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Abstract

The radiative decay of the axial-vector resonances into a pseudoscalar meson and
a photon is studied using the vector meson Lagrangian obtained from the hidden
gauge symmetry (HGS) formalism. The formalism is well suited to study this problem
since it deals with pseudoscalar and vector mesons in a unified way, respecting chiral
invariance. We show explicitly the gauge invariance of the set of diagrams that appear
in the approach and evaluate the radiative decay width of the a1(1260) and b1(1235)
axial vector meson resonances into πγ. We also include the contribution of loops
involving anomalous couplings and compare the results to those obtained previously
within another formalism.

1 Introduction

The radiative decay of mesons has been traditionally advocated as one of the observables
most suited to learn about their nature on which there is a permanent debate [1,2]. Radia-
tive decay of vector mesons has been addressed from different points of views [3, 4, 5, 6, 7].
The radiative decay of scalar mesons has had a comparatively larger attention. The ra-
diative decay of the light scalars, f0(980), a0(980) has been studied in [1, 8, 9, 10, 7, 11]
and the particular case of the charmed scalar meson Ds0(2317) has been thoroughly
studied in [12, 13, 14]. The axial vector mesons have also been the subject of study
in [15, 16, 17, 18, 19] from the perspective that they are dynamically generated states from
the vector-pseudoscalar interaction [20, 21], or in other words molecular states.

The idea that the low lying axial vector mesons, like the a1(1260) and b1(1235), are
actually composite particles of a vector and a pseudoscalar in coupled channels has non-
trivial repercussions since one can now evaluate properties of these resonances as well as
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determine production cross sections and partial decay widths. It has also led to surprising
results, since it was found in [21] that the formalism produces two K1(1270) states instead
of just one, as commonly assumed, for which strong experimental support has been found
in [22] (see also the PDG [23] in this respect). The evaluation of the radiative decay of the
axial vector meson resonances into γ-pseudoscalar meson is a natural test of the theory
and this is the idea behind the work done in [15,18,16,17,19]. There are some differences
between these works. In [15,18] a formalism involving the vector representation for the vec-
tor mesons is employed, and approximations used in [20,21] are also invoked which render
finite the results in the calculation of the loop functions involved. In [16,17] the finiteness
of the results is guaranteed by the use of spatial wave functions for the molecules. In [19] a
novelty is introduced using a tensor representation for the vector mesons, as a consequence
of which the loops involved develop quadratic divergences. These are assumed to be exactly
canceled by some tadpole terms which are not explicitly evaluated. The tensor formalism
for vector mesons was also used in [24] in the radiative decay of vector mesons, where the
diagrams were found convergent assuming vector meson dominance, and logarithmically
divergent removing this requirement.

The implementation of a consistent scheme that leads to finite results without making
strong assumptions is most desirable. In that sense, the formalism of hidden gauge for the
vector mesons [25,26] looks an ideal tool, since it deals simultaneously with vector mesons
and pseudoscalars, implements naturally chiral symmetry, leads to the same lowest order
chiral Lagrangian of [27] for the pseudoscalar mesons and allows a consistent simultaneous
treatment of vector mesons, pseudoscalars and photon. This latter point is the main issue
in the problem of radiative axial vector meson decays.

Another appealing feature of the hidden gauge formalism is that it was proved in [28,29]
that this formalism is equivalent to using the tensor formalism for the vector mesons, and
one can benefit from the simplicity of the vector formalism, most welcome when dealing
with complicated problems. The hidden gauge formalism also offers the interaction of
vector mesons with pseudoscalars and most importantly, of vector mesons with themselves
for which no Lagrangians are available in the formalism of [29].

Since the axial vector meson resonances are considered here as composite particles
of a vector and a pseudoscalar, the coupling of a photon is made to the components,
and proceeds through loop diagrams involving the corresponding vector and pseudoscalar
mesons of each channel. This is the main framework and provides the largest contribution.
Yet, in some cases where particular large cancellations appear, it was found in [30] that
contributions of terms involving anomalous couplings and extra vectors in the loops may
be relevant. We shall also take this into account. We shall prove that the formalism we
use, involving one vector and one pseudoscalar in the loops, provides finite results for the
radiative decay width. The terms involving the anomalous couplings have logarithmic
divergences which can be cured with a natural cut off or otherwise be related to the
analogous loops appearing in the scattering problem of a vector meson with a pseudoscalar,
leading to similar results in both cases. The approach presented here leads to a systematic
and reliable way to evaluate radiative decay widths of axial vector mesons we shall compare
the formalism and the results with those of the former formalism used in [15, 18], where
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couplings of photons to pseudoscalar and vector mesons are implemented using minimal
coupling.

2 The hidden gauge formalism

The HGS formalism to deal with vector mesons [25,26] is a useful and internally consistent
scheme which preserves chiral symmetry. In this formalism the vector meson fields are
gauge bosons of a hidden local symmetry transforming inhomogeneously. After taking
the unitary gauge, the vector meson fields transform exactly in the manner as in the non
linear realization of chiral symmetry [31]. In Ref. [28] this formalism is found equivalent
to the use of the tensor formalism of [29], where the vectors transform homogeneously
under a non-linear realization of chiral symmetry, with the use of couplings implied in the
vector meson dominance formalism (VMD) of [32]. (For a review on the different ways to
implement vector mesons into effective chiral Lagrangians see Ref. [33]).

Following Ref. [28] the Lagrangian involving pseudoscalar mesons, photons and vector
mesons can be written as

L = L(2) + LIII (1)

with

L(2) =
1

4
f 2〈DµUDµU † + χU † + χ†U〉 (2)

LIII = −1

4
〈VµνV

µν〉 +
1

2
M2

V 〈[Vµ − i

g
Γµ]2〉, (3)

where 〈...〉 represents a trace over SU(3) matrices. The covariant derivative is defined by

DµU = ∂µU − ieQAµU + ieUQAµ, (4)

with Q = diag(2,−1,−1)/3, e = −|e| the electron charge, and Aµ the photon field. The
chiral matrix U is given by

U = ei
√

2φ/f (5)

with f the pion decay constant (f = 93 MeV). The φ and Vµ matrices are the usual SU(3)
matrices containing the pseudoscalar mesons and vector mesons respectively

φ ≡




1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8


 , Vµ ≡




1√
2
ρ0 + 1√

2
ω ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

2
ω K∗0

K∗− K̄∗0 φ




µ

.

(6)
The terms with χ in L(2) provide the mass term for the pseudoscalars. For four pseudoscalar
meson fields the L(2) Lagrangian provides the well known chiral Lagrangian at lowest order

L̃(2) =
1

12f 2
〈[φ, ∂µφ]2 + Mφ4〉 (7)
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with M = diag(m2
π, m2

π, 2m2
K −m2

π). For the coupling between two pseudoscalars and one
photon the Lagrangian L(2) provides

LγPP = −ieAµ〈Q[φ, ∂µφ]〉, (8)

which in this formalism will get canceled with an extra term coming from LIII , such that
ultimately the photon couples to the pseudoscalars via vector meson exchange, the basic
feature of VMD.

In LIII , Vµν is defined as

Vµν = ∂µVν − ∂νVµ − ig[Vµ, Vν ] (9)

and

Γµ =
1

2
[u†(∂µ − ieQAµ)u + u(∂µ − ieQAµ)u†] (10)

with u2 = U . The hidden gauge coupling constant g is related to f and the vector meson
mass (MV ) through

g =
MV

2f
, (11)

which is one of the forms of the KSFR relation [34]. Other properties of g inherent to the
VMD formalism, relating to the tensor formalism of [28] are

FV

MV
=

1√
2g

,
GV

MV
=

1

2
√

2g
, FV =

√
2f , GV =

f√
2
. (12)

Upon expansion of [Vµ − i
g
Γµ]2 up to two pseudoscalar fields, we find

[Vµ − i

g
Γµ]2 =

(
Vµ − e

g
QAµ − 1

g

1

2f 2
φeQAµφ +

1

g

1

4f 2
φ2eQAµ

+
1

g

1

4f 2
eQAµφ2 − i

g

1

4f 2
[φ, ∂µφ]

)2

(13)

from where we obtain the following interaction Lagrangians among pseudoscalars (P ),
photons (γ) and vector mesons (V ):

LV γ = −M2
V

e

g
Aµ〈V µQ〉 (14)

LV γPP = e
M2

V

4gf 2
Aµ〈V µ(Qφ2 + φ2Q − 2φQφ)〉 (15)

LV PP = −i
M2

V

4gf 2
〈V µ[φ, ∂µφ]〉 (16)

LγPP = ieAµ〈Q[φ, ∂µφ]〉 (17)

L̃PPPP = − 1

8f 2
〈[φ, ∂µφ]2〉. (18)
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The term in Eq. (17) cancels exactly the term in Eq. (8), as mentioned above. On the other
hand, the term of Eq. (18) has the same structure as the derivative term of Eq. (7) and it
is a most unpleasant term, since added to L̃(2) of Eq. (7) would break the chiral symmetry
of the chiral Lagrangian. However, this term is canceled by the exchange of vector mesons
between the pseudoscalars that result from the Lagrangian of Eq. (16), LV PP , in the limit
of q2/M2

V → 0, where q is the momentum carried by the exchanged vector meson. This
was already noticed in Ref. [31].

Furthermore, from the 〈VµνV
µν〉 term of LIII , (see Eq. (3)), we obtain the coupling of

three vector mesons which is also essential in the present work

LV V V = ig〈(∂µVν − ∂νVµ)V µV ν〉. (19)

We shall explain the formalism in detail for the ρπ component of the a+
1 decay. For

this purpose we show in the Appendix the relevant couplings that allow us to construct
the amplitudes for the radiative decay of the a+

1 .

3 The V P → V P interaction

In the construction of the interaction kernel for the vector-pseudoscalar meson interaction,
which is used in Refs. [20, 21] to generate dynamically the axial-vector resonances, the
following chiral Lagrangian is utilized:

L = − 1

4f 2
〈[V µ, ∂νVµ][φ, ∂νφ]〉, (20)

which, for the ρ+π0 → ρ0π+ gives

Lρ+π0→ρ0π+ =
1

2f 2
(2P − q − k) · (k + q)ǫ · ǫ′ (21)

with the assignment of momenta given in Fig. 1a)

Figure 1: a) Contact interaction from the Lagrangian of Eq. (20) for the ρ+π0 → ρ0π+; b)
Corresponding diagram provided by the HGS formalism.

The HGS formalism leads to the diagram of Fig. 1b), which can be readily evaluated
and approximated using the Feynman rules of the Appendix.
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LHGS
ρ+π0→ρ0π+ ≃ 1

2f 2
[(k + q) · (2P − k − q)ǫ · ǫ′

−(2k − q) · ǫ (2P − k − q) · ǫ′ − (2q − k) · ǫ′ (2P − k − q) · ǫ], (22)

where the intermediate ρ propagator [(q − k)2 −M2
V ]−1 has been approximated by −M−2

V .
As we can see, the first term of Eq. (22) coincides with the result of the chiral Lagrangian
of Eq. (21). The second and third terms of Eq. (22) are small for small kinetic energies of
the particles since the zeroth component of the polarization vectors tends to zero as the
three-momentum of the vector meson goes to zero to satisfy the Lorenz condition ǫ · q = 0.
Under these conditions, the HGS formalism and the chiral Lagrangian of Eq. (20) provide
the same vector-pseudoscalar meson interaction.

The kernel to be used in the Bethe-Salpeter equation is defined as

Ṽ ′
ρ+π0→ρ0π+ǫ · ǫ′ = −Lρ+π0→ρ0π+ (23)

which upon projection in isospin I = 1, for the case of the a+
1 resonance leads to

Ṽ (I=1)
ρπ→ρπǫ · ǫ′ = −Ṽ ′

ρ+π0→ρ0π+ǫ · ǫ′ ≃ 1

2f 2
(k + q) · (2P − k − q)ǫ · ǫ′ (24)

In Ref. [21] the spatial part ~ǫ · ~ǫ ′ of the I = 1 potential in s-wave was iterated in the
Bethe-Salpeter equation, summing the diagrams of Fig. 2. The sum is done in Ref. [21]
where the following scattering matrix is obtained:

T ≃ −Ṽ

1 + Ṽ G
~ǫ · ~ǫ ′ (25)

neglecting terms of ρ momenta over the mass squared which are very small, where G is the
loop function of a ρ and a π conveniently regularized [21] corresponding to

G(P ) =
∫

i d4q

(2π)4

1

q2 − m2
l + iǫ

1

(P − q)2 − M2
l + iǫ

(26)

The poles of the T -matrix, corresponding to the a+
1 resonance require 1 + Ṽ G = 0 in

the second Riemann sheet of the complex energy plane. In the real axis for the energy of
the resonance we will have

Ṽ G ∼ −1 =⇒ G ∼ −Ṽ −1. (27)

This result is approximate because we go from the complex pole position to the real axis
and also because in Ref. [21] the poles are searched solving the Bethe-Salpeter equations
in coupled channels. However, since the coupling of a+

1 to ρπ is by far the largest [21], the
result of Eq. (27) is a rough approximation which will be used later on only for illustrative
purposes.
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Figure 2: Diagrammatic series of the Bethe-Salpeter equation for the ρπ interaction.

4 Test of gauge invariance

Amplitudes which involve a photon must be computed in a way consistent with the gauge
invariance. As a matter of fact, if all necessary diagrams are properly taken into account
the gauge symmetry is satisfied. In some cases, however, its proof is not a trivial matter,
especially when higher order loops are included or approximations are used. This happens
in the present calculation, and therefore, we would like to discuss it in some detail.

Let us start with a brief look at a simple process of physical decay, ρ → ππγ. This will
be used later on to prove the gauge invariance of the diagrams involved in the axial-vector
meson radiative decay. By using the Feynman rules of the Appendix, it is immediate to
prove the gauge invariance of the set of diagrams shown in Fig. 4, upon summing the three
diagrams and substituting ǫ(γ) → k. This will be used later on to prove the gauge invariance
of the diagrams involved in the axial-vector meson radiative decay. Independently, the set
of diagrams of Fig. 3 is also gauge invariant.

The test of gauge invariance of the two sets succeeds when all the external particles are
on shell. More concretely, in diagram c) of Fig. 4 the intermediate ρ propagator is

1

(q − k)2 − M2
V

=
1

q2 − M2
V − 2qk

→ 1

−2qk
(28)

In diagram c) of Fig. 3 the same occurs with the intermediate pion propagator. We must
keep this in mind since when the ρ+ in Fig. 4c) or the initial π+ in Fig. 3c) are put inside
a loop, as will be the case in the radiative decay, some extra diagram will be demanded to
fulfill gauge invariance.

Figure 3: Set of Feynman diagrams which is gauge invariant for ρ0 → π+π−γ.

We shall continue considering the ρπ channel, the most important of the a1, for illustra-
tive purposes, although in the final calculations we will consider the contribution of all the
V P coupled channels. Following Ref. [15] the radiative decay of the axial-vector mesons is
obtained by coupling the photon to its meson components, which requires the knowledge
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Figure 4: Set of Feynman diagrams which is gauge invariant for ρ+ → π+π0γ.

of the coupling of the resonance to the different vector-pseudoscalar components. This
coupling is of the type

Va+

1
ρ+π0 = ga+

1
ρ+π0ǫA · ǫ (29)

with ǫA, ǫ, the polarization vectors of the axial and the vector mesons. The couplings gi are
obtained in Ref. [21] from the residues at the pole positions of the scattering amplitudes.
The set of diagrams needed for the calculation are given in Figs. 5 and 6

Figure 5: Gauge invariant set of diagrams for the radiative decay of the axial-vector meson.

Figure 6: Another set of gauge invariant diagrams for the radiative decay of the axial-vector
meson.

The connection of this formalism to details of the dynamical generation of the axial-
vector mesons is discussed in Ref. [15] and in the analogous case of dynamically generated
baryons in Ref. [35]. The gauge invariance of the set of diagrams in Figs. 3 and 4 would
imply the gauge invariance of the set of diagrams b), c), d) in Figs. 5 and 6 if the q lines
were on the mass-shell. Since this is obviously not the case because they belong to a loop,
the diagrams a) of Figs. 5 and 6 are demanded in order to still fulfill gauge invariance [14]
because they cancel the effect of the off-shellness of the q line in diagrams 5b) and 6b).
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Indeed the pion propagator with momentum q − k in Fig. 5b is

1

(q − k)2 − m2
π

=
1

q2 − m2
π − 2kq

=
1

−2kq
+

(
1

q2 − m2
π − 2kq

− 1

−2kq

)

=
1

−2kq
+

1

2kq

q2 − m2
π

(q − k)2 − m2
π

. (30)

The first term in Eq. (30) corresponds to the propagator of Eq. (28) assuming q2 = m2
π

(on shell pion) and guarantees the cancellation of the last three diagrams of Fig. 5. The
remnant term in Eq. (30) kills the propagator with momentum q, leaving a loop with just
two propagators with momentum q−k (pion) and P −q (vector), which has then the same
topology as the diagram of Fig. 5a). It is direct to see that with the following coupling of
the photon to the axial-vector with positive charge in Fig. 5a,

− itA+A+γ = −ie(P + P − k)µǫ(γ)µǫA · ǫ′A, (31)

the cancellation of Fig. 5a with the off-shell part of Fig. 5b, taking the second term of
the pion propagator of Eq. (30), is exact and one has a gauge invariant set of diagrams.
A similar reasoning can be made to show the gauge invariance of the set of Fig. 6. The
Lagrangian of Eq. (31) could be obtained via minimum coupling neglecting terms of the
same order as those neglected to convert the V P → V P interaction of the HGS in the one
from the effective Lagrangian in section 3. Its use is demanded for consistency with the
vertex chosen for the V P → V P interaction.

5 The radiative decay of the a+
1 in the hidden gauge

formalism

Although the diagrams a, d, of Figs. 5 and 6 are needed for the gauge invariance test, they
give null contribution to the radiative decay amplitude for different reasons,

• diagram a: because of the requirement that the longitudinal component of the axial-
vector propagator does not develop a pole of the pseudoscalar, which demands that
the loop of Figs. 5a, 6a, vanishes for the external pion on shell as is the case here
[37, 15].

• diagram d: because of the Lorenz condition of the axial-vector meson P · ǫA = 0
[14,36].

Therefore, one can perform the computation of the remaining diagrams b and c ex-
plicitly, but it is more rewarding to use a well known procedure which makes use of the
gauge invariance of the set and automatically accounts for large cancellations which occur
between these diagrams. Following [15] we write for the amplitude a1 → γπ

9



T = ǫAµǫ
(γ)
ν T µν (32)

where T µν can be written, by Lorentz covariance, as

T µν = a gµν + b P µP ν + c P µkν + d kµP ν + e kµkν (33)

where the coefficients a, · · · , e are Lorentz scalar functions of P and k. Note that, due to
the Lorenz condition, ǫAµP µ = 0, ǫ(γ)

ν kν = 0, all the terms in Eq. (32) vanish except for the
a and d terms. On the other hand, gauge invariance implies that T µνkν = 0, from where
one gets

a = −d P · k. (34)

This is obviously valid in any reference frame, however, in the axial-vector meson rest
frame and taking the Coulomb gauge for the photon, only the a term survives in Eq. (32)

since ~P = 0 and ǫ0 = 0. This means that, in the end, we will only need the a coefficient
for the evaluation of the process. However, the a coefficient can be evaluated from the d
term thanks to Eq. (34). The advantage of doing this is that there are few mechanisms
contributing to the d term and by dimensional reasons the number of powers of the loop
momentum in the numerator will be reduced, as will be clearly manifest from the discussion
below.

In the present case it is easy to see that the diagrams c of Figs. 5 and 6 do not contribute
to the d coefficient and hence one only has to evaluate the diagrams b of Figs. 5 and 6.
The details on how to evaluate the d coefficient using the Feynman parametrization of
the amplitudes are given in Ref. [15]. The only difference from the previous case is in the
diagram Fig. 6 b) where the effective γV V vertex mediated by the vector meson propagator
through the vector meson dominance has extra terms (see section 7 for more details). It
turns out that the presence of the extra terms which come from the self-interaction vertex
of a non-abelian gauge theory plays a crucial role to make the d-coefficient extracted from
Fig. 6 b) finite.

The total amplitude for the radiative decay is obtained as a sum over the diagrams of
Figs. 5 and 6,

T = T F ig.5 + T F ig.6 . (35)

For illustrative purposes we will consider in the present paper the same decays as in
Ref. [15], which are a+

1 → π+γ and b+
1 → π+γ. For these decays the K∗K channels

are also needed. The general expression for the amplitude for the kind of mechanisms
shown in Figs. 5 and 6 are

T F ig.5 = g′
AV P QcV PP

MV GV√
2f 2

P · k ǫA · ǫ(γ)

×
∫ 1

0
dx
∫ x

0
dy

1

8π2

1

s + iε

(
(1 − x)(2 − y) − y(1 − x)

m2
π+ − m2

P

M2
V

)
, (36)

where
s = (1 − x)(xM2

A − M2
V − 2yP · k) − xm2

P , (37)
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with mP and MV the masses of the pseudoscalar and vector mesons in the loop, mπ+ the
mass of the final state pion and MA the mass of the axial vector meson,

T F ig.6 = −g′
AV P QcV PP

MV GV√
2f 2

P · k ǫA · ǫ(γ)

×
∫ 1

0
dx
∫ x

0
dy

1

16π2

1

s′ + iε

(
5x − 2y + xy − y(1 − x)

m2
π+ − m2

P

M2
V

)
, (38)

where
s′ = (1 − x)(xM2

A − m2
P − 2yP · k) − xM2

V . (39)

In Eqs. (36) and (38), g′
AV P are the AV P coupling constants in the charge base. These

coefficients are related to the gAV P in isospin base, obtained in Ref. [21], through the
transformation

g′
AV P = C × gAV P , (40)

where C are coefficients which depend on the different AV P channels. We use the values
of gAV P obtained in Refs. [21, 15] by evaluating the residua at the pole position of the
different V P → V P scattering amplitudes. In the previous equations, C, Q and cV PP are
coefficients1 given in tables 1 and 2.

a+
1 (1260) → π+γ C Q cV PP

type Fig.5 K∗0
K+ 1/

√
2 −e 1

ρ0π+ 1/
√

2 −e −
√

2

type Fig.6 K∗+K0 −1/
√

2 −e −1

ρ+π0 −1/
√

2 −e
√

2

Table 1: Coefficients for a+
1 (1260) → π+γ decay.

b+
1 (1235) → π+γ C Q cV PP

type Fig.5 K∗0
K+ 1/

√
2 −e 1

type Fig.6 K∗+K0 1/
√

2 −e −1

Table 2: Coefficients for b+
1 (1235) → π+γ decay.

1 Note the different sign in the definition of e with respect to Refs. [15,18], since e is taken negative in
the hidden gauge formalism.
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6 Comparison of the results with the tree level

One is now asked to address the contribution of the tree level diagram of Fig. 7. Using the
Feynman rules of the Appendix, one finds

T tree = ga1ρ0π+

e√
2g

ǫA · ǫ(γ) ; ga1ρ0π+ = −ga1ρ+π0 (41)

However, this term should not be added in the hidden gauge formalism since it would lead
to doublecounting. Indeed, we are going to prove that this term is identical to the diagram
of Fig. 6b and thus it has already been counted. This observation was rightly stated in
Ref. [19] and it holds for the HGS formalism. It cannot be applied to the model used in
Ref. [15] where the diagram of Fig. 6b is not introduced and instead a direct coupling of
the photon to the vector meson arising from minimal coupling in the Proca equation was
used. We shall come back to this point later on.

Figure 7: Tree level diagram for a+
1 → γπ+ decay.

Let us reinterpret the diagram of Fig. 6b in terms of the tree level diagram of Fig. 7.
The essential argument comes by comparing the diagram of Fig. 6b with the diagrams for
the dynamical generation of the a1 as shown in Fig. 2. The relation to the former can be
achieved by taking the limit mV → large for the vector meson which emits the pion of
the final state, as shown in Fig. 8. Since the heavy vector meson exchange has been used
for the construction of a1, the diagram of Fig. 8c, omitting the photon, is equivalent to
the sum over diagrams of Fig. 2 excluding the first tree diagram. Near the resonance pole
of a1, however, the first tree diagram can be neglected and hence the diagram of Fig. 8c,
omitting the photon, becomes equivalent to Fig. 2. This enables one to reinterpret the
diagram of Fig. 6b (or 8d) as equivalent to the tree diagram of Fig. 7.

Let us see how this occurs analytically. For this purpose we factorize the vertex of
V P → V P in terms of the potential Ṽ ′ of Eq. (24). Then the diagram 6b now acquires
the topology of Fig. 8d and can be computed as

− iT F ig.8d = −iga1ρ+π0

∫
d4q

(2π)4
ǫA · ǫ i

q2 − m2
π

i

(P − q)2 − M2
V

× (−i)Ṽ ′
ρ+π0→ρ0π+ ǫ · ǫ(γ) i

M2
V

(−i)
1√
2
M2

V

e

g
. (42)

Summing over the ǫ polarization, neglecting the qµqν/M2
V terms of the ρ propagator and
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considering Eq. (24) and the second of the eqs. (41), we have

T F ig.8d ≃ − ga1ρ+π0

e√
2 g

Ṽ ′
ρ+π0→ρ0π+G ǫA · ǫ(γ)

= − ga1ρ0π+

e√
2 g

Ṽ (I=1)
ρπ→ρπG ǫA · ǫ(γ), (43)

where G is given by Eq. (26) and we regularize it as done in Ref. [21]. Eq. (43) coincides
with Eq. (41) if Ṽ (I=1)

ρπ→ρπG ≃ −1, which is the condition at the pole position of the axial

vector meson, as discussed in section 3. However, note that Ṽ (I=1)
ρπ→ρπG ≃ −1 is only true at

the pole position and assuming one channel. Note also that in reality the a1 resonance is
very wide and hence it is far from the real axis, and also the effect of the other channels
is not negligible. Furthermore, in the loop of Fig. 8d, the factorization of Ṽ (I=1)

ρπ→ρπ does
not hold exactly (although quite accurately). Nevertheless, an actual exercise tells us that
these two terms are of the same order of magnitude.

Figure 8: Vector meson exchange in the limit mV → large.

The former discussion offers the possibility to evaluate the set of diagrams of Fig. 6 in
a different way. We state that diagram 6b is the tree level of Fig. 7 and then we must add
to it the diagram of Fig. 6c. This diagram is also evaluated with the same approximations
done above and we obtain

T F ig.6c = ga1ρ0π+M2
V

e

2
√

2 gf 2
G ǫA · ǫ(γ). (44)

The ratio of T F ig.6c to the tree level is estimated as

T F ig.6c

T tree
= G

M2
V

2f 2
≃ − M2

V

2f 2Ṽ
(I=1)
ρπ→ρπ

≃ − M2
ρ

2M2
a1
− 2m2

π − 2M2
ρ

≃ −0.3. (45)

This means that the whole set of diagrams of Fig. 6 can be approximated in terms of the
tree level by

T F ig.6 ≃ 0.7T tree. (46)

7 Comparison with a previous model

In this section we compare the results obtained in the hidden gauge formalism with those of
the model of Ref. [15]. The model of Ref. [15] obtains the couplings via the Proca equation

13



through minimal coupling. The diagrams obtained from the Proca equation corresponding
to Fig. 5 are identical to those obtained in the previous sections. Those of Fig. 6 were the
same except diagram 6b. This diagram was absent in the approach of Ref. [15]. Instead
one had the diagram of Fig. 9a since minimal coupling on the Proca equation leads to a

Figure 9: a) and b): diagram and vertex used in the work of Ref. [15]; c): vertex used in
the present work.

direct photon coupling to the vector meson, Fig. 9b. The diagram of Fig. 9b gives rise in
this case to the contribution

T F ig.9b = e[2ǫ(γ)
α qαǫ′βǫβ − ǫ(γ)

α ǫαǫ′βq
β − ǫ(γ)

α ǫ′αǫβ(q − k)β], (47)

while

T F ig.9c = e[(2q − k)αǫ(γ)α

ǫβǫ′β − (q + k)βǫ′βǫ(γ)
α ǫα + ǫ(γ)

α ǫ′αǫβ(2k − q)β]. (48)

Note that these two operators are different. As a consequence of this, the diagram of
Fig. 9a cannot be identified with the tree level diagram.

It is worth looking at the difference between these two operators

T F ig.9c − T F ig.9b = e[k · ǫ ǫ(γ) · ǫ′ − k · ǫ′ ǫ(γ) · ǫ]. (49)

This difference is gauge invariant, which proves that if in the HGS approach the set of
diagrams taken is gauge invariant, so was the set of diagrams taken in Ref. [15]. This was
already stated there. Since, as we have shown, the diagram of Fig. 9a is not equivalent
to the tree level, unlike the diagram of Fig. 6b, the question of the tree level diagram is
reopen. Hence, in Ref. [15] the tree contribution was considered, invoking the approach of
Refs. [29, 38] where it appears with strength similar to the one found here.

To continue with the comparison, let us quote further that the sum over the set of
diagrams of Figs. 6a, 6c, 6d and 9a was found to provide a very small contribution, negli-
gible in practice [15,18]. As a consequence, for this set of diagrams plus the tree level one
obtains essentially the tree level contribution, while the set of diagrams of Fig. 6 in the
HGS formalism has been found to lead to a contribution about 0.7 times the tree level.
The two formalisms hence lead to a difference of 30% of the tree level. Since the decay
width is proportional to the square amplitude, its actual value in the HGS formalism is
expected to be about a half (0.72) of the decay width from the tree amplitude. This rough
estimation is indeed consistent with the present result as shown in tables 5 and 6.

14



8 New anomalous mechanisms

Besides those mechanisms considered so far, other diagrams could provide a relevant con-
tribution to the radiative decay, like those shown in Fig. 10. The main peculiarity of the
diagram of Fig. 10 is that it contains two anomalous V V P vertices, which in principle one
could expect to be small due to the higher order nature of the anomalous term in the chiral
expansion. The V V P interaction is anomalous [40] and accounts for a process that does
not conserve intrinsic parity2, and can be obtained from the gauged Wess-Zumino term (see
e.g. Refs. [41, 42]). The expectation of small amplitudes was the reason why this double-
anomalous mechanisms were not considered in Refs. [15, 18]. However, later works on the
radiative decays of scalar mesons [30, 10] showed the importance of these mechanisms in
radiative decay processes, which was also suggested in Ref. [13]. The importance of the
anomalous process is also shown in another context of the kaon photoproduction [39]. In
all these examples, as the relevant energy becomes larger the role of the anomalous contri-
bution becomes more relevant. Therefore we are going to evaluate its contribution in the
present work.

Figure 10: Feynman diagram containing the anomalous vertices.

The V V P Lagrangian is [43, 44, 42]:

LV V P =
G′
√

2
ǫµναβ〈∂µVµ∂αVβP 〉, (50)

where G′ = 3g′2/(4π2f) with g′ = −GV Mρ/(
√

2f 2). Since in the loops of Fig. 10 we have
two vertices of the type V V P , the amplitude is proportional to G′2 or g′4. Hence, the
contributions to the decay width of the loops of Fig. 10 go like g′8. Thus the decay width is
very sensible to the exact value of the V V P couplings. In order to fine tune the numerical
value of the V V P coupling we proceed in a similar way as in Ref. [30]: we normalize the
G′ coupling multiplying it by a factor Ni such that the V → Pγ decay widths agree with
the experimental results (see Ref. [30] for details and exact definition of Ni).

The amplitude of the diagram of Fig. 10 is logarithmically divergent. Following the
procedure of [30] one can isolate a divergent part having a loop structure with a pair of the
same two meson propagators as appearing in the scattering problem (in the present case, a

2The intrinsic parity of a particle is defined as follows: it is +1 if the particle transforms as a true
tensor of that rank, and −1 if it transforms as a pseudotensor, e.g. π, γ, ρ and a1 have intrinsic parity
−1, +1, +1 and −1 respectively.
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pseudoscalar and a vector). This term is naturally associated with the V P loop function,
GV P , of Eq. (26). In Ref. [30], it was also shown that the logarithmically divergent term
can be regularized with a cut off of natural size (∼ 1 GeV), having lead to very similar
results. Thus we obtain:

T anom = g′
AP1V1

cAcBλV3
|e|NANBG′2FV

2MV3

ǫA · ǫ(γ)P · k

×
[∫ 1

0
dx
∫ x

0
dy

1

16π2

1

s + iε

(
(P 2/2 − k · P )(1 − x)2 − m2

V2

2

)
+

1

2
GV P (P 0, mV1

, mP1
)

]
,

(51)

where s = (P 2x− 2P · ky)(1− x)−m2
V1

+ (m2
V1
−m2

P1
)x− (m2

V2
−m2

P1
)y and λV is 1, 1/3,

−
√

2/3 for V = ρ, ω, φ respectively. The coefficietns cA and cB are coming from the V V ′P
vertex defined as ciV V ′P after taking the trace in Eq. (50) and given in tables 3 and 4.

a+
1 (1260) → π+γ

P1V1V2V3 C cA cB

π0ρ+ωρ0 −1/
√

2
√

2
√

2

K+K̄∗0K∗+ρ0 1/
√

2 1/
√

2 1

K̄0K∗+K̄∗0ρ0 −1/
√

2 −1/
√

2 1

Table 3: Coefficients for the anomalous term of the a+
1 (1260) → π+γ decay.

b+
1 (1235) → π+γ

P1V1V2V3 C cA cB

π+ωρ+ω −1
√

2
√

2

ηρ+ωω −1 2/
√

3
√

2

K+K̄∗0K∗+ω 1/
√

2 1/
√

2 1

K+K̄∗0K∗+φ 1/
√

2 1 1

K̄0K∗+K̄∗0ω 1/
√

2 1/
√

2 1

K̄0K∗+K̄∗0φ 1/
√

2 1 1

Table 4: Coefficients for the anomalous term of the b+
1 (1235) → π+γ decay.

9 Numerical results

With the amplitudes obtained above, the decay width for the axial-vector mesons into one
pseudoscalar meson and one photon is given by

Γ(MA) =
|~k|

12πM2
A

|T |2, (52)
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where MA stands for the mass of the decaying axial-vector meson and T is the sum of the
amplitudes from the loop mechanisms removing the ǫA · ǫ factor. The former expression is
valid for narrow axial-vector resonances. In order to take into account the finite width of
the axial-vector meson we fold the previous expression with the mass distribution:

ΓA→Pγ = −1

π

∫ (MA+2ΓA)2

(MA−2ΓA)2
dsA Im

{
1

sA − M2
A + iMAΓA

}
Γ(
√

sA)Θ(
√

sA −
√

sth
A ), (53)

where Θ is the step function, ΓA is the total axial-vector meson width and sth
A is the

threshold for the dominant A decay channels.
Similarly, since the ρ and K∗ mesons have relatively large widths, we have also taken

into account the mass distribution of these states in the loop functions of Figs. 5 and 6.
This is done by folding T F ig.5, T F ig.6, with the spectral function of the ρ and K∗:

T F ig.5,F ig.6 → T F ig.5,F ig.6 = −1

π

∫ (MV +2ΓV )2

(MV −2ΓV )2
dsV Im

{
1

sV − M2
V + iMV ΓV

}
T F ig.5,F ig.6(

√
sV ).

(54)
The corrections from this source are small, they change the radiative decay widths at the
level of 2% or below.

In tables 5 and 6 we can see various contributions of different kinds of loops to the ra-
diative decays. The theoretical errors have been obtained by doing a Monte-Carlo sampling
of the parameters of the model within their uncertainties, as explained in Refs. [15, 18].
Due to the strong role played by the interferences between different mechanisms, as will be
explained below, and the approximations involved in the relations between couplings, like
those in Eq. (12), we have multiplied the errors by two to account safely for the theoret-
ical uncertainties. We also show in the tables the result for the tree level with the model
of Refs. [15, 18] which must not be consider if using the HGS formalism as explained in
section 6. In the last row the experimental values provided by the PDG [23] are given,
however these numbers refer to one single old experiment for each decay. From the ta-
ble, the theoretical value of the total decay width for a1 seems underestimated unlike the
previous results [15], while for b1 the agreement is good.

If we look at more details of the theoretical values, the amplitudes of Figs. 5 and 6 are
destructively added for the a1 decay, and the sum of them is smaller than each contribution.
For the b1 case this interference is constructive. In the present calculation, we have a new
contribution from the anomalous term which is relatively large as compared to the normal
contributions of Figs. 5 and 6 for the case of the a1. It is also interesting to observe that the
anomalous contribution is dominated by the ρπ loop. It is therefore important to consider
the anomalous terms if they exist. For the total theoretical amplitude for a1 decay, the
anomalous term has an opposite phase to the sum of contributions from Figs. 5 and 6, and
so the net amplitude and the resulting decay width become small, 133 keV as compared
with 640 ± 246 keV of the experimental value. For the case of b1 the normal contributions
already agree well as compared with experimental data, while the anomalous contribution
is very small. Therefore, the total decay width agrees well with experimental data.
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From the results in the tables it can be seen that the loops from Fig. 6 contribute
much more than in the formalism of Refs. [15] where it was shown to be very small. This
should not be surprising since the loop of Fig. 6b is very different from the one of Fig. 9a,
evaluated in Ref. [15]. The actual value from the loop of Fig. 6 is consistent with the rough
estimation of Eq. (46); for the case of a1, they contribute 373 keV which is consistent with
0.72 × 647 keV. For the case of the b1 the argument holds only qualitatively; 57 keV of the
contribution of Fig. 6 which is compared with the tree contribution of 67 keV.

a+
1 (1260) → π+γ

tree level with model of Refs. [15, 18] φ -
ω -
ρ 647

total 647

loops type Fig.5 K∗K 14
ρπ 119

total 171
loops type Fig.6 K∗K 30

ρπ 213
total 373

total (Fig.5+Fig.6) 103
loops anomalous ρπ 163

K̄∗0K+ 1.4
K∗+K̄0 1.4

total 217
TOTAL (Fig.5+Fig.6+anomalous) 133 ± 70

experimental value [23] 640 ± 246

Table 5: Various contributions to the a+
1 (1260) → π+γ decay width in units of keV.

10 Conclusions

We have developed the formalism to evaluate the radiative decay of axial vector mesons
from the perspective that these states are composite particles of pseudoscalar and vector
mesons, using the hidden gauge formalism for the interaction of vector mesons and pseu-
doscalars among themselves and with external sources. The formalism is rather rewarding.
It shows a clear path to proceed and allows the interpretation of the tree level diagrams
which in other formalisms are more difficult to integrate within the corresponding scheme.
Also, one finds finite radiative decay widths which we compare with present experimental
results considering theoretical and experimental uncertainties. We found good results for
the radiative decay of the b1(1235) resonance, while not so good for the a1(1260) reso-
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b+
1 (1235) → π+γ

tree level with model of Refs. [15, 18] φ 20
ω 14
ρ -

total 67

loops type Fig.5 K∗K 26
loops type Fig.6 K∗K 57

total (Fig.5+Fig.6) 159
loops anomalous ωπ 2.2

ρη 0.6
K̄∗0K+(ω) 6.3 × 10−2

K̄∗0K+(φ) 0.1
K∗+K̄0(ω) 6.3 × 10−2

K∗+K̄0(φ) 0.1
total 4

TOTAL (Fig.5+Fig.6+anomalous) 209 ± 90

experimental value [23] 230 ± 60

Table 6: Various contributions to the b+
1 (1235) → π+γ decay width in units of keV.

nance, where large cancellations occurred in the theoretical framework. Because of these
large cancellations of the main mechanism, extra corrections stemming from the considera-
tion of loops involving anomalous couplings and extra vector mesons gave a non-negligible
contribution to the radiative decay width. The improvement is, however, not remarkable.
For the case of b1 the agreement of the basic mechanism with data was already rather
good, while the anomalous contributions played only a minor role.

The finite results obtained within the hidden gauge formalism and the simplicity of the
approach make the use of this formalism practical and advisable in this kind of problems.
Even with the results for the a1 resonance, the agreement with the data can be considered
fair from the perspective that differences for radiative decays between models, and hence
with data, are typically of the order of one or two orders of magnitude [1].

At the same time we have described the formalism with sufficient detail to use many of
the results for related problems, like the interaction of vector mesons with pseudoscalars,
linking the results to existing chiral Lagrangians, the interaction of vector mesons with
themselves, etc. These results should prove useful in future work dealing with the interac-
tion of vector mesons, which so far has not received much attention, and were one might
expect that equally interesting results as found in other areas are lying ahead.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11:

Appendix

Vertices involving ρ, π and real photons. (ǫ, ǫ′, polarization vectors for ρ, ǫ(γ) for the
photon).

− itF ig.11(a) = −i
M2

V

2
√

2gf 2
(q1 + q2) · ǫ, (55)

− itF ig.11(b) = i
M2

V

2
√

2gf 2
(q1 + q2) · ǫ, (56)

− itF ig.11(c) = −ie
M2

V√
2g

ǫ · ǫ(γ), (57)

− itF ig.11(d) = ie(q + q − k) · ǫ(γ), (58)

− itF ig.11(e) = −i
√

2g[(kµǫ
(0)
ν − kνǫ

(0)
µ )ǫµǫ′ν

+ (−qµǫν + qνǫµ)ǫ′µǫ(0)ν + ((q − k)µǫ
′
ν − (q − k)νǫ

′
µ)ǫ(0)µǫν ], (59)
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− itF ig.11(f) = −ie
M2

V

2
√

2gf 2
ǫ · ǫ(γ), (60)

− itF ig.11(g) = ie

√
2M2

V

2gf 2
ǫ · ǫ(γ), (61)

− itF ig.11(h) = − i

2f 2
[(2k − q) · ǫ(2P − k − q) · ǫ(0)

− (k + q) · (2P − k − q)ǫ · ǫ(0) + (2q − k) · ǫ(0)(2P − k − q) · ǫ], (62)

(neglecting (q − k)2/M2
V )

− itF ig.11(i) = −e
i

2
√

2gf 2
[(2k − q) · ǫ(2P − k − q) · ǫ(γ)

− (k + q) · (2P − k − q)ǫ · ǫ(γ) + (2q − k) · ǫ(γ)(2P − k − q) · ǫ], (63)

(neglecting (q − k)2/M2
V ).
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