources [as indi-
cated by decreased cortical activity, see Eagleman et  al. 
(2009], we expected predictability to also have an impact 
on resource utilization in dual tasks. This view has also 
been supported by Wahn and König (2017). They claimed 
that the degree to which a stimulus in the environment 
can be predicted influences the allocation of attentional 
resources, and that one future direction for research is to 
“investigate the extent to which attentional resource limi-
tations can be circumvented by varying the predictability 
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of the presented stimuli” (p. 91). In continuous tasks, pre-
dictability may take the form of visual information about 
the route ahead enabling participants to plan action 
required in a few milliseconds (de Oliveira et  al. 2014). 
Predictability thus leads to an optimal configuration of 
the sensory system prior to stimulus onset, which facili-
tates processing of environmental input (Fougnie et  al. 
2018; Król and Król 2017). For this reason, predictability 
may be of particular importance in dual-task (DT) situ-
ations; if predictable tasks require fewer resources, then 
there should be residual resources available for the other 
task. For settings where the primary task is predictable, 
this process has also been termed the trickle-down effect 
of predictability (Król and Król 2017). None of the capac-
ity-sharing accounts do however provide hypotheses 
about the utilization of residual resources. This might 
be due to the fact that testing the utilization of resources 
and residual resources is difficult as the metaphorical 
construct “resource” is not directly measurable or quan-
tifiable [for a critical evaluation of dual-task theories see 
Hommel (2020)]. In the literature however, any reduction 
in costs (either comparing single against dual tasks, or 
comparing two different dual tasks) and improvements 
on the dependent variable have been accepted as a proxy 
for reduced resources (e.g., Fougnie et  al. 2018; Gopher 
et al. 1982; Wahn and König 2015). In addition, it seems 
advisable to not only look at performance improve-
ments in the primary tasks or dual-task costs (difference 
between single- and dual-task performance), but to also 
report performance, and potentially changes, in the sec-
ondary task. A closer look at secondary task performance 
might give an indication of how resources are allocated.

We hypothesize that the human system draws on one 
general pool of resources [Kahneman 1973; Tombu and 
Jolicœur 2003; for an opposing view see Wickens (2008), 
as well as the discussion below], and that a predict-
able primary task frees resources that can be used for a 
secondary task. This allocation policy should result in 
improved performance in both tasks. On the contrary, 
if predictability improves performance in only one (the 
predictable) task, this would be in line with the pre-
viously suggested economic processing mode where 
humans aim to reduce, not reinvest resources (see also 
Navon and Gopher 1979; Plessow et al. 2012). In the liter-
ature, there is evidence for both secondary tasks benefit-
ing from a predictable primary task (Cutanda et al. 2015; 
Töllner et  al. 2012) and for improved performance in 
the predictable task but not in the secondary task (Corr 
2003; Ewolds et  al. 2017). For instance, Cutanda et  al. 
(2015) showed that when participants concurrently per-
formed an irregular vs. rhythmic auditory response task 
with an N-back memory task, they responded faster after 
regular rhythms compared to irregular rhythms, and 

this was regardless of memory load. By contrast, Ewolds 
et al. (2017) used a tracking task which became predict-
able through learning the track over several days. They 
showed that performance in a tracking task improved, yet 
reaction times to the auditory secondary task did not dif-
fer between the reactions needed during the learnt ver-
sus random tracking segments. Taken together, there is 
both limited and conflicting empirical evidence regard-
ing the benefits of predictability in the primary task on 
the secondary task. On the other hand, there is empiri-
cal evidence that resource allocation policy can be influ-
enced, and consequently that resources can be unevenly 
distributed among tasks. For instance, instructing par-
ticipants to put more emphasis on one vs. the other task 
(Lehle and Hubner 2009; Tsang 2006), different percep-
tions of potential outcome value and the saliency of tasks 
(Schmidt and Dolis 2009; Wickens et  al. 2003, 2015; 
Wickens and Colcombe 2007), or distractions during 
dual-task execution (Strayer and Drews 2007) can impact 
resource allocation policy. However, these studies do not 
report what implications such an allocation policy might 
have for the other task which is why further attention 
should be given to potential drivers of resource reduction 
and allocation in order to optimize dual-task behavior 
(Salvucci and Taatgen 2008; Tombu and Jolicœur 2003).

In this study, we have taken a systematic approach, 
manipulating predictability in the first task, in the sec-
ond task, and in both tasks to examine the impact of 
predictability on dual-task performance and the impli-
cations for resource reduction and resource allocation 
policies.

We used a continuous visuomotor tracking paradigm 
together with a discrete auditory reaction time task, 
because it has been shown that this combination of 
tasks reliably leads to dual-task costs (Ewolds et al. 2017; 
Fougnie et al. 2018; Lang et al. 2013). More importantly, 
tracking tasks allow the measure of temporal-spatial vari-
ables (i.e., velocity) which give insight into performance 
changes as soon as another task intervenes. If velocity 
increases or decreases once participants respond to the 
auditory task, this indicates that resources are taken away 
from tracking and we can make inferences about the 
resource allocation policy. Predictability was manipulated 
by displaying parts of the tracking path (Experiment 1) 
and sequencing sounds in the auditory task (Experiment 
2a/b). In Experiment 3, we covaried both tasks by play-
ing target sounds 250 ms before the inflection points of 
the tracking curve and as such the auditory task could be 
used to predict changes in the tracking task. The covari-
ation created a meaningful relation between tasks, serv-
ing as an incentive for participants to reinvest resources 
into this task or even integrate the tasks into one (Ewolds 
et al. 2020; Schmidtke and Heuer 1997).
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Experiment 1
Considering that predictability is provided by informa-
tion in the environment or prior knowledge of a per-
son (Gentsch et  al. 2016; Körding and Wolpert 2006; 
Wolpert et  al. 2003), the first experiment manipulated 
predictability in the tracking environment by provid-
ing participants with advance visual information about 
the tracking path. The continuous task provides a suit-
able paradigm to examine the hypothesized processes 
of resource allocation because it allows for flexible 
scheduling, in contrast to using two discrete tasks. This 
gives insights into allocation policies at the moment 
an interfering secondary stimulus occurs. In addition, 
the information about the tracking path allows feed-
forward control which can correct positional errors, 
delays between target and controller, or jerkier trajec-
tories (Engel and Soechting 2000; Hill and Raab 2005; 
Lange 2013; Scott 2012; Weir et al. 1989; Wolpert et al. 
2011). With fewer resources needed in one predictable 
task there should be residual resources available that 
can be used for another task. A DT tracking study by 
Eberts (1987) already showed that participants receiv-
ing visual information on both sides of a moving target 
improve DT tracking performance, but as no reaction 
times (RTs) for verbal secondary-task responses were 
reported, a look into the performance on the second-
ary task is required in order to make inferences about 
potential resource allocation.

Methods
Participants
In total, 38 participants were recruited on a university 
campus, via a mailing list or through a participant data 
bank. Three participants were identified as outliers and 
were excluded from the analysis, yielding a final sam-
ple of 35 participants (22 males and 13 females; aged 
between 19 and 30  years, M = 21.80  years, SD = 2.56). 
An a priori G*Power (version 3.1.9.2) analysis revealed a 
required sample size of 32 participants for a test power 
of 0.80 (effect size f = 0.25 for 2 groups (ST vs. DT) and 
5 conditions (predictability), α = 0.005 corrected for 
alpha-error accumulation, 1 − β = 0.80, r = 0.5).

Participants in this and the following experiments 
had self-reported normal or corrected-to-normal 
vision, normal hearing ability, and no musculoskeletal 
or neurological disorders. Participants gave written 
informed consent prior to the experiment and received 
a small remuneration for taking part. The experiments 
were approved by the local ethics committee and con-
formed to the principles of the Declaration of Helsinki 
2013.

Setup
Participants were seated in a dimly lit room at a view-
ing distance of 60  cm from a 24-in computer screen 
(144  Hz, 1920 × 1080 pixel resolution). The tracking 
software ran on a Windows 10, 64-bit system with a 
GTX750 graphics card. A spring-loaded joystick was 
fixed to the table  30  cm from the screen (SpeedLink 
Dark Tornado, max. sampling rate 60  Hz), and the 
pedal was fixed to the floor under each participant’s 
self-reported dominant foot (f-pro USB foot switch, 
9 × 5  cm; Fig.  1). Participants wore headphones (Sen-
nheiser HD 65TV). The experimenter sat out of view, 
behind an opaque divider to monitor compliance with 
the task.

Tasks and display
Visuomotor tracking task Participants performed a two-
dimensional pursuit-tracking task with a joystick (adapted 
from Wulf and Schmidt 1997) while concurrently react-
ing to tones by pedal press. Participants operated the 
joystick with their self-reported dominant hand and con-
trolled a white cursor cross to track a red target square. 
Unbeknownst to the participants, the cursor cross’s range 
of motion was limited to the vertical y axis, because its 
motion on the x-axis was coupled to target speed. This 
was implemented to prevent participants from moving 
the cursor straight to the right edge of the screen to cut 
trials short. Every tracking path was composed of three 
different segments (adapted from Pew 1974), each obey-
ing the formula

with ai and bi being randomly generated numbers 
ranging from − 5 to 5 and x being a real number in the 
range [0; 2π]. As different amplitudes have been shown 
to lead to differences in performance (Magill 1998), 
all randomly generated segments were balanced with 
regard to mean amplitude beforehand (Wickens 1980). 
This yielded a final set of 41 segments from which the 
three segments were selected for each trial. Each trial 
therefore displayed a different path to prevent partici-
pants from learning target trajectories (Ewolds et  al. 
2017; Van Roon et  al. 2008). To avoid the anticipation 
of peaks (Zhou et  al. 2009), the red target followed a 
constant path velocity of 10.5  cm/s, and as a result, 
trial length varied from 25.6 to 27.9 s depending on the 
curve’s trajectory (cf., 27 s used in Raab et al. 2013, and 
25 s and 35 s used in de Oliveira et al. 2017).

f (x) = b0 +

6∑

i=1

ai sin (i × x)+ bi cos (i × x)
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Audiomotor task The second task was an auditory 
discrimination task with high-pitched and low-pitched 
tones occurring randomly along the tracking path 
(1,086  Hz and 217  Hz, 75-ms duration). Participants 
reacted to the occurrence of high-pitched tones as fast 
and as accurately as possible while continuously ignor-
ing the low-pitched tones. Both tones were scaled to 
the same sound intensity with equal loudness contours 
(Fletcher and Munson 1933). To avoid learning effects, 
the number of target and distractor sounds per trial var-
ied between 9 and 14 (every 1.9–3.0  s, following Raab 
et al. 2013), but all participants received the same total 
number of sounds across the whole experiment. The 
first tone appeared no earlier than 500  ms after the 
trial had started, and to guarantee sufficient response 
time, the last tone was presented at least 500 ms before 
the trial ended. Because average RTs for auditory dis-
crimination in earlier DT studies were 500–950 ms (e.g., 
Bherer et  al. 2005), we used a minimum gap between 
two sounds of 1001 ms, and responses were considered 
valid only when they were given within 800 ms after the 
target sound was played.

Manipulation of predictability The visuomotor tracking 
task was made predictable by rendering a portion of the 
tracking path ahead of the target visible (see Fig. 2). The 
visible path was a white line extending 200 ms (to account 
for visuomotor delay; e.g., Van Rullen and Thorpe 2001), 
400 ms, 600 ms, or 800 ms ahead of the target square (cf., 

de Oliveira et al. 2014). None of the objects displayed left 
a trail on the screen. The 0-ms condition represented the 
unpredictable condition. All five predictability conditions 
were completed in blocks randomized across partici-
pants to avoid training effects (McNeil et al. 2006). High-
pitched and low-pitched sounds occurred randomly along 
the tracking path.

Procedure
In the familiarization phase, participants completed two 
ST tracking trials to become familiar with the joystick, 
then two ST auditory trials to familiarize themselves with 
the high- and low-pitched sounds, and finally two DT 
trials to become familiar with the DT setting. They were 
told that during the experiment these conditions would 
appear in random blocks. Participants were instructed to 
follow the target square as closely as possible, to react to 
target tones as fast and as accurately as possible, and to 
put equal emphasis on both tasks. To stimulate motiva-
tion, a feedback window informing participants about 
their tracking performance and RTs popped up after 
every five trials (McDowd 1986).

In the experimental phase which took approximately 
60 min, participants performed 110 trials in total: 50 ST 
tracking trials (10 × 5 predictability conditions), 10 ST 
auditory trials, and 50 DT trials (10 × 5 predictability 
conditions). After completing the experiment, partici-
pants answered a questionnaire about their possible use 
of a specific DT coping strategy. We also asked which 

Fig. 1 Illustration of the experimental setup
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predictability condition they felt was the most helpful to 
improve DT performance by showing five screen shots of 
the predictability conditions.

Data analysis
To measure tracking performance, we calculated the 
root-mean-square error (RMSE), as a measure of mean 
deviation from the target tracking path (Wulf and 
Schmidt 1997; 1 RMSE ≅ 0.56  cm on screen). Perfor-
mance on the audiomotor task was evaluated by RTs and 
errors for target sounds. We also measured participants’ 
absolute velocities. As outlined above, the target moved 
at a constant path velocity meaning the tracking cross had 
the same x coordinates as the target. Participants could 
control upward and downward movement of the tracking 
cross on the y-axis only. Thus, the tracking cross’s veloc-
ity was composed of participants’ y values and the path’s 

x values and mirrored participants’ speed changes on the 
y axis. Velocities make it possible to investigate changes 
in tracking behavior at different intervals around the dis-
crete auditory event. We computed four velocity inter-
vals,1 one prior to and three after target sound onset: 
200  ms before sound onset until the moment of sound 
onset; 200  ms after, which was 75–200  ms after sound 
onset (given audiomotor delay of 75 ms; Vu and Proctor 
2002); 400 ms after, which was 200–400 ms after sound 
onset; and 600 ms after, which was from 400 to 600 ms 
after sound onset.

Prior to the analyses we checked for outliers in the 
data. Participants were removed from the datasets when 
RMSE or RT scores exceeded two standard deviations. 
The first trial of every condition was treated as a famil-
iarization trial and excluded from the analysis. Pairwise 
comparisons were made using Bonferroni correction 
(α = 0.001), and Greenhouse–Geisser correction was 
used when sphericity was violated.

We use subscripts to denote the specific conditions of 
the STs and DTs. For example, we use  DT200 to denote 
a DT with 200-ms predictability or  ST400 to denote an 
ST with 400-ms predictability. DT costs  (DTcost) were 

Fig. 2 In Experiment 1 participants did not receive any information (a; 0 ms) or saw b 200 ms, c 400 ms, d 600 ms, and e 800 ms of the tracking 
path ahead of the red target square. Participants had to follow the red square and its path as accurately as possible by controlling the white cross

1 In a pilot analysis, we compared 200 ms, 400 ms, and 600 ms before onset. 
We hypothesized that if participants had a constant baseline velocity, these 
intervals would not differ from each other, and this was indeed the case. 
Therefore, we used only 200 ms before as the baseline velocity before stimulus 
onset.
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calculated with the formula [(RMSEST − RMSEDT)/
RMSEST] × 100 (Bock 2008).

RMSE and RTs were submitted to 2 × 5 repeated-meas-
ures analyses of variance (ANOVAs) with the factors Task 
Type (ST vs. DT) and Predictability (0 ms vs. 200 ms vs. 
400 ms vs. 600 ms vs. 800 ms). Velocities were analyzed 
with a 5 × 4 repeated-measures ANOVA with the factors 
predictability (0 ms vs. 200 ms vs. 400 ms vs. 600 ms vs. 
800 ms) and interval (200 ms before vs. 200 ms after vs. 
400 ms after vs. 600 ms after sound onset).

Results
Questionnaire
Of the 35 participants, two thirds stated that they did 
not pursue any specific DT strategy; the other third pri-
oritized tracking over tone response. When asked about 
their preferred predictability condition, 28.6% chose 
800  ms, 40.0% chose 600  ms, 25.7% chose 400  ms, and 
2.85% each chose 200  ms and 0  ms. Some participants 
verbally reported that they felt distracted by too much 
visual information (cf., de Oliveira et  al. 2014). Partici-
pants reported that the 600  ms predictability was most 
helpful although their best performance was at 400 ms.

Visuomotor tracking task
RMSE There was a significant main effect of task type, 
F(1, 34) = 11.63, p = 0.002, η2 = 0.255, because partici-
pants were better in single-task tracking, and there was 
a significant effect of predictability, F(4, 136) = 165.62, 
p < 0.001, η2 = 0.830, with RMSE being lowest in the 400-
ms predictability condition. There was no significant 
interaction, F(4, 136) = 0.69, p = 0.597, η2 = 0.020. There 
were significant differences between 0 ms and all condi-
tions containing visual information, as well as between 
200 ms and the remaining visual conditions, in both sin-
gle- and dual-task trials. There were no significant differ-
ences between 600 and 800 ms (Fig. 3a). Looking further 
into those conditions that contained visual information 
(200–800  ms), we found that the relationship between 
predictability and RMSE was best described by a quad-
ratic function, F(1, 34) = 26.80, p < 0.001.

Velocities The repeated-measures ANOVA revealed a 
significant main effect of predictability, F(4, 124) = 7.81, 
p = 0.036, η2 = 0.079, because there was a tendency toward 
faster tracking with less visual information (0 and 200 ms) 
and slower tracking with more visual information (600 ms 
and 800 ms). There was a significant main effect of inter-
val, F(23, 93) = 16.71, p < 0.001, η2 = 0.350, because in all 
visual predictability conditions participants were fastest 
in the interval of 400 ms after sound onset (Fig. 4). There 
was also a significant Predictability × Interval interaction, 
F(12, 372) = 3.19, p < 0.001, η2 = 0.093, because velocity in 

the unpredictable condition  DT0 was furthest from target 
velocity and velocity in the  DT400 condition was closest to 
target velocity.

Audiomotor task RTs
There was no significant effect of predictability on RTs, 
F(4, 136) = 2.11, p = 0.083, η2 = 0.058. ST performance 
for the auditory task was M = 464 ms (SD = 52).

Errors in  the  audiomotor task There were two types 
of response errors in the auditory task: late responses 
 (Errlate) were given after the valid period which was 
between 800 ms after the target sound and the onset of 
the next sound, or missing responses  (Errmiss) where there 
was no response between target onset and the following 
target onset (Fig. 5). There was no significant effect of pre-
dictability on late responses, F(4, 124) = 1.84, p = 0.126, 
η2 = 0.056, or on missing responses, F(4, 124) = 1.90, 
p = 0.115, η2 = 0.058. Paired t tests showed significant 
differences between single- and dual-task error rates (all 
t(31) > 5.56, all p < 0.001, all d > 0.652).

Discussion
First, predictability significantly improved visuomotor 
performance, because dual-task performance improved 
with visual information. Therefore we conclude that pre-
dictability reduces the need for resources. The beneficial 
effect was most evident for 400 ms, as this was the condi-
tion with the lowest RMSE, a more accurate velocity and 
also lower RT and fewer errors. However, there were no 
beneficial effects of predictability on secondary task per-
formance, neither on RT nor errors,2 which is why we 
infer that resources were most likely not reinvested. We 
will discuss the details of these results below.

Regarding the general impact of predictability we con-
clude that, in line with the basic premise that visual infor-
mation fosters feedforward control (Weir et  al. 1989), 
predictability enabled more accurate movements in the 
predictable task. As there was no significant improve-
ment of tracking accuracy beyond 400  ms advance 
information, this amount of information seems suffi-
cient for performance and optimal for feedforward con-
trol as already demonstrated by de Oliveira et al. (2014). 
It is also in line with research on oculomotor predic-
tion, showing that 500 ms of visual information prior to 
stimulus occlusion is enough to scale ocular responses 
(Bennett et  al. 2010). It is also in line with research on 

2 This effect is robust given that there was also no effect of predictability 
on RTs in a replication study with another 28 participants, F(2, 54) = 2.20, 
p = .120, η2 = .075. In this replication study, only dual-task trials were tested 
and no dual-task costs were examined, which is why the study is not pre-
sented in full here.
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aiming movements, which demonstrated that people 
who practiced aiming and were provided with 600-ms 
vision performed equally well when later provided with 
only 400 ms (Elliott et al. 1995). This makes (visual) pre-
dictability also different from task difficulty. One could 
have intuitively suggested that with increasing predict-
ability, the task gets simply easier. However, it has been 
suggested that the relationship between task difficulty 
and dual-task performance can be described by a linear 
relationship (e.g., Isreal et  al. 1980; McDowd and Craik 

1988), but our results suggest that visual information may 
not be unlimitedly beneficial.

Velocity profiles demonstrated that participants across 
all conditions showed more speed changes approximately 
400 ms after onset of the auditory stimulus. This can be 
interpreted as DT interference, possibly around response 
selection, considering that RTs were 540 ms on average. 
This contrasts with interference found in prior track-
ing studies, where it typically propagates to Task 2 and 
results in longer RTs. Interference in Task 1 can be the 

Fig. 3 Performance on the 6 predictability conditions. a Tracking performance in Experiment 1 as indicated by root-mean-square error (RMSE). 
The light gray line represents mean RMSE for dual-task conditions, the dark gray line single-task conditions. Asterisks denote significant differences 
between single- and dual-task conditions. Dual-task costs, which are added to the graph as percentages, were significantly reduced in the 200-ms 
and 400-ms conditions. b Reaction times in dual-task conditions. Asterisks denote significant differences between predictability conditions. 
Conditions varied in predictability (i.e., length of the visible path) from 0 to 800 ms. In both panels, error bars show the standard error
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result of limbs’ coupling and thus a neuromuscular effect 
(neural cross-over effect; Wages et  al. 2016), an atten-
tional spillover effect (Beilock and Gray 2012), or the 
result of a strategic timing gain to compensate for the 
reaction to the sound.

Therefore, regarding our aim to make inferences about 
resource allocation policy, our results are in line with 

the notion that visual and auditory tracking tasks draw 
on the same general pool of resources (Fougnie et  al. 
2018), because the tracking task seems to have claimed 
most of the resources, but the peak in velocity demon-
strates that a share of resources was temporarily allo-
cated to the audio task to prepare pedal responses. This 
share of resources satisfied the minimum requirement of 

Fig. 4 Results of velocity analyses in Experiment 1. The dashed horizontal line represents the constant target velocity (10.5 cm/s). Baseline tracking 
velocity (i.e., 200 ms before the sound onset) was compared against 200 ms, 400 ms, and 600 ms after the sound onset. Error bars show the 
standard error. Different symbols represent the different predictability conditions

Fig. 5 Errors in Experiment 1 were either late responses given later than 800 ms after sound onset (in dark grey) or missing responses that were not 
given at all (in light grey). Error bars show the standard errors



Page 9 of 22Broeker et al. Cogn. Research             (2021) 6:1  

giving a response, yet it seems that not enough residual 
resources were invested to actually reduce reaction times 
and improve secondary task performance. According to 
modality-specific resource accounts (Wickens 2008), 
resources utilized for a visual task should not interfere 
with demands from an auditory task and thus could 
not explain the increased tracking velocity. The veloc-
ity change was most pronounced in the 0-ms condition, 
which was the condition without any predictive com-
ponent and therefore fundamentally different from the 
other conditions. It seems that the constantly changing 
environment forced participants to overtake and drop 
back behind the target more often, which resulted in 
more overall velocity changes, reflecting the highest need 
for resources (as also mirrored by no differences between 
ST and DT performance in RMSE). In contrast, the effect 
was least pronounced in the 600- and 800-ms conditions, 
suggesting forward control in response to the upcoming 
path (Hill and Raab 2005) which enabled participants to 
stay closely behind the target, without the need for con-
stant alignment around the target, and possibly less need 
for resources.

Another possible explanation for the results is that 
the increased share of resources to the visually predict-
able task might be the result of task prioritization. It is 
plausible that more resources were allocated to the task 
that was most achievable, which would be in line with 
increasing error rates for conditions where visual infor-
mation was present.

Experiment 2a
Experiment 1 showed that participants’ performance 
improved in the predictable task but not in the secondary, 
unpredictable task. It seems that most of the resources, 
drawn from one general pool of resources, were allocated 
to the predictable task but that residual resources freed 
by predictability were not reinvested into the second-
ary task. In Experiment 2, we turned the manipulations 
around by making the secondary task predictable and 
leaving the continuous task unpredictable, and examined 
resource allocation policies for a predictable secondary 
task.

Prior knowledge, as the second source of predict-
ability (Wolpert and Kawato 1998), can be induced via 
sequences in discrete tasks. Sequences and regulari-
ties increase the likelihood of stimulus occurrence and 
reduce uncertainty about stimulus onset, which ena-
bles participants to respond in a timely fashion (Capizzi 
et  al. 2012; Nobre et  al. 2007; Requin et  al. 1991; Rolke 
and Hofmann 2007). In line with the argument presented 
above, this should result in enhanced accuracy, con-
siderably reduced RTs, and fewer attentional resources 
required (de la Rosa et  al. 2012). Töllner et  al. (2012) 

explained that knowledge about a stimulus or task leads 
to a pre-activation of that sensory modality, freeing up 
general resources and consequently enhancing encod-
ing and leading to faster response selection. If this holds, 
sequence learning could lead to faster visual processing 
and shorter motor response execution times in visuomo-
tor tasks (De Jong 1995; Sigman and Dehaene 2006). In 
fact, two DT studies (Cutanda et al. 2015; de la Rosa et al. 
2012) demonstrated that regular auditory sequences led 
to faster reaction times, equally effective in ST and DT 
conditions and irrespective of high or low load in the 
working memory task of the DT condition. However, RTs 
for ST and DT performance of the secondary working 
memory task were not explicitly contrasted and alloca-
tion policies could not be inferred.

Methods
Participants
For Experiment 2a, we recruited 24 participants. Two 
participants were excluded from the analyses because 
testing was terminated due to a technical malfunction, 
yielding a final sample of 22 participants (10 males and 12 
females; aged between 18 and 30 years, M = 22.82 years, 
SD = 3.20). As Experiment 1 showed stable perfor-
mance on the tracking task after very few trials, and 
thus high correlations among trials  [DT0: Cronbach’s 
α = 0.927 (mean correlation among trials: r = 0.674), 
 DT200: α = 0.935 (r = 0.648),  DT400: α = 0.959 (r = 0.769), 
or  DT600: α = 0.943 (r = 0.669)], the a priori sample-size 
estimations for Experiment 2 were adapted: α = 0.05, 
1 − β = 0.80, r = 0.7 (G*Power 3.1.9.2). This revealed 
a test power of 0.81 and a required sample size of 22 
participants.

Setup
The setup was the same as in Experiment 1. We used a 
16-bit joystick (Thrustmaster T16000M FCS, max sam-
pling rate 120 Hz).

Manipulation of predictability
Visuomotor tracking task The task and display were the 
same as in Experiment 1, but only the unpredictable 0-ms 
condition was applied.

Audiomotor task The secondary task was an auditory 
discrimination task. In the predictable/sequenced con-
dition, tones were arranged in a sequence with every 
fourth sound being the high-pitched target sound (see 
Fig.  6) with varying inter-stimulus intervals ranging 
between 750 and 1,050  ms. In the unpredictable/ran-
dom condition, high- and low-pitched tones occurred 
randomly with the same varying inter-stimulus inter-
vals. The number of target sounds per trial varied 
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between 9 and 12 in unpredictable conditions where 
sounds occurred randomly (every 1.9 to 3.0 s, following 
Raab et al. 2013).

Procedure
After the familiarization phase, participants took 
about 30  min to perform 50 trials. Participants began 
with 10 ST tracking trials, after which they completed 
four more blocks that were randomized across partici-
pants: 10 ST auditory trials with random sounds, 10 
ST auditory trials with sequenced sounds, 10 DT trials 
with random sounds, and 10 DT trials with sequenced 
sounds.

Data analysis
As in Experiment 1, we calculated the average RMSE 
and tracking velocities as a measure of tracking perfor-
mance and RTs plus errors as a measure of performance 
in the audiomotor task. We used rand to denote trials 
with randomly occurring sounds and seq to denote tri-
als with sequenced sounds (e.g.,  DTrand,  STseq).

The RMSE were compared between ST and DT tri-
als with two paired-t tests (ST vs.  DTrand; ST vs.  DTseq). 
Further, for DT trials, RMSE was submitted to a one-
way repeated-measures ANOVA with factor Sound 
Order (random vs. sequenced). Velocities were ana-
lyzed with a 2 × 4 repeated-measures ANOVA with fac-
tors Sound Order (random vs. sequenced) and Interval 
(200  ms before sound onset vs. 200  ms after onset vs. 
400  ms after onset vs. 600  ms after onset). RTs were 

submitted to a 2 × 2 repeated-measures ANOVA with 
the factors Sound Order (random vs. sequenced) and 
Task Type (ST vs. DT).

Results
Visuomotor tracking task
RMSE There was no effect of sound order on RMSE, 
F(1, 21) = 0.03, p = 0.873, η2 = 0.001. Pairwise compari-
sons between ST and DT conditions revealed significant 
differences both when sounds were random, t(21) = 3.51, 
p = 0.002, d = 0.749,  DTcost = − 5.76%, and when sounds 
were sequenced, t(21) = 2.84, p = 0.010, d = 0.605, 
 DTcost = − 5.44%.

Velocities The repeated-measures ANOVA revealed 
a main effect of interval, F(3, 63) = 8.34, p < 0.001, 
η2 = 0.284, because there was an increase in velocity in the 
400-ms after interval. There was also a significant Sound 
Order × Interval interaction, F(3, 63) = 2.87, p = 0.043, 
η2 = 0.120, because this increase after target sound onset 
was less pronounced in sequenced compared to random 
trials (see Fig. 7, top). There was no main effect of sound 
order on velocity, F(1, 21) = 0.44, p = 0.516, η2 = 0.020. 
In general, participants had higher velocities compared 
to the target square across all intervals and conditions, 
which means that the control cursor was ahead of the tar-
get square.

Audiomotor task RTs
The repeated-measures ANOVA revealed a significant 
main effect of sound order, F(1, 21) = 136.29, p < 0.001, 
η2 = 0.866, because participants were faster in sequenced 

Fig. 6 An example of a sequenced dual-task trial in Experiment 2a. A tracking target followed the sinusoidal path, which was invisible to the 
participants. Circles along the tracking path represent the occurrence of distractor sounds; crosses along the tracking path represent target sounds. 
All sounds had varying inter-stimulus intervals. The only regularity in the predictable condition was the occurrence of a target sound every fourth 
sounds
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compared to random trials. There was also a significant 
effect of task type, F(1, 21) = 28.01, p < 0.001, η2 = 0.571, 
because participants were faster in ST conditions com-
pared to DT conditions. There was no significant Sound 
Order × Task Type interaction, F(1, 21) = 3.81, p = 0.065, 
η2 = 0.153 (see Fig. 8). Mean RTs are shown in Table 1.

Errors in  the  audiomotor task There were two types 
of response errors in the auditory task: false responses 
when participants pressed the pedal in reaction to dis-
tractor sounds, and missing responses  (Errmiss) which 

did not occur between two consecutive target onsets 
(Fig. 9). Importantly, responses which were given before 
sound onset (“premature”) were also counted as missing 
responses.

There was no significant effect of sound order on false 
responses, F(1, 21) = 2.13, p = 0.160, η2 = 0.092. There 
was a main effect of task type, F(1, 21) = 7.13, p = 0.014, 
η2 = 0.253, because participants performed better 
in single-task trials. There was no significant Sound 
Order × Task Type interaction, F(1, 21) = 2.83, p = 0.105, 
η2 = 0.120.

Fig. 7 Tracking velocity analyses in Experiments 2a (a) and 2b (b). Baseline tracking velocity (200 ms before the occurrence of a target sound) was 
compared against 200 ms, 400 ms, and 600 ms after the sound onset. The dashed horizontal line represents the constant target velocity (10.5 cm/s). 
Error bars show standard errors
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There was a significant effect of sound order on miss-
ing responses, F(1, 21) = 6.00, p = 0.023, η2 = 0.222, 
because participants missed fewer responses in the 
random conditions. There was no effect of task type on 
missing responses, F(1, 21) = 3.24, p = 0.086, η2 = 0.134, 
and no significant Sound Order × Task Type interac-
tion, F(1, 21) = 3.98, p = 0.059, η2 = 0.159.

Contrary to our expectations, participants failed to 
react to target sounds and erroneously reacted to dis-
tractor sounds more often in sequenced conditions 
than random conditions (see Fig. 9). As only responses 
after sound onset were taken into consideration, the 
high number of missing responses might be explained 

Fig. 8 Reaction time (RT) and root-mean-square error (RMSE) analyses in Experiment 2a (a) and 2b (b). Light gray lines depict dual-task conditions, 
dark gray lines depict single-task conditions. DT costs are the differences between single- and dual-task conditions, presented as percentages; 
asterisks denote significant DT costs, **p < .001, *p < .005. Error bars show standard errors

Table 1 Reaction times  (in milliseconds) for all conditions 
in  Experiment 2a with  the  difference between  single- 
and  dual-task conditions expressed by  dual-task costs 
 (DTcost)

An asterisk denotes significance, **p < .001, *p < .005

Task type Single task Dual task DTcost 95% confidence 
interval

M (SD) M (SD) Lower Upper

Random 479 (50) 529 (47) − 10.35%** − 68.020 − 31.019

Sequenced 328 (96) 355 (94) − 8.36%* − 47.200 − 7.558



Page 13 of 22Broeker et al. Cogn. Research             (2021) 6:1  

by premature responses given before sound onset. 
Therefore, this result is somewhat inconclusive.

When comparing the difference between single- and 
dual-task conditions, as expected, participants more fre-
quently failed to react to target sounds and falsely reacted 
to distractor sounds in dual-task conditions compared to 
single-task conditions.

Discussion
First, like in Experiment 1, predictability significantly 
improved dual-task performance, suggesting that pre-
dictability reduced the need for resources. Inferring 
whether performance improvements only emerge in the 
predictable task and thus a conclusion about whether or 
not residual resources were reinvested is contingent on 
the dependent variables as we outline below.

In general, when comparing ST and DT performance in 
the two conditions, we found typical performance impair-
ment for DT conditions, which was less pronounced for 
sequenced trials. Sequenced trials lowered RTs to target 
sounds, lowered  DTcost, and possibly also reduced the 
need for resources. This effect occurred even though 
sequences had varying inter-stimulus intervals making 
the exact timing of sound onset unpredictable (in con-
trast to the rhythms used by Capizzi et al. 2012; Cutanda 
et al. 2015; Halvorson et al. 2013). However, the benefit 
of sequences was not apparent in the tracking’s RMSE. 
So while RMSE would not support the hypothesis that 
residual resources from one general pool were reinvested, 
velocities show a different pattern. Like in Experiment 1, 

there were more changes in velocity 400 ms after sound 
onset—interpretable as interference—but this was not 
significant for sequenced trials (no significant difference 
between the intervals 200 ms after and 400 ms after). The 
velocity analysis would thus suggest that predictability 
in the auditory task freed enough resources to maintain 
motor control and accuracy in tracking while preparing 
pedal responses, defeating, or diminishing interference. 
Considering that tracking is a continuous task, velocities 
allow a more fine-grained analysis of performance and 
interference compared to the exclusively spatial measure 
RMSE.

Experiment 2b
Experiment 2a showed that predictability reduced the 
need for resources, which have been possibly redistrib-
uted to tracking in order to maintain motor control dur-
ing response preparation. Experiment 2b was designed to 
challenge this finding by increasing cognitive and motor 
load in the auditory task. To do so, we transformed the 
go/no-go task into a choice RT task. Participants were no 
longer required to ignore the low-pitched tones but had 
to react to both tones with a double pedal, using both 
feet.

Methods
Participants
For Study 2b, we recruited 24 participants. Four partici-
pants dropped out during the experiment, leaving a final 

Fig. 9 Errors in Experiment 2a were either false responses to distractor sounds or missing responses. There were only significant differences 
between single- and dual-task conditions when sounds were random, with  Err_miss, t(21) = 2.96, p = .007, d = .711 and  Err_false, t(21) = 3.83, p < .001, 
d = 967, respectively
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sample of 20 participants (15 males and 5 females; aged 
between 18 and 36 years, M = 24.80 years, SD = 4.32).

Setup
The setup was the same as in Experiment 2a, except 
for the foot pedal, which was now a double-foot switch 
(Scythe USB 2FS-2), fixed centrally under the table.

Task and display
Visuomotor tracking task The tracking task and display 
were identical to those in Experiment 2a.

Audiomotor task The audio task was a choice task, and 
participants reacted to both tones via the double pedal. 
They responded to low-pitched (distractor) sounds by 
pressing the left pedal with the left foot and to high-
pitched (target) sounds by pressing the right pedal with 
the right foot. The sound-order conditions (random and 
sequenced sounds) remained the same as in Experiment 
2a.

Procedure
After the familiarization phase, participants took 
approximately 30 min to complete 50 trials: 10 ST track-
ing trials, 20 ST auditory trials (10 × random sounds, 
10 × sequenced sounds), and 20 DT trials (10 × random 
sounds, 10 × sequenced sounds).

Data analysis
RMSE and velocities were calculated as a measure of 
visuomotor performance, and RTs were calculated as 
a measure of audiomotor performance. Differences in 
RMSE between ST and DT trials were analyzed with 
two paired-t tests (ST vs.  DTrand; ST vs.  DTseq). Fur-
ther, for DT trials, RMSE was submitted to a one-way 
repeated-measures ANOVA with factor Sound Order 
(random vs. sequenced). Velocities were analyzed with 
a 2 × 4 repeated-measures ANOVA with factors Sound 
Order (random vs. sequenced) and Interval (200  ms 
before sound onset vs. 200  ms after onset vs. 400  ms 
after onset vs. 600  ms after onset). RTs were submitted 
to a 2 × 2 ANOVA with factors Sound Order (random 
vs. sequenced) and Task Type (ST vs. DT). Errors were 
subject to a 2 × 2 × 2 ANOVA with factors Sound Order 
(random vs. sequenced), Task Type (ST vs. DT), and 
Sound Type (target vs. distractor sound).

Results
Visuomotor tracking task
RMSE There was no effect of sound order on RMSE, 
F(1, 19) = 2.12, p = 0.162, η2 = 0.100. Pairwise compari-
sons between ST and DT trials revealed deteriorated 
tracking performance in DTs, both when sounds were 

random, t(19) = 5.91, p < 0.001, d = 1.322 (ST: M = 4.43, 
SD = 0.35;  DTrand: M = 5.05, SD = 0.68), and when sounds 
were sequenced, t(19) = 4.61, p < 0.001, d = 0.1031 (ST: 
M = 4.43, SD = 0.35;  DTseq: M = 4.95, SD = 0.68).

Velocities The repeated-measures ANOVA revealed 
a main effect of interval, F(3, 51) = 9.57, p < 0.001, 
η2 = 0.360 (see Fig.  7, bottom), but there was no main 
effect of sound order on velocity, F(1, 17) = 0.92, 
p = 0.350, η2 = 0.051, and no significant interaction, F(3, 
51) = 0.50, p = 0.686, η2 = 0.028.

Audiomotor task RTs
The repeated-measures ANOVA revealed a signifi-
cant main effect of sound order, F(1, 19) = 86.33, 
p < 0.001, η2 = 0.820, because participants were faster 
in sequenced compared to random trials. There was 
a significant main effect of task type, F(1, 19) = 15.84, 
p < 0.001, η2 = 0.455, because participants were gen-
erally faster in ST conditions than DT conditions, as 
in Experiment 2a. However, there was no significant 
Sound Order × Task Type interaction, F(1, 19) = 0.16, 
p = 0.690, η2 = 0.009 (Fig.  7). Mean RTs in the double-
pedal experiment are presented in Table 2.

Errors in  the  audiomotor task There were two types 
of response errors in the auditory task: false responses 
when participants used the wrong pedal, i.e., left instead 
of right pedal for target sounds and right instead of 
left pedal for distractor sounds; and missing responses 
 (Errmiss) for target and distractor sounds. As in Experi-
ment 2a, responses which were given before sound onset 
(“premature”) were also counted as missing responses. 
There was large percentage of false responses to target 
sounds, most likely due to a large amount of premature 
responses (as they were counted in the interval after dis-
tractor sounds). We therefore decided not to consider 
errors further, but details can be seen in appendix.

Table 2 Reaction times  (in milliseconds) for all conditions 
in  the  double-pedal experiment (Experiment 2b) 
with  the  difference between  single- and  dual-task 
conditions expressed by dual-task costs  (DTcost)

An asterisk denotes significance, **p < .001, *p < .005

Task type Single task Dual task DTcost 95% confidence 
interval

M (SD) M (SD) Lower Upper

Random 511 (48) 552 (58) − 7.90%** − 60.480 − 20.311

Sequenced 336 (69) 386 (102) − 14.69%* − 91.600 − 7.135
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Discussion
In Experiment 2b we showed that predictability had a 
positive impact on audiomotor performance, even though 
this effect was less pronounced than in Experiment 2a. 
Whereas in Experiment 2a the impact of predictability 
on tracking performance seemed to be dependent on the 
variable examined, results of Experiment 2b were more 
clear-cut. There was neither a positive impact on RMSE 
nor a less pronounced velocity increase for sequenced 
conditions. We conclude that auditory predictability was 
strong enough to buffer load induced by simple reactions 
(Experiment 2a), but that more complex choice reactions 
require additional resources that could not be reinvested 
in tracking (possibly because they include the excitation of 
different hemispheres and the initiation of motor action in 
different limbs). Note that Experiment 2b included fewer 
participants than planned and this may put into question 
the nonsignificant results obtained; this is a limitation of 
this study. However, given the effect sizes and significant 
results obtained in the experiment we believe the sample 
size was adequate for the statistical analysis done.

In sum, Experiments 1 and 2 showed that predictabil-
ity reduced the need for resources; visual predictability 
reduced the need for resources in tracking and auditory 
predictability reduced the need for resources in audio-
motor reactions. As there were no improvements in the 
unpredictable task, it seems unlikely that residuals were 
reinvested; however, velocity profiles speak for one gen-
eral rather than modality-specific pools of resources.

It is possible that participants did not reinvest residu-
als because the two tasks were unrelated. Naturally, par-
ticipants invested more resources in the tracking task 
because of its continuous nature. The auditory task was 
therefore always disruptive, irrespective of whether it was 
predictable, and required fewer resources. Hence, there 
may have been little incentive to invest in a disruptive 
task. If, however, the distractive task was transformed into 
a helping task, then this could be an incentive for reinvest-
ment. This could be achieved by having one task predict 
changes in the other task. Therefore, in Experiment 3 we 
examined the role of task structure and between-task pre-
dictability in resource allocation policies.

Experiment 3
So far, Experiments 1 and 2 showed that predictability pos-
itively influences dual-task performance, predominantly 
through improvements in the predictable task. While 
this result per se could have questioned a general pool of 
resources, velocity analyses have shown that the auditory 

task takes away some of the resources from tracking and 
thus support the generic resource assumption. Yet our data 
did not support reinvestment of resources into a secondary 
task.

Wahn and König (2015, 2017) argued that resource 
allocation can be task-dependent and that while object-
based vs. spatial tasks (visual and auditory) partially share 
resources, two spatial tasks (visual and auditory) fully 
share resources. If this is true, then adding a spatial com-
ponent to the auditory discrimination task in our study, 
should enable resource reinvestment. We therefore placed 
target sounds 250 ms before inflection points of the curve 
and hypothesized that this would decrease the need for 
resources and enable participants to reinvest resources. 
Similar approaches have been taken by task integra-
tion studies that covaried two tasks (e.g., de Oliveira et al. 
2017). Schmidtke and Heuer (1997) showed for instance 
that sequences could be more easily implemented when 
they were temporally correlated with another discrete task. 
Likewise, de Oliveira et  al. (2017) also positioned target 
tones 250 ms before inflection points of a tracking path, so 
that participants could relate the occurrence of a tone to a 
motor action and found that participants in the covariation 
group showed significantly better performance in DT than 
in ST. This effect was pronounced not only in repeating 
segments of the curve but also in random outer segments, 
suggesting that covariation can facilitate performance even 
in otherwise unpredictable environments.

Method
Participants
We recruited 22 participants. After we removed one person 
as an outlier, the final sample consisted of 21 participants 
(11 males and 10 females; aged between 19 and 35 years, 
M = 23.90  years, SD = 3.49). Sample size estimations 
were based on Experiment 2 (i.e., α = 0.05, 1 − β = 0.80, 
r = 0.7, test power of 0.81 and a required sample size of 22 
participants).

Setup
The setup of Experiment 3 was the same as in Experiment 
1.

Task and display
Visuomotor tracking task The tracking task and display 
were identical to those in the other experiments, but the 
tracking path was calculated using a different formula. To 
guarantee enough distance between sounds and curves, 
the new paths were stretched out. They were composed of 
three segments, each obeying the formula:

f (x) = b0+a1 sin (i × x)+b1 cos (i × x)+a2 sin (i × x)+b2 cos (i × x)+a3 sin (i × x)+b3 cos (i × x)
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with ai and bi being randomly generated numbers 
ranging from − 10 to 10 and x being a real number in 
the range [0; 2π].

Audiomotor task Participants responded to high-
pitched sounds by pressing on a pedal. High-pitched 
sounds always occurred 250 ms before a turning point in 
the tracking curve (integrated conditions); low-pitched 
sounds occurred randomly between these events and 
did not require a response by the participant.

Procedure
After the familiarization phase (DT familiarization 
with random sounds), participants took about 35  min 
to perform 60 trials: 20 ST tracking trials, 20 ST audi-
tory trials, and 20 DT trials (10 × random, 10 × inte-
grated). After completing the experiment, participants 
answered a questionnaire that contained five questions 
designed to gradually reveal participants’ knowledge of 
the manipulation. The primary purpose of this ques-
tionnaire was to label participants with “knowledge” vs. 
“no knowledge,” so that knowledge could be entered as 
a between-subjects factor (see Data Analysis). We first 
asked whether they had noticed anything special dur-
ing the experiment, then whether they felt supported 
or distracted in some of the DT conditions, and then 
whether they had detected any regularities. After this, 
participants were told that high-pitched tones served 
to indicate changes in tracking and were asked whether 
they had noticed this. If participants answered yes, 
the fifth question asked them how the tone indicated 
changes.

Data analysis
For Experiment 3 we use  DTcov for DT trials where 
tracking and auditory task covaried (i.e., stimuli could 
be integrated) and  DTrand for random sounds. We com-
pared the RMSE between ST and DT trials with two 
paired t tests (ST vs.  DTrand; ST vs.  DTcov). Further, for 
DT trials, RMSE was submitted to a one-way repeated-
measures ANOVA with the factor Sound Location 
(random vs. covariation). Velocities were analyzed with 
a two-way repeated-measures ANOVA with the factors 
Sound Location (random vs. covariation) and Interval 
(200 ms before onset vs. 200 ms after onset vs. 400 ms 
after onset vs. 600  ms after onset). RTs were submit-
ted to a 2 × 2 ANOVA with the factors Sound Location 
(random vs. covariation) and Task Type (ST vs. DT). 
Knowledge about the task integration was entered into 
the analysis as a between-subjects factor.

Results
Questionnaire
Participants were classified as having knowledge about 
the manipulation when they were able to correctly 
describe the task integration manipulation in the fifth 
question. In total, 10 participants (47.62%) were able to 
verbalize the positioning of sounds in the questionnaire 
after finishing the experiment.

Visuomotor tracking task.
RMSE There was a significant main effect of sound 
location on RMSE, F(1, 20) = 5.46, p = 0.030, η2 = 0.214, 
because participants showed better tracking performance 
when sounds were indicative of turns in the tracking task 
 (DTcov: M = 3.93, SD = 0.54;  DTrand: M = 4.10, SD = 0.47; 
 STrand: M = 3.95, SD = 0.49; Fig.  10). Participants who 
acquired knowledge about the manipulation did not show 
better tracking performance, Sound Location × Knowl-
edge, F(1, 19) = 2.28, p = 0.148, η2 = 0.085.

Velocities For tracking velocities, there were main effects 
of sound location, F(1, 20) = 46.14, p < 0.001, η2 = 0.698, 
and interval, F(3, 60) = 23.74, p < 0.001, η2 = 0.543, as well 
as a significant interaction, F(3, 60) = 21.83, p < 0.001, 
η2 = 0.522. For random conditions the velocity pattern 
was similar to that in Experiments 1 and 2, but for inte-
grated conditions there was a very different pattern as 
participants slowed down after target sound onset (see 
Fig. 11).

Audiomotor task RTs
There was a main effect of sound location on RTs, F(1, 
20) = 6.59, p = 0.018, η2 = 0.248 (Fig.  10), showing that 
participants reacted significantly faster when sounds 
covaried with the tracking path  (DTrand: M = 483  ms, 
SD = 30;  DTcov: M = 470 ms, SD = 26;  STrand: M = 449 ms, 
SD = 34). Knowledge about the location of sounds did not 
affect RTs, Sound Location × Knowledge, F(1, 19) = 0.32, 
p = 0.581, η2 = 0.012.

Errors in the audiomotor task There were two types of 
response errors in the auditory task: late responses  (Errlate) 
which were given after the valid period (from 800 ms after 
the target sound until onset of the next sound), and missing 
responses  (Errmiss) where there was no response between 
two consecutive target onsets (Fig. 12). There was a signif-
icant main effect of predictability on late responses, F(1, 
20) = 5.19, p = 0.034, η2 = 0.034, and on missing responses, 
F(1, 20) = 26.96, p < 0.001, η2 = 0.100, showing that errors 
were larger when the tasks covaried. Paired t tests showed 
significant differences between single- and dual-task error 
rates (all t(20) > 7.21, all p < 0.001, all d > 1.47), as well as 
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Fig. 10 Performance in Experiment 3 by covaried or random sound location. a Results of tracking performance for dual-task conditions in 
Experiment 3 as indicated by root-mean-square error (RMSE). b Reaction times (RTs) in milliseconds in dual-task conditions. In both panels, 
single-task (ST) performance is depicted by a single data point represented by a square

Fig. 11 Velocity analyses in Experiment 3. Baseline tracking velocity (200 ms before the occurrence of a target sound) was compared against 
200 ms, 400 ms, and 600 ms after the sound onset. The dashed horizontal line represents the constant target velocity (10.5 cm/s). Covaried refers to 
dual-task trials in which sounds were coupled to the tracking path. Error bars show standard errors
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between the random and covaried dual-task conditions 
(late responses: t(20) = 2.28, p = 0.034, d = 0.497; missing 
responses: t(20) = 5.19, p < 0.001, d = 1.132).

Discussion
In Experiment 3 we found a beneficial effect of predict-
ability on performance in both tasks, which is in con-
trast with Experiments 1 and 2. Participants had faster 
reaction times and also fewer tracking errors. Further, 
they decreased velocity after sound onset, showing that 
they probably learned to drop back behind the target 
and prepare motor responses as soon as the sound had 
announced upcoming changes in the tracking curve. 
It is conceivable that the target sounds and their clear 
spatial location thus served as a warning signal, which 
in turn eased resource allocation. As the sound was no 
longer intrusive but helpful, resources could be more eas-
ily allocated and shared between tasks, which is why we 
conclude that covariation between tasks improves DT 
performance by fostering resource reinvestment. Future 
research could examine possible mechanisms underlying 
this effect. As suggested by Künzell et al. (2018) and Koch 
et  al. (2018), covariation and a shared higher-level goal 
can prompt participants to treat two tasks as one inte-
grated task (see also Schmidtke and Heuer 1997). One 
such (implicit) goal or action might have been “turn after 
pressing” rather than the separate goals of “pedal press” 

and “track the cursor,” but further measures are needed 
to test such conceptualization mechanisms. Whether the 
conceptualization is implicit or explicit does not seem to 
matter, given that the one half of our subjects which was 
able to verbalize the position of the sound, performed as 
well as those without explicit knowledge.

General discussion
The purpose of our experiments was to examine the 
impact of predictability on dual-task performance and 
gain insight into resource allocation policies. Experi-
ments 1 and 2, which manipulated predictability in 
either the first or the second task, showed that perfor-
mance improved in the predictable task, but that resid-
ual resources were not reinvested in the other task. This 
is in line with economical processing accounts (Navon 
and Gopher 1979). In contrast, Experiment 3 covaried 
two tasks by including an auditory element in the track-
ing task (and conversely, a spatial element in the auditory 
task). The results show clear performance improvements 
in both tasks and thus possibly better resource shar-
ing and reinvestment across tasks. We therefore con-
clude that predictability helps to circumvent attentional 
resource limitations (cf., Wahn and König 2017, p. 91) 
and that the extent to which resources can be shared 
among tasks depends on the tasks and their character-
istics [see also the claim by Tombu and Jolicœur (2003, 
p. 4), that “determining exactly which task characteristics 

Fig. 12 Errors in Experiment 3 were either late responses given later than 800 ms after sound onset (in dark grey) or missing responses that were 
not given at all (in light grey). Error bars show standard errors



Page 19 of 22Broeker et al. Cogn. Research             (2021) 6:1  

affect capacity allocation is an empirical issue that will 
need to be resolved”].

Overall, our results contribute to the ongoing debate 
about whether limited resources are specific to modali-
ties. Our findings lend support to the theory of general 
resources rather than modality-specific resources. It is 
possible that predictability freed up modality-specific 
resources that could not be reinvested into the other-
modality task. However both the velocity profiles in all 
Experiments and the results of Experiment 3 (an audi-
tory cue aiding visuomotor performance) demonstrate 
that the visual tracking task and the auditory RT seem to 
draw on common central attentional resources. Because 
velocity data demonstrate that participants are able to 
continue tracking while responding to sounds [i.e., called 
hesitations in Klapp et  al. (1987) and Tsang and Chan 
(2015)], this strengthens the basic premise that paral-
lel processing and execution is possible. However, dual-
task costs showed a small impact of the secondary task, 
so it is possible that the tracking task demands constant 
resources and a certain share is always taken by this task. 
If we consider the concurrent use of hand and foot as 
same-modality response, the results further strengthen 
the hypothesis that interference occurs when tasks draw 
on the same resources (Meyer and Kieras 1997; Wick-
ens 2002). Consistent velocity increases around pedal 
responses suggest interference at response-activation or 
execution stages, because motor-related resources would 
have to be taken away from manual tracking. It has been 
suggested that such cross-talk can be overcome with 
practice by integrating two tasks (Bratzke et  al. 2009; 
Heuer and Schmidtke 1996; Swinnen and Wenderoth 
2004), which would also be substantiated by the findings 
of Experiment 3.

An alternative explanation for our findings concerns 
task prioritization. Wickens et  al. (2015) suggested in 
their strategic task overload management model that 
some task characteristics such as salience can foster the 
prioritization of a task. It is possible that participants 
did not reinvest resources into the other task in Experi-
ments 1 and 2 because predictability prompted a shift in 
priority toward the predictable task. In a dual-task learn-
ing experiment (Broeker et  al. 2020a), participants per-
formed the tracking task with a constant middle segment 
(random outer segments) for two days. One group was 
informed about the repeating segment, the other group 
was supposed to acquire implicit motor knowledge. On 
day three, visual information (400 ms) was added to the 
tracking task. Results showed an additive effect of knowl-
edge and visual information, meaning that both sources 
of predictability independently improved tracking perfor-
mance, but importantly, reaction times did not improve. 
Capacity-sharing accounts support the notion that 

cognitive capacity can be voluntarily allocated and that 
allocation may be dependent on task priority (Tombu 
and Jolicœur 2003; Wickens 2002). This would mean par-
ticipants strategically allocated resources to predictable 
tasks because they were most likely to be accomplished. 
This interpretation is valid for Experiment 3 because pre-
dictability referred to both tasks together and could not 
be disentangled.

Regarding limitations of our study, theorizing should 
be addressed first. The interpretations of our results 
are based on a hypothetical basic premise, namely that 
resources exist and that resource allocation policy can 
explain dual-task limitations. As Hommel (2020) recently 
emphasized, this assumption can neither be falsified nor 
be replaced by a mechanistic model so far. With this 
study, however, we did not aim at establishing a mecha-
nism, yet we are aware of the theoretical discourse of 
the research field. Second, some technical limitations 
should be mentioned. For example, we interpreted the 
impact of sequenced tone structures as overall faster 
RTs, because participants were instructed to press the 
pedal after hearing the target sound and therefore only 
responses given after onset were taken into considera-
tion. Even though there was no rhythm and we varied 
the inter-stimulus intervals, it is possible that partici-
pants learned the sequence so well that they gave “antici-
patory responses.” Because the tracking software did 
not capture early responses, any pedal presses ahead of 
sound onset counted as very late responses to distrac-
tor sounds. Hence late responses to distractor sounds in 
sequenced trials might actually be very early responses 
to target sounds and thus neither errors nor anticipatory 
responses could be interpreted with certainty. Future 
uses of the paradigm should carefully consider three 
aspects in order to allow more reliable error analyses: 
varying trial lengths, using different amounts of distrac-
tor and target sounds in every trial, and varying inter-
stimulus intervals in order to allow for instance d-prime 
or similar error analyses.

The unique contributions of this study are that it 
strengthens empirical evidence for the beneficial impact 
of predictability on performance in general and for the 
perceptual, cognitive, and motor system’s ability to use 
covariations in the environment. The implementation 
of a continuous task and thereby the temporal variable 
velocity were an important methodological extension 
to classic tracking/DT studies. Velocities allowed us 
to examine resource allocation at the moment of inter-
ference because they demonstrate changes in tracking 
behavior during secondary-task processing. This is not 
possible only with RMSE, which is the standard meas-
ure in DT research. Another methodological extension 
was contrasting ST and DT performance for both tasks 
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instead of only reporting DT costs. This was important 
to understand resource allocation. Experiment 1 also 
contributes an innovative redesign of Wulf and Schmidt’s 
paradigm (1997). Past research has mainly manipulated 
the middle segment to examine motor learning and its 
impact on dual tasking, but the implementation of vis-
ual information allowed us to examine tracking behav-
ior with online information in a fully unpredictable task 
environment.

The study also offers practical implications and may 
guide practitioners who design work spaces or train-
ing interventions. First, the workload humans face at 
work often involves continuous processing and paral-
lel handling of multiple tasks. Our results suggest that, 
where possible in working spaces, either one task should 
be made predictable or the environment should allow 
for tasks’ covariation in space or time. For instance it is 
possible that an air traffic controller can more efficiently 
attend to radar control and flight progress strips together, 
because those two tasks are related in time. Ideally, warn-
ing signals help to prepare responses in the more com-
plex task to coordinate tasks more effectively. Second, 
results from the continuous tracking task may generalize 
to more complex tasks like driving. Future applied stud-
ies should investigate task integration in driving to test 
the role of predictability. For example, manipulating the 
temporal positioning of braking signs to effectively main-
tain steering control might ultimately improve safety in 
driving. Discussions on using smart phones, voice con-
trol, navigation systems, and new technology in (semi-)
autonomous driving make such investigations societally 
relevant. In a related study (Broeker et  al. 2020b), par-
ticipants’ tracking accuracy was compared with per-
formance in a driving simulator and showed that visual 
predictability has an impact on dual-task driving perfor-
mance. This is a first step toward generalizing the present 
results to more applied settings. Third, the finding that 
task integration improves continuous dual tasks could 
be relevant for clinical settings and training programs. 
For instance, if practitioners used co-varying dual tasks 
such as counting while walking rather than independent 
dual tasks, performance might improve due to reduced 
demand for resources and additional risks like falling 
could be avoided. This would be a promising avenue for 
further applied research.
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