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Abstract

The start of LHC has motivated an effort to determine the relative probability of
the different regions of the MSSM parameter space, taking into account the present,
theoretical and experimental, wisdom about the model. Since the present experimental
data are not powerful enough to select a small region of the MSSM parameter space,
the choice of a judicious prior probability for the parameters becomes most relevant.
Previous studies have proposed theoretical priors that incorporate some (conventional)
measure of the fine-tuning, to penalize unnatural possibilities. However, we show that
such penalization arises from the Bayesian analysis itself (with no ad hoc assumptions),
upon the marginalization of the µ−parameter. Furthermore the resulting effective prior
contains precisely the Barbieri-Giudice measure, which is very satisfactory. On the other
hand we carry on a rigorous treatment of the Yukawa couplings, showing in particular
that the usual practice of taking the Yukawas “as required”, approximately corresponds
to taking logarithmically flat priors in the Yukawa couplings. Finally, we use an efficient
set of variables to scan the MSSM parameter space, trading in particular B by tan β,
giving the effective prior in the new parameters. Beside the numerical results, we give
accurate analytic expressions for the effective priors in all cases. Whatever experimental
information one may use in the future, it is to be weighted by the Bayesian factors worked
out here.
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1 Introduction

The imminent start of LHC has motivated an interesting effort (see refs. [1–8]) to antici-
pate which kind of supersymmetric model is more likely to be there, or, in more precise
words, which region of the parameter space of the minimal supersymmetric standard
model (MSSM) is more probable, taking into account the present (theoretical and ex-
perimental) wisdom about the model. This wisdom includes theoretical constraints (and
perhaps prejudices) and experimental constraints, such as electroweak precision tests.
The idea is to use this information to determine the relative probability of the different
regions of the MSSM parameter space, thus the frequent expression “LHC forecasts”.
The appropriate framework to evaluate this probability is the Bayesian approach, which
allows to separate in a neat way the objective and subjective pieces of information.

In the Bayesian analysis one tries to make inferences about the relative probability of
different ”states of nature” (corresponding to different values of the parameters defining
the model, say pi) upon the observation of different data which are determined4 completely
by pi.

The probability density of a particular point {p0
i } in the parameter space, given a

certain set of data, is the so-called posterior probability density function (pdf), p(p0
i |data),

which is given by the fundamental Bayesian relation (for a review see ref. [9])

p(p0
i |data) = p(data|p0

i ) p(p0
i )

1

p(data)
. (1.1)

Here p(data|p0
i ) is the likelihood (sometimes denoted by L), i.e. the probability density of

measuring the given data for the chosen point in the parameter space. E.g. for observables
measured within a gaussian uncertainty, L is proportional to e−

1
2
χ2

, where χ2 is the
conventional chi-squared. p(p0

i ) is the prior, i.e. the “theoretical” probability density that
we assign a priory to the point in the parameter space. Finally, p(data) is a normalization
factor which plays no role unless one wishes to compare different classes of models, so for
the moment it can be dropped from the previous formula.

One can say that in eq. (1.1) the first factor (the likelihood) is objective, while the
second (the prior) is subjective, since it contains our prejudices about which regions of
the parameter space are more “natural” or “expectable”. It is desirable that the results
of the analysis are as independent as possible of the chosen prior. This happens if the
data are powerful enough to select a very small region of the parameter space, so that
eq. (1.1) is dominated by the likelihood, i.e. essentially the pdf is non-zero just in the
narrow region of non-vanishing p(data|pi). However, in many instances this is not the
case, as it happens for the MSSM.

The somewhat subjective character of the prior, p(p0
i ), has often motivated to ignore its

presence, identifying in practice p(p0
i |data) with p(data|p0

i ). However, it must be noticed
that this procedure implicitly implies a choice for the prior, namely a completely flat prior
in the parameters. This is not necessarily the most reasonable or ”free of prejudices”

4Normally this determination takes the form of a probability distribution since the theoretical com-
putations and the experimental data are affected by different kinds of errors and uncertainties.
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attitude. Note for example that using p2
i as initial parameters instead of pi the previous

flat prior becomes non-flat. So one needs some theoretical basis to establish, at least, the
parameters whose prior can be reasonably taken as flat.

If we are interested in the most probable value of one (or several) of the initial pa-
rameters, say pi, i = 1, ..., N1, but not in the others, pi, i = N1 + 1, ..., N , we have to
marginalize the latter, i.e. integrate in the parameter space:

p(pi, i = 1, ..., N1|data) =

∫

dpN1+1, ..., dpN p(pi, i = 1, ..., N |data) . (1.2)

This procedure is very useful and common to make predictions about the values of partic-
ularly interesting parameters. It must be noticed that, in order to perform the marginal-
isation, we need an input for the prior functions and for the range of allowed values of
the parameters, which determines the range of the definite integration (1.2). A choice for
these ingredients is therefore inescapable in trying to make LHC forecasts.

Let us now particularize these general statements to the MSSM (for a review see
[10]). Beside the Standard Model (SM) –like parameters (to be discussed below), the
MSSM contains a great number of parameters associated with the unknown process of
supersymmetry (SUSY) breaking, the so-called soft SUSY-breaking terms. Assuming
universality of these terms at a given high scale (namely the scale at which the SUSY
breaking is transmitted to the observable sector), these parameters are reduced to four:
the universal scalar mass, m, the universal gaugino mass, M , the universal trilinear scalar
coupling, A, and the bilinear scalar coupling, B. The universality assumption is in part
justified by the need of keeping the FCNC processes under control and it does come out
naturally in several schemes of SUSY breaking mediation, e.g. minimal SUGRA or gauge-
mediated models (for a review see [11] and [12] respectively). Beside these four parameters
one has to include the µ-parameter (i.e. the Higgs mass term in the superpotential) as
an additional independent parameter, presumably with a magnitude similar to the soft
breaking terms, as it is demanded by a successful electroweak breaking (see below). The
notation used here is consistent with refs. [10, 13].

The SM-like parameters of the MSSM include the SU(3) × SU(2) × U(1)Y gauge
couplings, g3, g, g′, and the Yukawa couplings, which in turn determine the fermion masses
and mixing angles. An important difference from the SM is that the MSSM contains two
Higgs doublets, H1, H2, with expectation values vi = 〈H0

i 〉 determined by the parameters
of the model upon minimization of the scalar potential, V (H1, H2). They have to fulfill
2(v2

1+v2
2) = v2 = (246 GeV)2. The down-type-quark masses go like md ∼ ydv1 = ydv cos β,

where tanβ ≡ v2/v1. Similarly for the up-type-quarks mu ∼ yuv2 = yuv sin β, and for the
charged leptons, me ∼ yev1 = yev cos β. Hence the values of the Yukawa couplings which
give the observed fermion masses depend on the derived parameter tanβ, a fact that will
be relevant later in our discussion.

In sect. 2 we address some basic aspects of the Bayesian approach for the MSSM,
showing in particular that a penalization of the fine-tuning arises from the Bayesian
analysis itself (with no ad hoc assumptions as in previous analyses), upon the marginal-
ization of the µ−parameter (subsect. 2.1). We also present a rigorous treatment of the
Yukawa couplings, showing that the usual practice of taking the Yukawas “as required”,
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approximately corresponds to taking logarithmically flat priors in the Yukawa couplings
(subsect. 2.2). In sect. 3 we use an efficient set of variables to scan the MSSM parameter
space, trading in particular B by tan β, giving the effective prior in the new parameters.
Finally, in sect. 4 we summarize our results and conclusions.

2 Some basic aspects

2.1 Connection between the Bayesian approach and the fine-

tuning measure

It is common lore that the parameters of the MSSM, {m, M, A, B, µ}, should not be far
from the electroweak scale in order to avoid unnatural fine-tunings to obtain the correct
scale of the electroweak breaking. This can be easily appreciated from the minimization of
the tree-level form of the scalar potential, V (H1, H2), which gives the expectation values
of the Higgses, and thus the value of M2

Z = 1
2
(g2 + g′2)(v2

1 + v2
2); namely

M2
Z = 2

m2
H1

− m2
H2

tan2 β

tan2 β − 1
− 2µ2 . (2.1)

Unless the µ−term and the soft masses mHi
(which upon the renormalization running

depend also on the other soft terms) are close to the electroweak scale, a funny cancellation
among the various terms in the right hand side of (2.1) is necessary to get the experimental
MZ .

A conventional measure of the degree of fine-tuning is given by the Barbieri-Giudice
fine-tuning parameters [14]:

ci =

∣

∣

∣

∣

∂ lnM2
Z

∂ ln pi

∣

∣

∣

∣

, (2.2)

which weigh up the sensitivity of MZ with respect to the parameters of the model, pi.
The global measure of the fine-tuning is taken as c ≡ max{ci} or c ≡

√

∑

c2
i [14–17].

Previous studies have attempted to incorporate this fine-tuning measure to the Bayesian
approach through the prior p(pi). In particular, in refs. [2, 18] a prior p(pi) ∝ 1/c was
proposed5. In principle this is not unreasonable since 1/c approximately indicates the
probability of a cancellation among the various terms contributing to M2

Z to give a result
<∼ (M exp

Z )2. This can be intuitively seen as follows. Expanding M2
Z(pi) around a point

in parameter space that gives the desired cancellation, say P0 ≡ {p0
i }, up to the linear

term in the parameters, one finds that only a small neighborhood δP ∼ P0/c around this
point gives a value of M2

Z smaller or equal to the experimental value [15]. Hence, if one
assumes that P could reasonably have taken any value of the order of magnitude of P0,
then only for a small fraction ∼ 1/c of this region one gets M2

Z
<∼ (M exp

Z )2, thus the rough
probabilistic meaning of c.

5Another prior designed to catch the naturalness criterion has been proposed in ref. [4].
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However, though reasonable, the above-mentioned proposals for priors are rather arbi-
trary, as the very measure of the fine-tuning is. On the other hand, since the naturalness
arguments are deep down statistical arguments, one might expect that an effective pe-
nalization of fine-tunings should arise from the Bayesian analysis itself, with no need of
introducing ”naturalness priors” ad hoc. This is in fact the case, as we are about to see.

Let us consider MZ as an experimental data, on a similar foot to the rest of physical
observables. Then the total likelihood reads

p(data|s, m, M, A, B, µ) = NZ e−
1
2
χ2

Z Lrest , (2.3)

where s represents the SM-like parameters, Lrest is the likelihood associated to all the
physical observables, except MZ , and

χ2
Z =

(

MZ − M exp
Z

σZ

)2

, (2.4)

where σZ ≪ M exp
Z is the experimental uncertainty in the Z mass; finally NZ = 1/

√
2πσZ

is a normalization constant. Let us now use this sharp dependence on MZ to marginalize
the pdf in the µ−parameter, performing a change of variable µ → MZ :

p(s, m, M, A, B| data) =

∫

dµ p(s, m, M, A, B, µ|data)

= NZ

∫

dMZ

[

dµ

dMZ

]

e−χ2
Z Lrest p(s, m, M, A, B, µ)

≃ Lrest

[

dµ

dMZ

]

µ0

p(s, m, M, A, B, µ0) . (2.5)

where µ0 is the value of µ that reproduces the experimental value of MZ for the given
values of {s, m, M, A, B}. In the last line of (2.5) we have approximated NZ e−

1
2
χ2

Z ≃
δ(MZ − M exp

Z ). Essentially the same result is obtained by performing the µ−integration
in the stationary point approximation. Now, comparing (2.5) to the definition of fine-
tuning parameters (2.2), we can write

p(s, m, M, A, B| data) = 2 Lrest
µ0

MZ

1

cµ
p(s, m, M, A, B, µ0) . (2.6)

Several comments are in order here. First, the presence of the fine-tuning parameter, 1/cµ,
penalizes the regions of the parameter space with large fine-tuning, as desired. Actually
eq. (2.6) is very similar to multiply by hand the initial prior in the parameters by a factor
1/c, as in ref. [2]. The difference is that here the factor 1/cµ has not been put by hand:
it comes out from the marginalization in µ. Moreover the prior p(s, m, M, A, B, µ0) is
still undefined. If one takes it as flat, then one gets the same as in ref. [2], but with
one factor µ in the numerator (still the regions of large fine-tuning are penalized since cµ

goes parametrically as ∼ µ2). If one takes logarithmically flat priors, i.e. p(µ) ∝ 1/µ,
then eq. (2.6) would formally coincide with the procedure of multiplying the theoretical
prior p(s, m, M, A, B) by a factor 1/c. This is reasonable: the usual naturalness criteria
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implicitly assume that for a given value of one parameter, say µ = µ0, the prior probability
is distributed around µ0 [15,17] with a width ∼ µ0 [see the brief discussion in the paragraph
after eq. (2.2)]. This is equivalent to assume that the value µ = µ0 has a prior probability
∝ 1/µ0. Actually this is the reason why, according to usual fine-tuning arguments, large
soft parameters are more unlikely than small ones: for the former the region of the
parameter space that produces the observed electroweak scale is much narrower than for
the latter, not in absolute value, but compared to the size of the soft parameters in each
case. Assuming flat priors there would be no reason to prefer soft parameters of the
electroweak size instead of e.g. order MGUT. The fact that even for flat priors we still get
a penalty factor µ/cµ comes from the assumption of a prior flat in µ instead of µ2, which
is the quantity that appears in the cancellation [see e.g. eq. (2.1)].

We find very satisfactory that the usual parameter to quantify the degree of fine-tuning
emerges from the Bayesian approach “spontaneously”, not upon subjective assumptions,
especially taking into account that there has been much discussion in the literature about
its significance and suitability, see e.g. refs. [15–19]. Actually, one gets simply cµ instead
c, as defined in eq. (2.2). Of course there is nothing special with the µ−parameter, except
the fact that we have chosen to marginalize it using the experimental information about
MZ , which is the usual practice. Had we chosen to marginalize another parameter, say
M , we would have got cM , but of course at the end the results would be the same.

A convenient way to view eq. (2.6) is to imagine that we start with an MSSM parameter
space {s, m, M, A, B} where µ has been eliminated using the experimental value of MZ .
Then the pdf appears as the likelihood associated to the experimental information (except
M exp

Z ) times an effective prior

peff(s, m, M, A, B) = 2
µ0

MZ

p(µ0)

cµ

p(s, m, M, A, B) , (2.7)

where for simplicity we have assumed that the prior in µ factorizes from the rest. This
means that the initial prior gets multiplied by a factor 2 µ0

MZ

p(µ0)
cµ

that carries the fine-

tuning penalty. In Fig. 1 we have plotted this factor in representative slices of the
{s, m, M, A, B} parameter space (using the two basic choices p(µ) ∝ const., p(µ) ∝ 1/µ)
for some illustrative and physically relevant cases. In all of them large soft parameters get
penalized (except partially for focus-point regions [20,21]). There are no ad hoc assump-
tions for this result, it just comes out from the value of M exp

Z and the marginalization of
µ.

For practical calculations it is useful to have an approximate expression for cµ. From
the tree-level condition (2.1) we see that cµ ∼ 2µ2/M2

Z . Nevertheless, using the approx-
imate analytic formulas discussed in sect. 3, it is possible to write a much more refined
expression for cµ, which we postpone to that section.

2.2 Nuisance variables and the role of the Yukawa couplings

It is common in statistical problems that not all the parameters that define the system are
of interest. In the problem at hand we are interested in determining the probability regions
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Figure 1: Values of the factor µ p(µ)/(MZcµ) (in logarithmic units and up to a convenient
proportionality constant) in the {m, M} plane for µ > 0, A = 0, B = 0 (upper plots), and
for µ < 0, A = 0 and the minimal SUGRA relation B = A − m (lower plots), using the
two basic initial priors, p(µ) ∝ const. (left plots), p(µ) ∝ 1/µ (right plots). The plotted
factor appears in the effective prior given in eq. (2.7).
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for the MSSM parameters that describe the new physics, i.e. {m, M, A, B, µ}, but not (or
not at the same level) in the SM-like parameters, denoted by {s}. However, the nuisance
parameters {s} play an important role in extracting experimental consequences from the
MSSM. The usual technique to eliminate nuisance parameters is simply marginalizing
them, i.e. integrating the pdf (2.6) in the {s} variables (for a review see ref. [22]).
When the value of a nuisance parameter is in one-to-one correspondence to a high-quality
experimental piece of information (included in Lrest), this integration simply selects the
“experimental” value of the nuisance parameter, which thus becomes (basically) a constant
with no further statistical significance in the analysis. In particular, the prior on such
nuisance parameter becomes irrelevant. In the MSSM, nuisance parameters of this class
are the gauge couplings, {g3, g, g′}6, which thus can be extracted from the analysis.

In the pure SM a similar argument can be used to eliminate the Yukawa couplings,
since they are in one-to-one correspondence to the quark and lepton masses. However, as
discussed in sect. 1, in the MSSM these masses depend also on the value of tanβ ≡ v2/v1,
which is a derived quantity that takes different values at different points of the MSSM pa-
rameter space. This means that two viable MSSM models (with the same fermion masses)
will have in general very different values of the Yukawa couplings, and thus the theoretical
prior, p(y), will play a relevant and non-ignorable role in their relative probability. Any
Bayesian analysis of the MSSM amounts to an explicit or implicit assumption about the
prior in the Yukawa couplings.

In order to make these points more explicit, let us temporarily simplify the discussion
approximating the experimental likelihood related to the fermion masses as

Lfermion masses = δ(mt − mexp
t ) δ(mb − mexp

b ) .... (2.8)

(which is a fair approximation). This is a factor of the global likelihood, Lrest. Likewise,
let us approximate the theoretical values of the fermion masses as

mt =
1√
2
ylow

t vsβ, mb =
1√
2
ylow

b vcβ, etc. (2.9)

where sβ ≡ sin β, cβ ≡ cos β and ylow
i are the low-energy Yukawa couplings. As it is well-

known these expressions correspond to the running masses. The physical (pole) masses
include a radiative correction that we have ignored here, but not in our full analysis.
A further simplification is to assume ylow

i = Riyi, where yi are the high-energy Yukawa
couplings (and thus the input parameters) and the renormalization-group factor Ri does
not depend on yi itself (this is not a good approximation for the top Yukawa coupling,
but we will assume it momentarily for the sake of clarity). Now, the marginalization in
the Yukawa couplings can be readily done, integrating the pdf given by eq. (2.6) in the yi

6Strictly speaking, the initial theoretical inputs are the gauge couplings at high energy, which are re-
lated to the experimental (low-energy) ones by the renormalization-group running. This running depends
on the other MSSM parameters through the position of thresholds associated with different particles.
Hence, two viable MSSM models have slightly different values of the gauge couplings at high energy,
and thus the theoretical prior on the couplings would play an (almost insignificant) role in the statistical
comparison of the two models.
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variables. Writing just the relevant terms we get
∫

[dyt dyb · · · ] p(y, m, M, A, B| data) =

∫

[dyt dyb · · · ] p(y)δ(mt − mexp
t ) δ(mb − mexp

b ) · · ·

∼ p(y)

∣

∣

∣

∣

dyt

dmt

∣

∣

∣

∣

∣

∣

∣

∣

dyb

dmb

∣

∣

∣

∣

· · · = p(y) s−1
β c−1

β · · · (2.10)

where p(y) denotes the prior in the Yukawa couplings (which we assume that factorizes
from the other priors). Eq. (2.10) represents the footprint of the Yukawa couplings in the
pdf. Note that the factors s−1

β c−1
β · · · arise from the change of variables yi → mi, even if

the likelihood is not approximated by deltas. There are as many such factors as quarks
and leptons. This amounts to a dramatic modulation of the relative probability of MSSM
regions with different tan β if one chooses a flat prior, p(y) = const. If, instead, one takes
logarithmically flat priors, i.e. p(yi) ∝ 1/yi, then the s−1

β c−1
β · · · factors get cancelled, so

that the elimination of the Yukawa couplings does not leave a footprint in the probability
density of the (non-nuisance) MSSM parameter space, {m, M, A, B, µ}.

In previous Bayesian analyses of the MSSM the role of the Yukawa couplings was not
considered to this extent. Essentially, their values were taken as needed to reproduce the
experimental fermion masses, within uncertainties. As we have seen, this practice approx-
imately corresponds to assuming logarithmically flat priors in the Yukawa couplings7.

The above discussion is however oversimplified. As already mentioned, the marginal-
ization in the top Yukawa coupling (and sometimes the bottom one) produces extra factors
due to the dependence of Rt on yt. Actually, since one is marginalizing simultaneously
in the Yukawa couplings and the µ−parameter one has to evaluate the full Jacobian
of the transformation {µ, yt} → {MZ , mt}, which introduces additional contributions.
Furthermore, the picture gets more complicated due to the fact that, for a given choice
of {m, M, A, B}, there may be several values of µ leading to the correct value of MZ

with different values of tan β and thus of the Yukawa couplings. This means that in the
marginalization one has to sum over all these possibilities. This is technically annoying
and reduces the clarity of the approach. These drawbacks can be eliminated by trading
in the statistical analysis the initial B−parameter by the derived tan β parameter, as we
discuss in the next section.

Let us finally mention that in the analysis of ref. [2] the fermion masses themselves,
rather than the Yukawa couplings, were taken as SM-like variables. The advantage of such
procedure is that these nuisance variables are in obvious one-to-one correspondence to the
experimental data. Then the priors on the masses become almost irrelevant, and they can
be integrated out, almost without leaving any footprint. However, this has two problems.
First, the fermion masses are obviously derived quantities and should not be taken as
initial input variables, even if this makes life easier. Second, such procedure introduces
completely artificial factors, as it will become clear at the end of the next section.

7Actually, for independent reasons, we find the logarithmically flat prior for Yukawa couplings a most
sensible choice. Certainly there is no convincing origin for the experimental pattern of fermion masses,
and thus of Yukawa couplings. However it is a fact that these come in very assorted orders of magnitude
(from O(10−6) for the electron to O(1) for the top), suggesting that the underlying mechanism may
produce Yukawa couplings of different orders with similar efficiency.
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3 Efficient variables to scan the MSSM parameter

space

In MSSM analyses it is normally very advantageous, both for theoretical and phenomeno-
logical reasons, to trade the initial B−parameter by the derived tan β parameter. On the
phenomenological side, tanβ is a parameter that appears explicitly in the predictions for
many physical processes, such as cross sections, branching ratios, etc. (this is unlike B,
that enters only in a very indirect way). Thus it is convenient to get the probability density
of the MSSM parameter space as a function of tanβ. On the theoretical side, for a given
viable choice of {m, M, A, tanβ}, there are exactly two values of µ (with opposite sign and
the same absolute value at low energy) leading to the correct value of MZ . Thus working
in one of the two (positive and negative) branches of µ, each point in the {m, M, A, tanβ}
space corresponds exactly to one model, whereas a point in the {m, M, A, B} space may
correspond to several models, introducing a conceptual and technical complication in the
analysis, as mentioned in the previous section.

Changing variables B → tanβ amounts to a factor dB/d tanβ in the pdf. On the
other hand, we have seen in sect. 2 that it is convenient to trade µ and yt by MZ and mt,
as this makes the marginalization of these variables easier and more transparent. Thus
we should compute the whole Jacobian, J , of the transformation

{µ, yt, B} → {MZ , mt, t}, t ≡ tanβ , (3.1)

so that, in the new variables, the pdf reads

p(gi, mt, m, M, A, tanβ| data) = Lrest J |µ=µ0
p(gi, yt, m, M, A, B, µ = µ0) . (3.2)

Here we have made explicit the dependence on the gauge couplings, and the top Yukawa
coupling and mass, but not on the other fermions’. In this equation we have already
marginalized MZ using the associated likelihood ∼ δ(MZ − M exp

Z ) (recall that µ0 is the
value of µ that reproduces the experimental MZ .) The combination

peff(gi, mt, m, M, A, tan β) ≡ J |µ=µ0
p(gi, yt, m, M, A, B, µ = µ0) (3.3)

can be viewed as the effective prior in the new, more convenient, variables to scan the
MSSM. Note that, as discussed in subsect. 2.2, the gauge couplings are fairly irrelevant for
the statistical analysis, so we will drop them in what follows. In order to work out J we
need the dependence of the old variables on the new ones, which can be derived from the
minimization equations of the scalar potential, V (H1, H2), and from the expression of the
top pole mass. For the numerical analysis we have used the SOFTSUSY code [13] which
implements the full one-loop contributions and leading two-loop terms to the tadpoles
for the electroweak symmetry breaking conditions with parameters running at two-loops.
This essentially corresponds to the next-to-leading log approximation. However, in order
to highlight the most relevant facts it is useful to write down the expressions arising from
the minimization of the tree-level potential with parameters running at one-loop (i.e.
essentially the leading log approximation):

µ2
low =

m2
H1

− m2
H2

t2

t2 − 1
− M2

Z

2
(3.4)
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Blow =
s2β

2µlow

(m2
H1

+ m2
H2

+ 2µ2
low) (3.5)

ylow =
mt

v sβ
. (3.6)

Here the “low” subscript indicates that the quantity is evaluated at low scale (more
precisely, at a representative supersymmetric mass, such as the geometric average of
the stop masses). The soft masses m2

Hi
are also understood at low scale. For notational

simplicity, we have dropped the subscript t from the Yukawa coupling. We are not making
explicit the role of the bottom Yukawa coupling, which is treated in a similar foot to the
top one. Note that all these low-energy quantities contain an implicit dependence on the
top Yukawa coupling through the corresponding renormalization-group equations (RGEs).
The effect of the one-loop corrections on the effective potential to the previous expressions
is incorporated by correcting the soft masses m2

Hi
with one-loop tadpole effects along the

lines of ref. [23]. Similarly the pole top mass is given by the running top mass, appearing
in eq. (3.6), plus a radiative correction ∆radmt. Eqs. (3.4–3.6), even when corrected with
the mentioned radiative effects, have the structure

µ = f(MZ , y, t), y = g(MZ , mt, t), B = h(µ, y, t) , (3.7)

where we only make explicit the dependence on the variables involved in the change of
variables (3.1). Note that y depends on MZ since v ∝ MZ . Notice also that, unlike
eqs. (3.4–3.6), eqs. (3.7) are defined in terms of the the high-energy parameters.

From eqs. (3.7) it is straightforward to evaluate the Jacobian J of the transformation
(3.1), and thus the effective prior (3.3). J gets simply

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂µ
∂MZ

∂µ
∂t

∂µ
∂mt

∂B
∂MZ

∂B
∂t

∂B
∂mt

∂y
∂MZ

∂y
∂t

∂y
∂mt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∂f

∂MZ

∂g

∂mt

∂h

∂t
, (3.8)

where the factor ∂f/∂MZ carries essentially the fine-tuning penalization discussed in
subsect. 2.1.

We can give an analytical and quite accurate expression of J by using the approximate
equations (3.4–3.6), and expressing the low-energy values of µ, B, y in terms of the high-
energy ones through the integrated 1-loop RGEs. Schematically,

µlow = Rµ(y)µ, Blow = B + ∆RGB(y) , (3.9)

where Rµ(y), ∆RGB(y) are definite functions of y (and other parameters, but not µ and
B) [24]. Similarly,

ylow ≃ yE(Qlow)

1 + 6yF (Qlow)
, (3.10)
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where Q is the renormalization scale, F =
∫ Qlow

Qhigh
E ln Q, and E(Q) is a definite function

that depends just on the gauge couplings [25]. Plugging (3.9) and (3.10) into eqs. (3.4–
3.6) we get explicit expressions for the f, g, h functions. The relevant derivatives, to be
plugged in (3.8), read

∂f

∂MZ
= −MZ

µ

1

2R2
µ

= −MZ

µlow

1

2Rµ
(3.11)

∂h

∂t
= Blow

1 − t2

t(1 + t2)
(3.12)

∂g

∂mt

=
E

v sβ

(

y

ylow

)2

. (3.13)

Let us comment briefly on these expressions. As mentioned above, eq. (3.11) is essentially
the fine-tuning factor 2µ/(MZcµ) obtained in subsect. 2.1 [eq. (2.6)]. It penalizes large
scales for µ. Eq. (3.12) counts the volume conversion from dB to dt and it is proportional
to a soft mass just for dimensional reasons. Note that this factor penalizes low scales.
This is easy to understand looking at eq. (3.5): for a given interval in tan β, the larger
the values of the soft masses and µ, the larger the corresponding interval in B is. So
larger B is favoured. Note, however, that the size of the interval of B relative to the
value of B itself (which is statistically meaningful) is essentially constant. Indeed, the
B-factor in eq. (3.12) will be cancelled in the pdf if one uses logarithmic flat priors for
the soft terms, p(B) ∝ 1/B. This reasoning is similar to that after eq. (2.6). Finally,
eq. (3.13) corresponds to eq. (2.10) of our preliminar discussion. In particular, the 1/sβ

factor corresponds to the same factor in (2.10).

The Jacobian of the transformation (3.1) is given by the product of the three factors
of eqs. (3.11–3.13),

J =
1

4
(g2 + g′2)1/2

[

E

R2
µ

]

Blow

µ

t2 − 1

t(1 + t2)

(

y

ylow

)2

s−1
β . (3.14)

In the previous derivation we have considered just the top Yukawa coupling in the
change of variables (3.1). Once the others fermions are taken into account, the Jacobian
gets a s−1

β factor for each u−type quark and a c−1
β factor for each d−type quark and

charged lepton, as discussed in subsect. 2.2. Now, recall that the effective prior in the
new variables is the product of J by the initial prior, as expressed in eqs. (3.2, 3.3); so
taking a logarithmically flat prior for the Yukawa couplings (i.e. p(yi) ∝ y−1

i ) the s−1
β , c−1

β

factors get cancelled in the effective prior and the pdf. For the top Yukawa coupling
(and sometimes for the bottom one) this cancellation still leaves a residual dependence

on tan β since

(

y

ylow

)2

s−1
β × 1

y
∝ y

ylow
, which through (3.10) depends on y itself and thus

on tan β.
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Therefore, the effective prior defined by eq. (3.3) takes the approximate form

peff(mt, m, M, A, tanβ) ∝
[

E

R2
µ

]

y

ylow

t2 − 1

t(1 + t2)

Blow

µ0
p(m, M, A, B, µ = µ0) . (3.15)

The most basic priors for the initial variables are the flat and the logarithmic ones, i.e.

p(m, M, A, B, µ) = const. , p(m, M, A, B, µ) ∼ 1

mMABµ
. (3.16)

Some comments are in order here. First, the normalization factors in (3.16) are determined
by the integrated probability and thus depend on the bounds one establishes for the
parameters. Since we are discussing here relative probabilities in the parameter space, they
are not relevant at this stage, but they become more important when some parameters
are marginalized. Second, as argued in subsect. 2.1, the logarithmic prior is physically
sensible and is the one that can catch the intuition that fine-tunings are statistically
unlikely. Actually, when plugged in (3.15), the logarithmic prior gives rise to the fine-
tuning penalization 1/µ2 ∼ 1/cµ. However, the simple logarithmic prior of eq. (3.15)
is clearly too simple, since it cannot be normalized due to low-energy and high-energy
divergences. These are easily cured by taking reasonable upper and lower bounds on the
parameters, e.g. [10 GeV, MX ]. In fact, this choice can be refined. From the 1-loop RGE
of the initial parameters, it is clear that very small values for m, A, B are not radiatively
stable, due to sizeable contributions proportional to the gaugino mass M . Therefore, it is
not very sensible to assume that values of these parameters smaller than say O(10−1M)
at precisely MX can have a particular statistical meaning. Thus we can take flat priors
at this region of small values. On the other hand, the experimental lower bounds on the
gluino, charginos and neutralinos imply that M and µ cannot be smaller than O(100)
GeV.

In Fig. 2 we show the effective prior defined in (3.3) and computed using eq. (3.8) [with
the full one-loop expressions of eqs. (3.4–3.6)] for the two priors discussed after eq. (3.16),
i.e. flat and logarithmically flat. The plots show, up to a constant of proportionality,
the effective priors in the {m, M} plane (with constant tanβ, A) for some representative
cases8. We have assumed in the figures that the soft terms are initially given at the scale of
gauge unification, MX ∼ 1016 GeV, as essentially happens in scenarios of gravity–mediated
SUSY breaking, but of course our formulas are also applicable to e.g. gauge–mediated
SUSY breaking scenarios. The penalization of large scales is clear for the logarithmically
flat case, as expected from our discussion. The fact that using a logarithmic prior penalizes
large values of the parameters could seem quite obvious. However, this is not so clear
when one compares the integrated probability that the the parameters are within different
ranges of scales. For instance, the logarithmic prior alone would give more probability to

8The proportionality constant is simply the normalization constant of the initial prior, eqs. (3.16),
times the normalization constant of the Yukawa prior. However, these factors play no role in the exam
of the relative probabilities of the points in the parameter space. Obviously, the absolute values of the
left plots cannot be compared to those of the right plots, as they are affected by a different normalization
constant. We prefer not to include these normalization factors, as they depend on the upper limit assumed
for the soft terms, and do not shed any additional light on the relative probabilities inside the parameter
space.
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Figure 2: Values of the effective prior, peff , in logarithmic units as defined in eq. (3.3) (up
to a normalization constant), in the {m, M} plane for A = 0 and tanβ = 3 (upper plots),
tan β = 10 (central plots), tan β = 30 (lower plots). The left and right plots correspond
respectively to the two basic choices of priors (flat and logarithmically flat) discussed in
eq. (3.16) and below. See text for further details.
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Figure 3: The same as Fig. 2, but in the {M, tanβ} plane, for A = 0, m = M .

the [100 TeV, MX ] range than to the [100 GeV, 100 TeV] one. However, the presence of
the mentioned fine-tuning factor, 1/µ2, in the effective prior still penalizes the high-energy
regions.

Fig. 3 is similar to Fig. 2, but showing now slices in the {M, tanβ} plane (with the
condition m = M). The plots illustrate the tanβ dependence of the effective prior, which
can be essentially extracted from the approximate expression (3.15). [Note that, besides
the explicit dependence, eq. (3.15) contains an implicit dependence on tan β through the
Rµ, Blow and y/ylow factors.] We can appreciate from the plots that the prior probability
decreases with tan β.

The effective prior computed and shown in the figures corresponds to the last two
factors of the pdf (3.2). The first factor, i.e. the likelihood, carries the experimental
information (fermion masses, electroweak precision tests, g-2 of the muon, dark matter
constraints, etc.). Whatever experimental information (and thus likelihood) we may use,
it will be always weighted by the same effective prior factor shown here.

In this section we have argued so far that the sensible initial choice of independent
parameters of the MSSM is {gi, yt, m, M, A, B, µ}, while for practical reasons it is most
convenient to work with the set {gi, mt, m, M, A, tanβ, MZ} (and signµ). MZ is eliminated
from the analysis using its extremely sharp likelihood. The effective prior in the new
variables is then given by eqs. (3.3, 3.8), for which we gave explicit approximate expressions
in eqs. (3.14, 3.15).

It is interesting to wonder what would have been the result if one had insisted in
taking directly mt as an initial (nuisance) variable, so that the transformation (3.1) would
have just involved {µ, B} → {MZ , t}, as has been done e.g. in ref. [4]. As argued in
subsect. 2.2, it is theoretically bizarre to take mt as a fundamental variable, instead of yt.
However, one may gain the bonus of almost no sensitivity to the prior in mt, since this is
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essentially fixed by the experiment. This is true, but this procedure introduces extremely
counter-intuitive contributions to the Jacobian, as we will see briefly. The new 2-variable
Jacobian is given by

J2 =

∣

∣

∣

∣

∣

∣

∣

∣

∂µ
∂MZ

∣

∣

∣

t,mt

∂µ
∂t

∣

∣

MZ ,mt

∂B
∂MZ

∣

∣

∣

t,mt

∂B
∂t

∣

∣

MZ ,mt

∣

∣

∣

∣

∣

∣

∣

∣

, (3.17)

where the subscripts emphasize which variables have to be kept frozen in the partial
derivations. Now, using the definitions (3.7), it is straightforward to obtain

J2 =
∂f

∂MZ

∂h

∂t
+

∂g

∂MZ

(

∂f

∂y

∂h

∂t
− ∂f

∂t

∂h

∂y

)

+
∂f

∂MZ

∂h

∂y

∂g

∂t
. (3.18)

It is amusing that this expression is more complicated than in the 3-variable case, eq. (3.8).
This comes from the fact that the derivatives in (3.17) contain contributions coming from
the dependence of µ and B on y, which is in turn a function of t and MZ , eq. (3.6).
These contributions were cancelled inside the 3-variable Jacobian thanks to the third row
in the matrix of eq. (3.8), but they are not cancelled here and give rise to the second and
third terms in eq. (3.18). Note that the first term in (3.18) is similar to the 3-variable
Jacobian given by eq. (3.8), whose physical significance (including the information about
fine-tuning) was discussed after eq. (3.13). This term goes parametrically as B/µ and was
the only one quoted in ref. [4], thus the resemblance of their result to our approximate
expression (3.14), except for the RG and s−1

β factors. However the second term goes
parametrically as Bm2/µM2

Z , and thus is much more important for large soft terms,
which then become strongly favoured (contrary to the intuitive expectatives). Therefore
there is no reason to have ignored such term. In consequence, the expressions used in
ref. [4] are much closer to using yt as a fundamental variable with logarithmically flat
prior than to using mt.

Let us finish this section by using the approximate expressions discussed above to
give, as advanced at the end of subsect. 2.1, an approximate expression for the fine-tuning
parameter cµ. Recall that this parameter was defined as

cµ =

∣

∣

∣

∣

∂ ln M2
Z

∂ lnµ

∣

∣

∣

∣

y,B

, (3.19)

where the subscript indicates that the partial derivative must be performed at y, B con-
stant. Using eqs. (3.7), cµ can be written as

cµ =
2µ

MZ

(

∂f

∂MZ

)

−1
[

1 +
∂f

∂t

∂h

∂µ

(

∂h

∂t

)

−1
]

, (3.20)

where the right hand side has to be understood in absolute value. As above, using (3.9)
and (3.10) we obtain explicit approximated expressions for the f, g, h functions. Then
eq. (3.20) reads

cµ = 4R2
µ

µ2

M2
Z

[

1 − t2(1 + t2)

(t2 − 1)3

m2
H1

− m2
H2

Blowµlow

(

Blow

µlow

− 4t2

1 + t2

)]

. (3.21)
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Note that the combination m2
H1

−m2
H2

can be easily written in terms of B, µ using eqs. (3.4,
3.5).

4 Conclusions

The start of LHC has motivated an effort to determine the relative probability of the
different regions of the MSSM parameter space, taking into account the present (theoret-
ical and experimental) wisdom about the model. These attempts are often called “LHC
forecasts” [1–4, 6–8]. The central equation to extract this valuable information is the
fundamental Bayesian relation

p(s, m, M, A, B, µ|data) ∝ L(s, m, M, A, B, µ) p(s, m, M, A, B, µ) , (4.1)

which gives this probability in terms of the usual experimental likelihood, L, and the prior
p(s, m, M, A, B, µ), i.e. the “theoretical” probability density assigned a priory to points
in the space spanned by the MSSM parameters {m, M, A, B, µ} and the SM-like ones (s).

Since the present experimental data are not powerful enough to select a small region of
the MSSM parameter space, the choice of a judicious prior becomes most relevant. Indeed,
ignoring this amounts to an implicit choice for the prior (which is not always sensible).
On the other hand, it is common lore that the parameters of the MSSM, {m, M, A, B, µ},
should not be far from the electroweak scale in order to avoid unnatural fine-tunings to
obtain the correct scale of the electroweak breaking. Previous studies have attempted to
incorporate this reasonable intuition to the Bayesian approach, by choosing a prior that
counted (more or less explicitly) a conventional measure of the fine-tuning, typically the
Barbieri-Giudice parameter, c, defined in eq. (2.2).

However, though reasonable, these kinds of proposals are rather arbitrary, as the very
measure of the fine-tuning is. On the other hand, since the naturalness arguments are
deep down statistical arguments, one might expect that an effective penalization of fine-
tunings should arise from the Bayesian analysis itself. One of the main results of this
paper has been to show that this is really so: using the fact that the likelihood associated
to the experimental MZ is essentially a Dirac delta, ∼ δ(MZ − M exp

Z ), one can easily
marginalize the µ-parameter (i.e. integrate the density of probability in this variable).
Then one gets an effective prior for the remaining parameters

peff(s, m, M, A, B) = 2
µ0

MZ

1

cµ
p(s, m, M, A, B, µ0) , (4.2)

which exhibits the fine-tuning penalization. (µ0 is the value of µ that reproduces the
experimental MZ for the given values of {s, m, M, A, B}.) Of course this effective prior has
to be combined with the experimental likelihood, except the part associated to the Z mass.
The initial prior, p(s, m, M, A, B, µ), can be taken as flat or (preferably) logarithmically
flat, as usual. We find very satisfactory that precisely the usual parameter to quantify
the degree of fine-tuning emerges in the Bayesian approach “spontaneously”, not upon
subjective assumptions, especially taking into account that there has been much discussion
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in the literature about its significance and suitability. We have completed this analysis
by giving an explicit and quite accurate expression for cµ, see eq. (3.21).

Our second result concerns the treatment of the Yukawa couplings. In previous
Bayesian analyses the Yukawas were essentially taken as needed to reproduce the ex-
perimental fermion masses, within uncertainties. However, unlike the pure SM, in the
MSSM the Yukawa couplings are not in one-to-one correspondence to the quark and lep-
ton masses: they depend also on the value of tan β, which is a derived quantity that takes
different values at different points of the MSSM parameter space. This means that two
viable MSSM models (with the same fermion masses) will have in general very different
values of the Yukawa couplings, and thus the theoretical prior, p(y), will play a relevant
and non-ignorable role in evaluating their relative probability. Any Bayesian analysis of
the MSSM amounts to an explicit or implicit assumption about the prior in the Yukawa
couplings. We have made explicit the dependence of the results on such prior and shown
that the easiest and usual practice of taking the Yukawas “as required”, approximately
corresponds to taking logarithmically flat priors in the Yukawa couplings, which on the
other hand is not an unreasonable choice at all.

Finally we have repeated this analysis, using a more efficient set of variables to scan
the MSSM parameter space. Besides trading µ by MZ and the Yukawa couplings (in
particular the top one) by the fermion masses, it is known that trading B by tan β is
highly advantageous. Following similar steps one can arrive to an effective prior in the
new parameters:

peff(gi, mt, m, M, A, tanβ) ≡ J |µ=µ0
p(gi, yt, m, M, A, B, µ = µ0) , (4.3)

where J is the Jacobian of the transformation

{µ, yt, B} → {MZ , mt, t}, t ≡ tanβ (4.4)

(MZ does not appear in the right hand side of (4.3) since it is marginalized as explained
above.) Note that still the initial choice of independent parameters is {yt, m, M, A, B, µ}
(on which the initial priors are defined). It is the change of variables plus the marginaliza-
tion of MZ what leads to the above effective prior. We have calculated J both numerically
and analytically (in an approximate but quite accurate fashion). The relevant formulas
are eqs. (3.8) and(3.14). The last expression is very handful and leads to the effective
prior given in eq. (3.15). Whatever experimental information (and thus likelihood) one
may use, it will be always weighted by the same effective prior factor calculated (and
shown in plots for illustrative cases) here.

We have also discussed the results in comparison with other approaches in the litera-
ture, arguing that the present one is conceptually more satisfactory.
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