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Abstract

Background: Inflammation may lead to tissue injury. We have studied the modulation of inflammatory milieu-induced
tissue injury, as exemplified by the mesothelium. Peritoneal dialysis is complicated by peritonitis episodes that cause loss of
mesothelium. Proinflammatory cytokines are increased in the peritoneal cavity during peritonitis episodes. However there is
scarce information on the modulation of cell death by combinations of cytokines and on the therapeutic targets to prevent
desmesothelization.

Methodology: Human mesothelial cells were cultured from effluents of stable peritoneal dialysis patients and from
omentum of non-dialysis patients. Mesothelial cell death was studied in mice with S. aureus peritonitis and in mice injected
with tumor necrosis factor alpha and interferon gamma. Tumor necrosis factor alpha and interferon gamma alone do not
induce apoptosis in cultured mesothelial cells. By contrast, the cytokine combination increased the rate of apoptosis 2 to 3-
fold over control. Cell death was associated with the activation of caspases and a pancaspase inhibitor prevented apoptosis.
Specific caspase-8 and caspase-3 inhibitors were similarly effective. Co-incubation with both cytokines also impaired
mesothelial wound healing in an in vitro model. However, inhibition of caspases did not improve wound healing and even
impaired the long-term recovery from injury. By contrast, a polymeric nanoconjugate Apaf-1 inhibitor protected from
apoptosis and allowed wound healing and long-term recovery. The Apaf-1 inhibitor also protected mesothelial cells from
inflammation-induced injury in vivo in mice.

Conclusion: Cooperation between tumor necrosis factor alpha and interferon gamma contributes to mesothelial injury and
impairs the regenerative capacity of the monolayer. Caspase inhibition attenuates mesothelial cell apoptosis but does not
facilitate regeneration. A drug targeting Apaf-1 allows protection from apoptosis as well as regeneration in the course of
inflammation-induced tissue injury.

Citation: Santamarı́a B, Benito-Martin A, Ucero AC, Stark Aroeira L, Reyero A, et al. (2009) A Nanoconjugate Apaf-1 Inhibitor Protects Mesothelial Cells from
Cytokine-Induced Injury. PLoS ONE 4(8): e6634. doi:10.1371/journal.pone.0006634

Editor: Marcelo Bonini, National Institutes of Health (NIH)/National Institute of Environmental Health Sciences (NIEHS), United States of America

Received March 16, 2009; Accepted June 23, 2009; Published August 13, 2009

Copyright: � 2009 Santamarı́a et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Grant support: ISCIII (01/0199, 06/0046, ISCIII-RETIC REDinREN/RD06/0016, Comunidad de Madrid/FRACM/S-BIO0283/2006, Sociedad Espanola de
Nefrologi-a, and Fresenius Medical Care, Programa Intensificacion Actividad Investigadora Sistema Nacional de Salud ISCIII/CM to AO, MEC (BIO2004-998 and
BIO2007-60066) to EPP, MEC (CTQ2007-60601) and GVA (GV07/070) to MJV. BS and ACU were supported by Fundacion Conchita Rabago and AB by Fondo de
Investigaciones Sanitarias (FIS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: Research grants from Fresenius Medical care and Baxter Healthcare have gone to Alberto Ortiz and Rafael Selgas. Research grants from
Gambro have gone to Rafael Selgas.

* E-mail: aortiz@fjd.es

Introduction

Tissue injury is an unwanted adverse effect of inflammation.

Peritoneal dialysis (PD) is a renal replacement therapy modality that is

marred by episodes of bacterial infection, leading to localized

inflammation evidenced as peritonitis [1]. PD represents an

interesting model of inflammation since the technique consists of

and allows repeated non-invasive access to the peritoneal cavity,

allowing both monitoring of the inflammatory process as well as

therapy by local delivery of drugs. Currently the therapy of peritonitis

consists of local intraperitoneal delivery of antibiotics and heparin [2].

One of the main peritoneal manifestations of inflammatory tissue

injury is loss of mesothelial cells, which occurs both during chronic

PD and in acute inflammatory episodes [3,4]. Apoptotic mesothelial

cells are lost in the peritoneal effluent of stable PD patients and the

number of peritoneal effluent apoptotic mesothelial cells increases 80-

fold during peritonitis [5–7]. Counting effluent apoptotic cells will

underestimate apoptosis, since the apoptotic features have a half-life

of 1–2 hours and most apoptotic cells are engulfed by phagocytes [8].

Lethal cytokines are among the endogenous mediators that cause

mesothelial cell death [5,6,9–11]. FasL directly promotes mesothelial

cell apoptosis [6]. By contrast, neither TNF nor TRAIL alone
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modulate mesothelial cell survival [6]. However, most extracellular

inputs are not processed in isolation, rather, multiple inputs are

perceived and integrated by cells in a proinflammatory milieu [12]. In

this regard, mesothelial cells are immersed in a complex microen-

vironment and inflammatory cytokines may cooperate to influence

on mesothelial cell fate. Other inflammatory mediators, bacterial

infection, tumor cells, PD solutions and asbestos also promote

mesothelial cell apoptosis [7,11,13–18].

Apoptosis is an active model of cell death that regulates cell

number [9,19,20]. Understanding the regulation of apoptosis has

possible therapeutic relevance, since it is regulated by the activation

of intracellular lethal molecules in response to the cell microenvi-

ronment [9,19–21]. Among them, caspases are a family of

intracellular cysteine proteases that behave as activators and

effectors of apoptosis, and play a central role in the process

[20,22]. Caspase-8 is the canonical initiator caspase engaged by

lethal cytokines that activate cell death receptors. In turn, caspase-8

recruits the mitochondrial pathway for apoptosis and activates

executioner caspases, such as caspase-3, that are responsible for cell

death. Activation of the mitochondrial pathway, leads to the release

of proapoptotic molecules such as cytochrome c into the cytoplasm,

which, in the presence of dATP, induce the formation of the Apaf-1

(apoptotic protease activating factor 1)-containing macromolecular

complex called the apoptosome. This complex, in turn, binds to and

activates caspase-9. Mature caspase-9 activates effector caspases

[23]. Caspase inhibitors prevent leukocyte apoptosis induced by

conventional, glucose-containing PD solutions [6,24,25]. However,

recent reports have emphasized non-apoptotic functions of caspases

including promotion of cell proliferation that contributes to tissue

regeneration [26–28]. In addition, in certain epithelial cell types,

caspase inhibition may transform a mild proapoptotic response into

an intense necrotic response to lethal cytokines [29]. We now

explore the cooperation between inflammatory cytokines in

modulating human mesothelial cell fate and possible therapeutic

interventions to prevent mesothelial cell death during inflammation.

In particular we have analyzed its modulation by classical caspase

inhibitors as well as by targeting the activity of the apoptosome.

Recent reports have proposed the apoptosome as an interesting

target for the development of apoptosis inhibitors [30–32]. Indeed,

our results showed that chemical inhibition of apoptosome activity

with a nanoconjugate Apaf-1 inhibitor is effective in protecting

mesothelial cells from cytokine-induced apoptosis and, in contrast to

caspase inhibition, it allows wound healing and long-term recovery.

Results

Regulation of mesothelial cell apoptosis by cooperation
of inflammatory cytokines

Acute demesothelization occurs during experimental and

human peritonitis, and is associated with an increased rate of

mesothelial cell apoptosis [3–6]. During peritoneal inflammation

numerous cytokines are released locally. Among them we find

IFNc and TNFa [33,34]. Although TNFa is, by itself, a potentially

lethal cytokine [19], we did not observe a lethal effect of TNFa in

human peritoneal mesothelial cells (HPMC) cultured from the

effluent of stable PD patients (Fig. 1. A, B). IFNc increased TNFa
lethality (Fig. 1.A, B) [6]. The combination of cytokines induced

HPMC apoptosis in a time- and dose-dependent manner

(Fig. 1.B, C). By contrast, cytokines had no effect on the

percentage of cells on the S or M phase of the cell cycle, as assessed

by flow cytometry of DNA content (range 9 to 10% for the

different conditions). The combination of IFNc and TNFa also

induced apoptosis in human omental mesothelial cells (HOMC)

cultured from the omentum of non-uremic patients (Fig. 1.D).

Caspases mediate mesothelial cell apoptosis induced by
cytokine cooperation

HPMC apoptosis induced by TNFa and IFNc was characterized

by the appearance of caspase-generated fragments of cytokeratin 8/

18 in the cytoplasm and typical morphological features of nuclear

apoptosis, such as shrunk, bright and fragmented nuclei (Fig. 2.A).

Flow cytometry confirmed that TNFa and IFNc increased the

number of cells containing caspase-generated fragments of cytoker-

atin 8/18 (Fig. 2.B) and caspase-3 activity was increased by 1.760.4

fold over control at 24 h in a colorimetric assay (p,0.02, not shown).

Taken together, these data provide evidence for the involvement of

caspases in the process. In order to confirm the requirement for

caspases and to explore possible therapeutic strategies, cells were

treated with caspase inhibitors. The pan-caspase inhibitor, zVAD, or

specific caspase-3 (DEVD) or caspase-8 (IETD) inhibitors prevented

morphological features of apoptosis induced by cytokines (Fig. 2.A)

and the activation of executioner caspases (Fig. 2.A–C), and

decreased apoptosis as assessed by the presence of hypodiploid cells

(Fig. 2.D, E). Similar results were obtained in HOMC (not shown).

The most effective caspase inhibitor in decreasing the rate of

apoptosis, zVAD, was studied in further detail. In mesothelial cells

exposed to TNFa and IFNc, zVAD was unable to prevent eventual

cell death (data not shown) despite not increasing the non-apoptotic

cytotoxicity of cytokines, as it is the case with other cell types [29].

Caspase inhibition was not per se toxic in cells not exposed to cytokine

combinations and did not increase the number of dead cells staining

with trypan blue (data not shown).

Impaired wound healing in the presence of a
proinflammatory milieu is not rescued by caspase
inhibition

Acute demesothelization during peritonitis, unless very severe, is

usually a reversible response, and mesothelial cells later repopulate

the denuded area. In a wound healing system of HPMC we

studied recovery from injury in the absence of exogenous survival

factors, aiming to reproduce the adverse microenvironmental

conditions of the inflamed peritoneum. Under control conditions,

in the absence of proinflammatory cytokines, the mesothelial

covering of the wound increased over 48 h (Fig. 3.A, B). Caspase

inhibition tended to stall the process at late time points. The

continuous presence of TNFa and IFNc prevented wound

healing. Inhibition of caspases by zVAD did not rescue wound

healing among cells treated TNFa and IFNc (Fig. 3.A, B). IETD

and DEVD caspase inhibitors offered no advantage over zVAD

(not shown).

A nanoconjugate Apaf-1 inhibitor prevents cytokine-
induced apoptosis and promotes wound healing

Formation of the apoptosome is a key event in the apoptotic

signaling pathway. First-in-class polyglutamic acid (PGA)-based

Apaf-1 inhibitor nanoconjugates (PGA-peptoids) are well suited for

in vivo applications [30–32]. The PGA-peptoid QM56 prevented,

in a dose-dependent manner, mesothelial cell apoptosis induced by

a combination of cytokines, as shown for HOMC (Fig. 4.A). The

QM56 concentration chosen for the rest of the experiments

(10 mM) had an antiapoptotic activity similar to 200 mM zVAD

(Fig. 4.A). In cultured mesothelial cells QM56 prevented caspase-

3 processing induced by cytokines, as shown for HOMC (Fig. 4.B)

and completely prevented the increase in caspase 3 activity

induced by TNFa/IFNc in these cells (TNFa/IFNc 1,760.4 vs

TNFa/IFNc/QM56 0,5660.18 fold over control, p,0.03, not

shown). Similar to observations with caspase inhibitors, QM56

prevented apoptosis induced by TNFa and IFNc in mesothelial

Apaf-1 Targeting and Cytokines
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cells, as shown for HPMC (Fig. 4.C,D). QM56 did not modify

the percentage of cells in the S+M phases of the cell cycle (not

shown). By contrast to classical caspase inhibitors, QM56 restored

the wound healing capacity of mesothelial cells in the presence of

cytokines, as shown for HPMC (Fig. 5.A, B).

Apaf-1 inhibition, but not caspase inhibition, improves
long-term recovery from inflammatory injury

We next explored the potential long-term consequences of

caspase inhibition in the context of transient, short-term

inflammation. Cells were cultured for 24 to 48 h in the presence

of TNFa and IFNc with or without inhibitors and then

trypsinized, seeded in new plaques and left to recover for 5 days

in the presence of survival factors from serum but in the absence of

cytokines or inhibitors. This mimics intraperitoneal events during

the recovery from human peritonitis with an adequate response to

antibiotics. Despite the acute increase in cell death and delayed

wound healing observed in the presence of TNFa and IFNc, the

removal of these cytokines from the media and the addition of

exogenous survival factors was associated with a degree of

Figure 1. Cooperation of cytokines induces apoptosis in mesothelial cells. A) Representative flow cytometry of DNA content diagrams.
Note the increase in the hypodiploid, apoptotic population in HPMC cultured for 48 h in presence of TNFa/IFNc. B) Quantification of apoptosis in
HPMC by flow cytometry. The combination of TNFa/IFNc induces apoptosis. When not specified, 300 U/mL IFNc and 250 ng/mL TNFa were used, *
p,0.04 vs each individual cytokine at 24 h. ** p,0.001 vs each individual cytokine at 48 h. & p,0.001 vs control. Mean6SEM of 6 different
experiments. C) Dose-response in HPMC. Mean6SEM of 4 different experiments * p,0.05 vs control. D) Quantification of apoptosis in HOMC by flow
cytometry. The combination TNFa/IFNc for 48 h induces apoptosis. *p,0.005 vs. control. Mean6SEM of 4 different experiments.
doi:10.1371/journal.pone.0006634.g001
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Figure 2. Apoptosis induced by cooperation of cytokines is caspase-dependent. A) Caspase activation in HPMC exposed to TNFa/IFNc for
24 h. Apoptosis was decreased by zVAD (pan-caspase inhibitor), DEVD (caspase-3 inhibitor) and IETD (caspase-8 inhibitor). Note cytokeratin (CK) 8/18
cleavage by caspases as well as the nuclear apoptotic morphology in cells exposed to TNFa/IFNc (arrowheads). Green: FITC-M30 cytodeath antibody,
red: propidium iodide in permeabilized cells. Original magnification6100. B) Representative diagram of detection of caspase-cleaved CK 8/18 by flow
cytometry in HPMC. C) Quantification of caspase-cleaved CK 8/18 by flow cytometry in HPMC treated with TNFa and IFNc for 24 h. * p,0.005 vs
control and # p,0.05 vs TNFa/IFNc. Mean6SEM of 4 different experiments. D) Flow cytometry diagrams of permeabilized, propidium iodide-stained
cells. Note the decrement of hypodiploid cells (arrowhead) in the presence of caspase inhibitors in HPMC. E) Quantification of apoptosis by flow
cytometry of DNA content in HPMC exposed to TNFa/IFNc for 48 h. Apoptosis was decreased by zVAD, DEVD and IETD. *p,0.001 vs control and #
p,0.0005 vs TNFa/IFNc. Mean6SEM of 6 independent experiments.
doi:10.1371/journal.pone.0006634.g002
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recovery close to that obtained in control HPMC (Fig. 6.A). The

initial presence of the cytokine combination and the pan-caspase

inhibitor led to a reduced final cell number, suggesting loss of

regenerative potential (Fig. 6.A). Similar results were observed in

HOMC from non-dialysis patients (Fig. 6.B,C). Short-term

exposure of control cells to zVAD did not impair long-term

Figure 3. Inflammatory cytokines retard remesothelization. A) Wound healing in HPMC. Contrast phase microscopy. Cells were preincubated
with caspase inhibitor or vehicle and cultured in presence of proinflammatory TNFa/IFNc or control media. Original magnification 206. B)
Quantification of wound healing as number of HPMC cells filling the denuded area (cells/mm2). In presence of cytokines there is delayed wound
healing that is not improved by zVAD.* p,0.03 control vs. TNFa/IFNc and control vs TNFa/IFNc/zVAD. Mean6SEM of 5 different experiments.
doi:10.1371/journal.pone.0006634.g003
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Figure 4. A nanoconjugate Apaf-1 inhibitor (PGA-peptoid QM56) inhibits caspase activation and apoptosis. A) Quantification of
apoptosis in HOMC by flow cytometry. HOMC were preincubated with different concentrations of inhibitors or vehicle and cultured with TNFa and
IFNc for 48 hours. Mean6SEM of 3 different experiments *p,0.001vs TNFa/IFNc. B) QM56 prevents procaspase-3 processing and the appearance of
active p17 and p19 caspase-3 fragments 24 h following exposure to TNFa/IFNc in HOMC. zVAD stalled the process of caspase activation at the level
of the p21 precursor as previously described [73,74]. Binding of zVAD.fmk to this p21 intermediate blocks its activity [74]. Western blot, representative
of 3 independent experiments. C) Representative flow cytometry of DNA content diagrams. Cells were preincubated with QM56 and then cultured
with TNFa/IFNc for 48 h. Note the decreased number of hypodiploid apoptotic HPMC in TNFa/IFNc/QM56 treated cells (black arrow). Inset: nuclear
apoptotic morphology in cells exposed to TNFa/IFNc and stained with DAPI (white arrows). D) Quantification of apoptosis by flow cytometry of DNA
content in HPMC. Mean6SEM of 6 different experiments. *p,0.002 vs cells treated with TNFa/IFNc/QM56.
doi:10.1371/journal.pone.0006634.g004
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recovery, indicating that this is not an intrinsic toxic effect of

zVAD (Fig. 6.C).

By contrast to caspase inhibition, QM56 did not impair the

long-term regeneration of HPMC or HOMC subjected to an

inflammatory milieu (Fig. 6A–C). Indeed, QM56 significantly

improved recovery (Fig. 6.C).

Apaf-1 inhibitor protects from inflammation-induced
apoptosis in vivo

We next explored the potential of QM56 to modulate cell injury

in vivo. Cytokeratin fragmentation, a marker of apoptosis that

precedes nuclear changes [7], was chosen because in vivo early

apoptotic cells are rapidly expelled from cell monolayers and

Figure 5. QM56 preserves remesothelization. A) Wound healing in HPMC. Contrast phase microscopy. Cells were preincubated with Apaf-1
inhibitor and cultured in presence of proinflammatory medium (TNFa and IFNc). Original magnification 206. B) Quantification of wound healing in
HPMC as number of cells filling the denuded area (cells/mm2). The delayed wound healing induced by TNFa/IFNc is recovered in presence of QM56. *
p,0.03 control vs. TNFa/IFNc ** p,0.003 TNFa/IFNc/QM56 vs. TNFa/IFNc. Mean6SEM of 5 different experiments.
doi:10.1371/journal.pone.0006634.g005
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engulfed by professional phagocytes [35]. In mice the intraperi-

toneal administration of TNFa and IFNc resulted in an increased

rate of mesothelial cell apoptosis at 48 h (Fig. 7). S. aureus

peritonitis also resulted in mesothelial cell apoptosis (Fig. 8). The

Apaf-1 inhibitor QM56 prevented mesothelial cells apoptosis

induced by both inflammatory milieus in vivo (Fig. 7, 8).

Discussion

We chose mesothelial cell injury as a model for inflammation-

induced tissue injury because mesothelial cell loss is a clinical

problem in PD. In addition, the easy access to the peritoneal cavity

allows the local delivery of therapeutic agents. We now report that

in inflammation-induced mesothelial cell injury cytokines cooper-

ate to induce apoptosis in primary cultures of mesothelial cells

obtained from either PD patients or non-uremic individuals. We

have further explored possible therapeutic strategies to prevent cell

injury and have identified Apaf-1 inhibition as a novel approach

that prevents acute inflammation-induced mesothelial cell injury

and allows recovery.

Mesothelial cells are lost by apoptosis in the course of human

bacterial PD peritonitis [5–7]. We now observed an increased

Figure 6. Caspase inhibition compromises long-term recovery from inflammatory injury while Apaf-1 inhibition does not. A) HPMC
plated on twelve-well plates were preincubated with inhibitors or vehicle and exposed to TNFa/IFNc for 24 h. Cells were then trypsinized, washed,
and seeded in Petri dishes in the presence of complete medium with 20% FCS for 5 days, but without cytokines or inhibitors, to allow for their
recovery. Cells were stained with crystal violet after 5 days. Representative of 3 different experiments. B) Similar results were obtained with HOMC.
HOMC were preincubated with inhibitors or vehicle and exposed to TNFa/IFNc for 48 h. Then the cells were trypsinized, washed and seeded without
inhibitors and cytokines for 5 days. Representative of 4 different experiments. C) Quantification of crystal violet staining in HOMC. Mean6SEM of 4
different experiments. *p,0.03 vs TNFa/IFNc; #p,0.02 vs TNFa/IFNc.
doi:10.1371/journal.pone.0006634.g006
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Figure 7. QM56 prevents mesothelial cell apoptosis induced by intraperitoneal cytokine administration in vivo. Mice were injected ip
with 250 ng/mL TNFa and 300 U/mL IFNc at time 0 and sacrificed at 48 h. QM56 or vehicle was administrated 1 h before the cytokines and 5 h later. A)
Representative images of Cytodeath (green)/propidium iodide co-staining. Note an increased number of cells with green cytoplasm indicative of
caspase-mediated apoptosis in the sample from the mouse injected with TNFa/IFNc. Magnification6120 B) Quantification of positive cells (green) using
Image Pro plus software in 5 fields per mouse (around 600 cells). Mean6SEM of 5 mice per group. * p,0.001 vs. control: # p,0.001vs.TNFa IFNc.
doi:10.1371/journal.pone.0006634.g007
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Figure 8. QM56 prevents mesothelial cell apoptosis during S. aureus peritonitis in mice. Mice were injected ip. with 56108 c.f.u. S. aureus
at time 0 and sacrificed at 48 h. QM56 or vehicle was administrated 1 h before the S. aureus and 5 h later A) Representative images of Cytodeath
(green)/propidium iodide co-staining. Note an increased number of cells with green cytoplasm (arrows) indicative of caspase-mediated apoptosis in
the sample from the mouse injected with S. aureus. Apoptosis was prevented by QM56 Magnification 6120. B) Quantification of cytodeath positive
cells (green) using Image Pro plus software in 5 fields per mouse (around 600 cells). Mean6SEM of 5 mice per group. * p,0.05 vs control.
doi:10.1371/journal.pone.0006634.g008
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mesothelial apoptosis rate in an experimental model of bacterial

peritonitis. In the course of peritonitis multiple inflammatory

mediators are released locally, including IFNc and TNFa
[33,34,36,37]. Interestingly, the highest peritoneal IFNc and

TNFa levels are found in peritonitis caused by highly virulent

microorganisms, such as S. aureus, precisely the ones that cause

more severe demesothelization and that may lead to irreversible

peritoneal injury after a single, severe peritonitis episode [33,34].

Since multiple inputs are perceived by cells in a proinflammatory

milieu, it is relevant to study the actions of cytokine combinations

[12]. Our studies show that a TNFa/IFNc combination promoted

apoptosis of cultured mesothelial cells, and explore novel

therapeutic approaches to prevent inflammation-induced tissue

injury that do not target TNFa or IFNc. Both TNFa and IFNc
are required for an effective antibacterial defense. TNFa
antagonists have been marred by an increased rate of severe

infections [38]. This is more obvious with infliximab, which also

inhibits IFNc secretion [38] [39]. This suggests that during

infection rather than antagonize cytokines, we should strive for the

selective therapeutic manipulation of their specific adverse effects

that promote tissue injury, such as parenchymal cell apoptosis.

A single episode of very severe peritonitis may cause irreversible

demesothelization and peritoneal fibrosis. However, more often

peritonitis is mild to severe, and is followed by partial or total

recovery of mesothelial integrity. Both the magnitude of the initial

acute loss of mesothelium and the ability of cells to regenerate are

important factors in the recovery phase. Our experimental design

has addressed how therapeutic agents modulate the initial lethal

response to inflammation, the subsequent ability of the mesothe-

lium to repopulate a demesothelized area in the presence of

ongoing adverse microenvironmental conditions, and the later

recovery phase taking place under a milder microenvironment.

The continuous presence of inflammatory cytokines increased the

rate of apoptosis and impaired regeneration of the mesothelial

layer. However, restoration of the normal cell milieu, with

disappearance of inflammatory cytokines and the renewed

presence of survival factors, lead to recovery. We now show that

cytokine-mediated mesothelial cell apoptosis depends on caspase

activation and is prevented by caspase inhibition. However,

caspase inhibition did not allow mesothelial layer regeneration in

the presence of cytokines to proceed, and, more ominously,

severely impaired the long-term regeneration of the mesothelium

once cytokines were removed. There are several possible

explanations for this phenomenon. First, massive induction of

necrosis may occur in cells exposed to members of the TNF

superfamily when caspases are inhibited [12,29,40]. In this regard,

caspase inhibitors did not transform a moderate degree of

mesothelial cell apoptosis into a catastrophic rate of necrosis, as

zVAD/TNFa/IFNc did not increase the percentage of necrotic

cells over TNFa/IFNc. However, caspase inhibition may not

prevent eventual non-apoptotic death in cells rescued from

apoptosis. Second, caspase inhibitors may inhibit non-apoptotic

roles of caspases [41]. Cell migration and mitosis are required to

repair a cell monolayer wound [42]. Recently a spate of non-

apoptotic caspase actions on cell proliferation and migration have

been described that favor the recovery process [26–28,43,44]. As

an example, TNFa is deleterious for the liver in the course of

inflammation, through induction of apoptosis [45,46]. However,

liver regeneration following partial hepatectomy requires TNFa
signaling through the TNFR-1 receptor and caspase-8 activation

that primes hepatocytes to respond to mitogens [26,47,48].

Caspase-3 and caspase- 11 may promote cell migration [27,28].

Chemical inhibition of Apaf-1 by a nanoconjugate molecule

[30,31,49] prevented mesothelial cell apoptosis induced by the

combination of cytokines in cell culture and in vivo, suggesting

that Apaf-1 is required for mesothelial cell death to occur. This

suggests that mitochondria are engaged during TNF-induced

mesothelial cell apoptosis and, thus, that mesothelial cells should

be considered type II with regard to their response to death

receptor activation [50–53]. Following release of cytochrome c

from mitochondria, Apaf-1 is required for caspase-9 activation,

setting in motion a rapid amplification of the death signal

through activation of caspase-3 and downstream caspases

leading to further mitochondrial injury [54–56]. Contrary to

caspase inhibitors, the inhibitor of Apaf-1 also restored the

wound healing capacity and promoted long-term recovery of

mesothelium. Two, non-mutually exclusive hypothesis, might

explain the differences observed between caspase and Apaf-1

inhibitors. In one of them additional functions of caspases,

resulting from caspase activation not mediated by proapoptotic

stimuli, and, thus, not targeted by inhibition of Apaf-1, may

explain the differences. In the previous paragraph we mentioned

several non-apoptotic functions of caspases that may not be

targeted by the Apaf-1 inhibitor. In addition, as an example, in

the absence of cellular stress human glioblastoma cells exhibit a

constitutive activation of caspases in vivo and in vitro. Basal

caspase 3 and caspase 8 activity promotes migration and

invasiveness in glioblastoma cells and inhibition of caspases

decreases the migration and the invasiveness of cells [57]. The

administration of low doses of caspase inhibitors may block

glioma cell motility without affecting the execution of apoptotic

cell death [57]. In the second hypothesis, additional functions of

Apaf-1 inhibitors, unrelated to caspases, may underlie this

observation. For example, inhibition of the recently described

cell cycle arrest induced by Apaf-1 [58]. Although the role of

Apaf-1 in the DNA damage checkpoint may raise concerns on

the carcinogenicity of Apaf-1 targeting, life-long lack of Apaf-1

in Apaf-1-/- mice has not been reported to result in an increased

incidence of tumors [59,60]. Additional actions of the Apaf-1

inhibitor cannot be excluded, since a related compound, in

addition to inhibiting both functions of Apaf-1, also protects

mitochondria [49]. The therapeutic potential of the Apaf-1

inhibitor was confirmed in vivo, where it prevented mesothelial

cell loss induced by either TNFa/IFNc or by bacterial

peritonitis. Certain stimuli, such as osmotic stress and Staphy-

lococcus aureus promote mesothelial cell death with features of

apoptosis that is no prevented by caspase inhibitors [16,18]. It

will be interesting to test the efficacy of Apaf-1 inhibitors in

preventing cell death in these models.

In this paper we have focused on the monomicrobial peritonitis

characteristic of PD as a proof-of-concept model. In humans these

peritonitis are routinely treated by the intraperitoneal administra-

tion of therapeutic agents, as used in our models. Polymicrobial

peritonitis resulting from visceral perforation, as exemplified by

the cecal ligation and puncture model is also a clinically relevant

model [61]. However, intravenous therapy is used in humans with

perforated bowels, and thus would be the most relevant rout to be

studied in animals. This route presents currently unresolved

pharmacokinetic issues with the Apaf-1 inhibitor we used. Apaf-1

inhibitors should also be tested in this model in future studies.

In summary, our data indicate that a chemical compound

targeting Apaf-1 prevented inflammation-induced tissue damage,

exemplified by the peritoneum, without the adverse consequences

of approaches targeting caspases. Our data offer a word of caution

when considering the use of caspase inhibitors in the clinical

setting: the potential benefits obtained by limiting the initial

apoptosis wave may be offset by an impaired recovery from

parenchymal cell injury.
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Materials and Methods

Mesothelial cell cultures
The study was approved by the clinical ethics committee of

Fundación Jiménez Dı́az and written informed consent was

obtained. Human peritoneal mesothelial cell (HPMC) were

cultured from peritoneal effluents from 6 stable CAPD patients

as previously described [6,62]. Human omental mesothelial cells

(HOMC) were obtained from omentum from 6 non-PD patients

who underwent unrelated elective abdominal surgery [63,64].

Reagents
Human IFNc and TNFa (Peprotech, London, UK) were used at

concentrations based on prior experience with other cell types

[22,65] and expected to occur in vivo during peritonitis, specially in

patients infected with highly virulent bacteria such as S. aureus,

adjusted for PD fluid dilution [33,34]. Peritoneal effluent concen-

trations of 4.5 ng/ml TNFa and 45 U/ml IFNc have been reported

in the effluents of PD patients [33,34]. Higher cytokine concentra-

tions may be reached locally in mesothelial cells in close contact with

paracrine cytokine-secreting leukocytes, as well as in non-PD

peritonitis, which lacks the diluting effect of PD solutions. The

combination of 100 U/mL (5 ng/mL) TNFa and 20 U/mL IFNc
already increased significantly the rate of apoptosis in HOMC by 1.5

fold, but the effect increased with dose up of 250 U/mL TNFa and

300 U/mL IFNc, which were used if not otherwise specified. The

antiapoptotic polymeric nanomedicine, PGA-peptoid QM56, is the

result of the conjugation of a novel Apaf-1 inhibitor (peptoid 1) to

poly-L-glutamic acid (PGA) [30,31]. The initial dose range was

chosen based on published dose-response curves and dose-response

studies in human mesothelial cells induced to undergo apoptosis by

exposure to staurosporin (Figure S1) [30,31]. Additional dose-

response studies were performed in HOMC exposed to IFNc and

TNFa and the concentration chosen for the rest of the studies was

10 mM. The dose of caspase inhibitors was based on previous dose-

response studies [66,67]. In addition dose-response studies were

performed in HOMC exposed to IFNc and TNFa and the

concentration chosen for the rest of the studies was 200 mM zVAD.

Studies of cell death and cleavage by caspases
Mesothelial cells were cultured to subconfluence in twelve-well

plates and rested in serum-free media for 24 h. Then, IFNc and/

or TNFa were added. Cells were preincubated with apoptosis

inhibitors for 1 h. [24,68].

Apoptosis was assessed by functional and morphological studies.

Cell DNA content was quantified by flow cytometry in

permeabilized, propidium iodide-stained cells [22,65]. Permeabi-

lization allows entry of propidium iodide in all cells, dead and

alive. Apoptotic cells are characterized by a lower DNA content

(hypodiploid cells) because of nuclear fragmentation. Caspases are

key effectors of apoptosis. Evidence of caspase activation was

assessed studying caspase processing by Western blot. In addition,

flow cytometry or microscopy was used to quantify the appearance

of a specific epitope generated by caspase cleavage of cytokeratin

18 and identified by the M30 cytodeath antibody (Roche

Biochemicals, Mannheim, Germany). This epitope is generated

only in epithelial and mesothelial cells, not in leukocytes, and is not

present in native cytokeratin 18 [7,69].

For morphologic assessment of apoptosis, cells were cultured in

chamber slides (Labtek, Nunc, Naperville, IL), fixed with

methanol:acetone (1:1), and stained with DAPI [65], or FITC-

M30 cytodeath (1:250 Roche) and propidium iodide. Thus, the

typical condensed, shrunk and fragmented nuclei of apoptotic cells

were identified

Trypan blue staining of freshly collected cells was used to assess

cell death due to either apoptosis or necrosis [29].

Caspase-3 activity
HOMC were preincubated with Apaf-1 inhibitor or vehicle and

cultured with IFNc and TNFa for 24 hours. Caspase-3 activity

(MBL, Japan) was measured following the manufacturer’s

instructions. In brief, cell extracts (100 mg of protein) were

incubated in half-area 96-well plates at 37uC with 200 mM

DEVD-pNA peptide in a total volume of 100 ml. The pNA light

emission was quantified using a spectrophotometer plate reader at

405 nm. Comparison of the absorbance of pNA from an apoptotic

sample with an uninduced control allows determination of the fold

increase in caspase activity [70].

Wound healing
The wound-healing model was modified from Yung et al. [71].

Mesothelial cells were cultured to confluence in twelve-well plates

and rested in serum-free media for 24 h. The monolayer was

injured with a sterile pipette tip and IFNc, TNFa and apoptosis

inhibitors were added to serum-free media. Remesothelization was

followed for up to 48 h by marking the injured area and counting

cells inside it at different time points.

Long-term recovery
Long-term recovery was assessed by a modification of the colony-

forming assay. Cells in twelve-well plates were exposed to cytokines

and apoptosis inhibitor or vehicle for 24-48 h in serum-free media

and then trypsinized, washed, and seeded in Petri dishes in the

presence of complete medium with 20% FCS and without cytokines

or inhibitors of apoptosis. Cell number was estimated at 5 days by

crystal violet staining, absorbance was measured at 550 nm [72].

Animal model
C57BL/6 mice, 3 month-old, were injected ip with a single dose

of 300 U/mL IFNc and 250 ng/mL TNFa, or 0.5 ml PBS.

QM56 (10 mM drug-equiv.) or vehicle (0.5 ml PBS) were

administered 1 h before and 5 h later (total 4 groups, 5 mice

per group). Mice were sacrificed at 48 h. The dose and timing

were based on cell culture results.

Staphylococcus aureus ATCC 25923 (American Type Culture

Collection, Manassas, VA, USA) was used to induce peritonitis.

The experimental protocol was described previously [25] C57BL/

6 mice, 3 month-old were injected i.p. with 56108 colony forming

units (c.f.u.) S. aureus in 1 mL PBS or with PBS. At 48 hours mice

were sacrificed. Peritonitis was mild and animals had spontane-

ously cleared S. aureus by 48 h.

In both models mesenteric windows were placed on glass slides

and stained with Cytodeath and propidium iodide. Studies were

conducted in accord with the NIH Guide for the Care and Use of

Laboratory Animals.

Statistics
Statistical analysis was performed using SPSS 11.0 statistical

software. Results are expressed as mean6SEM. Significance at the

p,0.05 level was assessed by Student’s t test and one- way

ANOVA with Bonferronı́’s correction or Mann-Whitney and

Kruskal-Wallis tests.

Supporting Information

Figure S1 Quantification of apoptosis in HPMC by flow

cytometryof DNA content. HPMC were preincubated with

QM56 for 1 hour and cultured with 100 nM staurosporin(STS)

Apaf-1 Targeting and Cytokines

PLoS ONE | www.plosone.org 12 August 2009 | Volume 4 | Issue 8 | e6634



for 24 hours. * p,0.001 vscontrol (co) or different concentrations

of inhibitor. Mean6semof 4 different experiments.

Found at: doi:10.1371/journal.pone.0006634.s001 (0.33 MB TIF)
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