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We point out that, if quantum field renormalization is taken into account and the counterterms are

evaluated at the Hubble-radius crossing time or few e-foldings after it, the predictions of slow-roll

inflation for both the scalar and the tensorial power spectrum change significantly. This leads to a change

in the consistency condition that relates the tensor-to-scalar amplitude ratio with spectral indices. A

reexamination of the potentials �2 and �4 shows that both are compatible with five-year WMAP data.

Only when the counterterms are evaluated at much larger times beyond the end of inflation does one

recover the standard predictions. The alternative predictions presented here may soon come within the

range of measurement of near-future experiments.
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A sufficiently long period of accelerated expansion in
the very early Universe is able to solve the questions raised
by the standard big bang cosmology [1]. The hot big bang
cosmology is an extremely successful theory. It explains
the existence of the cosmic microwave background (CMB)
and its thermal nature, the observed expansion of the
Universe, the abundance of light elements, and the astro-
physical fits for the age of the Universe. However, it leaves
without answer why our Universe appears so homogeneous
and nearly flat at large scales. Inflation offers a natural
answer to these questions and, at the same time, provides a
predictive mechanism to account for the small observed
inhomogeneities [2] responsible for the structure formation
in the Universe and the anisotropies present in the CMB, as
first detected by the Cosmic Background Explorer satellite
and further analyzed by the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite [3]. Inflation predicts
production of primordial density perturbations and relic
gravitational waves as amplifications of vacuum fluctua-
tions together with a quantum-to-classical transition at the
scale of the Hubble sphere crossing. Primordial perturba-
tions leave an imprint in the CMB anisotropies, which are,
therefore, of major importance for understanding our
Universe and its origin. The potential-energy density of a
scalar (inflaton) field is assumed to cause the inflationary
expansion, and the amplification of its quantum fluctua-
tions and those of the metric are inevitable consequences in
an expanding universe [4]. The metric fluctuations provide
the initial conditions for the acoustic oscillations of the
plasma at the onset of the subsequent radiation-dominated
epoch. The detection of the effects of primordial gravita-
tional waves in future high-precision measurements of the
CMB anisotropies, as, for instance, in the PLANCK satel-
lite mission [5], will serve as a highly nontrivial test for
inflation. Therefore, it is particularly important to scruti-

nize, from all points of view, the standard predictions of
inflation (as summarized, for instance, in [6]) to be tested
empirically. This is the aim of this Letter. We point out that
if quantum field renormalization is taken into account, as in
the experimentally tested Casimir effect, the quantitative
predictions of inflation change significantly and may be
tested in forthcoming CMB measurements.
The scalar perturbations, which constitute the ‘‘seeds’’

for structure formation, are characterized by the power
spectrum

PRðkÞ ¼
�
H
_�

�
2
�
H

2�

�
2
; (1)

where � represents the inflaton scalar field, which domi-
nates the energy density during inflation. HereH stands for
the Hubble rate H � _a=a, where aðtÞ is the expansion
factor and the dot means derivative with respect to the
comoving time. The above expression is evaluated at the
Hubble-radius crossing time tk (usually called ‘‘horizon
crossing’’ time), where k=aðtkÞ ¼ H. In the typical slow-
roll inflationary scenario, the homogeneous part of the
inflaton field �0ðtÞ rolls slowly down its potential Vð�Þ
towards a minimum. Both � and H � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8�G=3ÞVð�0Þ

p
are changing very gradually, and this change is parame-
trized by the slow-roll parameters � and �, where � �
� _H=H2 and �� � � €�=ðH _�Þ. These parameters can be
related to the derivatives of the inflaton potential � ¼
ðM2

P=2ÞðV 0=VÞ2 and � ¼ M2
PðV 00=VÞ, where MP ¼

1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
is the reduced Planck mass in natural units @ ¼

1 ¼ c. In the slow-roll approximation � � 1 and j�j � 1,
the scalar power spectrum turns out to be

PRðkÞ ¼ 1

2M2
P�ðtkÞ

�
HðtkÞ
2�

�
2
: (2)
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In addition, the power spectrum of tensor fluctuations is
given by

PtðkÞ ¼ 8

M2
P

�
HðtkÞ
2�

�
2
; (3)

and the tensor-to-scalar ratio is then r ¼ Pt=PR ¼ 16�.
The power spectra are not exactly scale invariant; they can
vary with k, and this dependence is parametrized by the
scalar and tensorial spectral indices ns � 1 �
d lnPR=d lnk and nt � d lnPt=d lnk. Since these indices
are related to the slow-roll parameters ns � 1 ¼ �6�þ
2� and nt ¼ �2�, one generates immediately the consis-
tency relation r ¼ �8nt, which should be verified by any
single-field slow-roll inflationary model, irrespective of the
particular form of the potential.

In this Letter, we shall reexamine, on the basis of general
principles of quantum field theory in an expanding back-
ground [7,8], the fundamental expressions (2) and (3) for
the scalar and tensorial power spectrum. In doing this we
shall also be led to modify the expressions for the spectral
indices in terms of the slow-roll parameters and, therefore,
to generate a new consistency relation. We will have all of
the necessary ingredients to reexamine the observational
predictions of inflationary models, and here we shall do
that for some of the most significant models.

The second factor in the fundamental relation (1) has its
origin in the quantum fluctuation of the scalar inflaton field
�. The first-order perturbation ��, where � ¼ �0ðtÞ þ
��ðxÞ, obeys the wave equation

@2t ��þ 3H@t��� a�2
X3
i¼1

@2i ��þm2�� ¼ 0; (4)

where aðtÞ is the expansion factor of the unperturbed
homogeneous and spatially flat metric ds2 ¼ �dt2 þ
a2ðtÞd~x2. The effective mass term, which is necessarily
small in the slow-roll approximation, is given by the sec-
ond derivative of the potential: m2 ¼ V00ð�0Þ. Moreover,
the fundamental relation (3) has also the same quantum
origin. The two independent polarizations of tensorial
modes can be described by a couple of scalar fields hþ;�
obeying the above wave equation with zero mass. The
relation between h (we omit the subindex þ or �) and

�� is given by �� � h=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
.

Let us focus first on these tensorial perturbations.
The form of the modes is then h ~kðt; ~xÞ ¼
½�16�G��=4ð2�Þ3a2�1=2Hð1Þ

� ð�k�Þei ~k ~x. The index of

the Bessel function is � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4þ 3�

p
, and the so-called

conformal time � � R
dt=aðtÞ is given by � ¼ �ð1þ

�Þ=aH. Notice that, at early times, the amplitude of oscil-
lations depends on k in a way similar to that of a massless
field in Minkowski space. As time evolves, the comoving
wavelength reaches the Hubble horizon length at tk. A few
Hubble times after horizon exit, the amplitude freezes
completely, and, for all subsequent times t, one has the

constant value jh ~kj2 ¼ GH2ðtkÞ
�2k3

. Because of the loss of phase

information, the modes of the perturbations soon take on
classical properties [9]. The freezing amplitude is usually
codified through the quantity�2

hðk; tÞ, defined in general by
�2

h ¼ 4�k3jh ~kðtÞj2, and evaluated at the horizon crossing

tk (or a few Hubble times after it). Taking into account the
two polarizations, one finally obtains a nearly ‘‘scale-free’’
tensorial power spectrum (3). In a similar way, one obtains
the scalar power spectrum (2).
At this stage it is important to remark that the above

definition of the power spectrum is such that the quantum
fluctuations of the perturbations in position space satisfy
the relation

hh2ð ~x; tÞi ¼
Z 1

0

dk

k
�2

hðk; tÞ: (5)

This quantity represents the variance of the Gaussian
probability distribution associated to hð ~x; tÞ. However, in
the form given by (5), it is divergent. It might be argued, as
is common when dealing with random fields, that this
divergence can be eliminated by smoothing out the field
on a certain scale R to remove the Fourier modes with
k�1 <R. It can also be argued that the value of hh2i is
unimportant and to regard the (finite) two-point function
hhðx1Þhðx2Þi, uniquely defined by �2

hðkÞ, as the basic ob-

ject. However, it is our view to regard the variance as the
basic physical object, which defines the amplitude of fluc-
tuations in position space, and treat hð ~x; tÞ as a quantum
entity. Therefore, if one regards hð ~x; tÞ as a quantum field,
and hh2ð ~x; tÞi its two-point function at coincident points,
the divergences must be handled in a different way. Taking
into account the large k asymptotic form of the modes, one
can estimate the form of the integral at an arbitrary time

hh2ð ~x; tÞi �
Z 1

0

dk

k

16�Gk3

4�2a3

�
a

k

�
1þ ð2þ 3�Þ

2k2�2

�
þ � � �

�
:

(6)

The first term produces a quadratic divergence, which is
the typical singularity of a quantum field in Minkowski
space. The second term produces a logarithmic divergence,
which is typical of a massless field in an expanding uni-
verse. For a quantum mechanical system, with a finite
number of degrees of freedom, such a divergent behavior
would not arise, and one need not worry about the defini-
tion of the physical power spectrum. However, a quantum
field is neither a random field nor a quantum mechanical
system with a finite number of degrees of freedom. The
existence of divergences tells us that the nature of a quan-
tum field is more involved. If we wish to have a finite
expression for hh2ð ~x; tÞi, we should subtract the divergen-
ces in a consistent way. In technical words, one should
renormalize the quantum field. Since the physically rele-
vant quantity (power spectrum) is expressed in momentum
space, the natural renormalization scheme to apply is the
so-called adiabatic subtraction [10], as it renormalizes the
theory in momentum space. Adiabatic renormalization
[7,8,11] removes the divergences present in the formal
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expression (5) by subtracting the ð16�Gk3=4�2a3Þ½1=wþ
_a2=2a2w3þ €a=2aw3�mode by the mode in the integral (5),
where w is the frequency of the modes. The subtraction of
the first term (16�Gk3=4�2a3w) to cancel the typical flat
space vacuum fluctuations was already considered in
Ref. [12]. However, the additional terms, proportional to
_a2 and €a, are necessary to properly perform the renormal-
ization in an expanding universe. Subtracting consistently
the divergent terms, one obtains the finite expression

hh2ð ~x; tÞi ¼
Z 1

0

dk

k

16�Gk3

4�2a3

�
�a

��

2
jHð1Þ

� ð�k�Þj2

� a

k

�
1þ ð2þ 3�Þ

2k2�2

��
: (7)

For the idealized case of a strictly constant H, the sub-
traction exactly cancels out the vacuum amplitude [10]

since Hð1Þ
3=2ðxÞ ¼ i expðixÞ ffiffiffiffiffiffiffiffiffiffiffiffi

2=�x
p ð�1þ i=xÞ. From this it

follows that in pure de Sitter inflation there is no produc-
tion of gravitational waves. One would thus expect that the
tensorial power spectrum would be proportional to the �
slow-roll parameter, which parametrizes the slow change
in HðtÞ. The fluctuations still acquire classical properties
through decoherence in a time of order H�1 after their
wavelengths become larger than the Hubble radius during
inflation [9]. Therefore, it is natural to evaluate the power
spectrum (with the corresponding adiabatic counterterms)
a few Hubble times after the time tk. Since the results will
not be far different from those at tk, we use that time to
characterize the results. We comment further on this point
after (14). Evaluation of the above integral at the time tk
leads to the redefinition

�2
hðkÞ ¼ 4GH2

�
1þ �

2
jHð1Þ

� ð�k� ¼ 1þ �Þj2 � ð4� �Þ
2�

�
;

(8)

which turns out to be proportional to �, �2
hðkÞ ¼

�16�G½HðtkÞ=2��2�ðtkÞ þOð�2Þ, where � is a numerical
coefficient of order unity: � � 0:904. Taking into account
the usual conventions, we get, at leading order in �,

PtðkÞ ¼ 8�

M2
P

�
HðtkÞ
2�

�
2
�ðtkÞ: (9)

One can proceed in the same way to reevaluate the scalar
power spectrum. However, to be precise in the calculation,
one must keep the mass term in (4) and also take into
account the slow decay of the Hubble rateH, as above. The
latter is controlled by the slow-roll parameter �, while the
former is captured by the slowly changing parameter � �
M2

PðV00=VÞ, which gives m2 ¼ 3�H2. The form of the
scalar modes is the same as that for the tensorial ones, up

to the fact that the coefficient
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
is now absent and the

Bessel index is now �2 ¼ 9=4þ 3�� 3�. The adiabatic
subtracting terms are then those already present for a

massless field, with wðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=a2 þm2

p
, together with

new terms proportional to the mass ðk3=4�2a3Þ�

½m2 _a2=2a2w5 þm2 €a=4aw5 � 5m4 _a2=8a2w7�. Therefore,
after renormalization, the final result for the scalar power
spectrum is

PR ¼ 1

2M2
p�ðtkÞ

�
HðtkÞ
2�

�
2½��ðtkÞ þ 3	�ðtkÞ�; (10)

where 	 � 0:448 is another numerical coefficient. In the
case of eternal de Sitter expansion, one recovers the pre-
vious results of Refs. [10,13].
The above expression, together with (9) for the tensorial

power spectrum, constitutes our main results and leads to a
change in the testable predictions of inflation. To see this,
we have to consider the scalar and tensorial spectral in-
dices. The standard expression for them, in terms of the
slow-roll parameters, is ns � 1 ¼ �6�þ 2�, nt ¼ �2�.
However, if we invoke renormalization, we get

nt ¼ 2ð�� �Þ; (11)

ns�1¼�6�þ2�

þ4��2þð6	�2�Þ���3	½n0t=2�4�ð���Þ�
��þ3	�

;

(12)

where n0t is the running of the tensorial index n0t �
dnt=d lnk. Note that n0t can be expressed in terms of the
slow-roll parameters as n0t ¼ 8�ð�� �Þ þ 2
, where 
 is
defined by 
 � M4

PðV 0V 000=V2Þ. The above formulas pro-
vide, implicitly, algebraic relations between physical ob-
servables. The most important one is the relation between
the tensor-to-scalar ratio r � Pt=PR with the spectral and
running indices: r ¼ rðnt; ns; n0tÞ. In the simplest case of
n0t ¼ 0, and by taking the approximation � � 2	, the new
consistency condition becomes

r ¼ 1� ns þ 96

25
nt þ 11

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� nsÞ2 þ 96

25
n2t

s
: (13)

This relation could be potentially checked, and compared
with the standard one r ¼ �8nt, in near-future high-
precision anisotropy measurements of the CMB.
However, we can already contrast, partially, our predic-
tions with the standard ones on the basis of the five-year
WMAP results by performing a model by model analysis.
As a representative example, we shall reexamine the mono-

mial chaotic potential Vð�Þ ¼ �Mð4�pÞ
P �p and compare

with standard theoretical and experimental results [3]. It is
not difficult to obtain that

r ¼ �p2

½3	ðp� 1Þ=2þ �p=4�N ; 1� ns ¼ p

2N
; (14)

where N � lnaend=aWMAP is the number of e-folds of
inflation between the end of inflation and the epoch when
the wavelength of fluctuations that WMAP detects left the
horizon. If the adiabatic counterterms were evaluated some
e-folds n after tk but still well before the end of inflation
(n� � 1), then the value of � in the tensorial power
spectrum would change to � � 2n. A similar calculation
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for the scalar power spectrum should also be carried out.
This computation should deal with the gauge-invariant
quantityRk, which is conserved outside the Hubble sphere
and satisfies the same equation as h ~k, up to the replacement

a ! a _�0=H. The result is then � � 6n, 3	 � �2n. One
then finds that the spectral index ns in (14) is unchanged,
and the ratio r becomes r ¼ 4p2=ðpþ 2ÞN, which is not
sensitive to the value of n. If the counterterms are evaluated
far beyond the end of inflation, one recovers the standard
predictions r ¼ 4p=N and 1� ns ¼ ðpþ 2Þ=2N. How-
ever, since primordial fluctuations acquire classical prop-
erties through decoherence when their wavelengths be-
come larger than the Hubble radius [9], we find it natural
to evaluate the spectra at a time close to tk, which im-
plies significant deviations from the standard prediction
[see (14)]. Note that, with the present understanding of the
nonlinear aspects of quantum gravity, it is difficult to reach
a definitive conclusion regarding this question, so the fact
that there are observable differences offers a deep way to
experimentally probe this question. In fact, if we compare
the results at tk with the WMAP five-year data for the
representative values p ¼ 2 and p ¼ 4 (Fig. 1), we find
that both models are compatible with the experimental
data for the reasonable range of N between 50 and 60
(Fig. 1, top). This is in sharp contrast with the prediction
of the standard approach (Fig. 1, bottom) where the mono-
mial potential with p ¼ 4 is excluded convincingly. With

the new predictions both models are compatible with
WMAP data for all of the values of N between 50 and
60. This is also true even if the counterterms are evaluated
n e-folds after tk, with n� � 1. The alternative predictions
presented here may soon come within the range of mea-
surement of high-precision CMB experiments, as expected
in the PLANCK satellite mission.
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FIG. 1. Plot of r versus ns. The contours show the 68% and
95% C.L. derived from WMAP5 (in combination with baryon
acoustic oscillations BAOþ SN) [3]. We consider Vð�Þ ¼
m2�2 (solid line) and Vð�Þ ¼ ��4 (dashed line). The symbols
show the prediction from each of this models in terms of the
number N of e-folds. The top part corresponds to the prediction
of our formulas, while the bottom one corresponds to the
standard prediction.
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