Chern-Simons forms associated to homogeneous pseudo-Riemannian structures *

P.M. Gadea and J.A. Oubiña †

Abstract

Forms of Chern-Simons type associated to homogeneous pseudo-Riemannian structures are considered. The corresponding secondary classes are a measure of the lack of a homogeneous pseudo-Riemannian space to be locally symmetric. Explicit computations are done for some pseudo-Riemannian Lie groups and their compact quotients.

1 Introduction

The characterization by É. Cartan of Riemannian locally symmetric spaces as those Riemannian manifolds whose curvature tensor is parallel was extended by Ambrose and Singer in [1]. They proved that a complete, simply connected Riemannian manifold is homogeneous if and only if it admits a (1,2) tensor field S satisfying certain equations. If S=0 then (M,g) is Riemannian locally symmetric.

The purpose of the present paper is to provide forms of Chern-Simons type for each pseudo-Riemannian manifold (M,g) endowed with a homogeneous pseudo-Riemannian structure S. This construction furnishes odd-dimensional differential forms of degree greater than 1, which are null if S=0. Under certain conditions, these forms are closed and define secondary classes. Each of such triples (M,g,S) has thus a number (depending on the dimension of M) of these forms, and roughly speaking (when the corresponding group of real cohomology of the manifold is non-zero), the more non-vanishing classes of that kind a manifold has, the less symmetric it is.

We give several examples of such forms on some Lie groups equipped with left-invariant metrics: The 3-dimensional unimodular Lie groups, so having instances of Abelian, nilpotent, solvable and simple Lie groups; and the five-dimensional generalized Heisenberg group H(1,2), which is nilpotent. Further, we consider the corresponding secondary classes of the compact quotients of the

^{*}MSC 2000: 57R20, 53C30, 53C50. Key Words: Chern-Simons forms, homogeneous pseudo-Riemannian structures, pseudo-Riemannian Lie groups.

 $^{^\}dagger Partially$ supported by DGICYT, Spain, under grant BFM2002-00141 and by Xunta de Galicia under grant PGIDT01PXI20704PR.

previous groups, identifying them in the real cohomology spaces of the quotient spaces. In [6], we also studied the oscillator group.

2 Preliminaries

Ambrose and Singer [1] proved that a connected, simply connected and complete Riemannian manifold (M,g) is homogeneous if and only if there exists a (1,2) tensor field S on M—called a homogeneous Riemannian structure—satisfying certain equations (see (2.1) below). In [4] we have extended that characterization to pseudo-Riemannian manifolds. Specifically, let (M,g) be a connected C^{∞} pseudo-Riemannian manifold of dimension n and signature (k,n-k). Let ∇ be the Levi-Civita connection of g and R its curvature tensor field. A homogeneous pseudo-Riemannian structure on (M,g) is a tensor field S of type (1,2) on M such that the connection $\widetilde{\nabla} = \nabla - S$ satisfies

(2.1)
$$\widetilde{\nabla}g = 0, \quad \widetilde{\nabla}R = 0, \quad \widetilde{\nabla}S = 0.$$

If g is a Lorentzian metric (k = 1), we say that S is a homogeneous Lorentzian structure. In [4] we proved that if (M, g) is connected, simply connected and geodesically complete then it admits a homogeneous pseudo-Riemannian structure if and only if it is a reductive homogeneous pseudo-Riemannian manifold.

Let (P,M,G) be a principal fibre bundle over the n-dimensional C^{∞} manifold M. Let $\mathcal{I}^r(G)$ be the real vector space of $\mathrm{Ad}(G)$ -invariant polynomials of degree r. Let D be a connection in P, with connection 1-form ω and curvature form $\Omega = d\omega + \omega \wedge \omega$. Let $I \in \mathcal{I}^r(G)$ be an invariant polynomial. One can consider for each r the 2r-form $I(\Omega^r) = I(\Omega, \ldots, \Omega)$, which is a 2r-form on P, and projects to a (unique) 2r-form on M, say again $I(\Omega^r)$. This form is closed and determines a cohomology class in $H^{2r}(M,\mathbb{R})$. Let \widetilde{D} be another connection in P with connection 1-form $\widetilde{\omega}$ and curvature form $\widetilde{\Omega}$. Consider the connection given, for a $t \in [0,1]$, by $\omega_t = \widetilde{\omega} + t(\omega - \widetilde{\omega})$, with curvature form $\Omega_t = d\omega_t + \omega_t \wedge \omega_t$. Then we have the transgression formula

(2.2)
$$I(\Omega^r) - I(\widetilde{\Omega}^r) = dQ(\omega, \widetilde{\omega}),$$

where

(2.3)
$$Q(\omega, \widetilde{\omega}) := r \int_0^1 I(\omega - \widetilde{\omega}, \underbrace{\Omega_t, \dots, \Omega_t}_{r-1}) dt.$$

The Chern-Simons (2r-1)-form $Q(\omega,\widetilde{\omega})$ on M defines, if $I(\Omega^r)=I(\widetilde{\Omega}^r)$, a secondary class.

3 Chern-Simons forms associated to a homogeneous pseudo-Riemannian structure

We consider the bundle of pseudo-orthonormal frames $p: \mathcal{O}_{k,n-k}(M) \to M$ over the pseudo-Riemannian n-manifold (M,g), where g is a metric of signature (k,n-k). We define $\mathrm{Ad}(O(k,n-k))$ -invariant polynomial functions f_1,\ldots,f_n on the Lie algebra $\mathfrak{o}(k,n-k)$ by

$$f(t,X) = \det(tI + X) = \sum_{r=0}^{n} f_r(X) t^{n-r}, \qquad X \in \mathfrak{o}(k, n-k).$$

Let Ω be the curvature form of a connection ω in $\mathcal{O}_{k,n-k}(M)$. Then, for each f_r , $r=1,\ldots,n$, there exists a unique closed 2r-form v_r on M such that $p^*(v_r)=f_r(\Omega)$. One has det $(I+\Omega)=p^*(1+v_1+\cdots+v_n)$, so having characteristic forms v_r of degree 2r, and a total form $\Upsilon(\mathcal{O}_{k,n-k}(M),\omega)=1+\sum_{r=1}^n v_r$. The forms $f_r(\Omega)$ are the elementary symmetric functions $s_r(\Omega)$, $r=1,\ldots,n$, of the eigenvalues of Ω , so that det $(I+\Omega)=1+s_1(\Omega)+s_2(\Omega)+\cdots+s_n(\Omega)$. By using Newton's recursive formulas, one can further compute the functions $s_r(\Omega)$ in terms of the traces of the powers of Ω from the expressions

$$\operatorname{tr}(\Omega^{r}) - s_{1}(\Omega)\operatorname{tr}(\Omega^{r-1}) + s_{2}(\Omega)\operatorname{tr}(\Omega^{r-2}) - \cdots + (-1)^{r-1}s_{r-1}(\Omega)\operatorname{tr}(\Omega) + (-1)^{r}rs_{r}(\Omega) = 0, \qquad r = 1, \dots, n,$$

and since $\operatorname{tr} \Omega = 0$, we have after computation that

$$\det\left(I+\Omega\right) = 1 - \frac{1}{2}\operatorname{tr}\left(\Omega^{2}\right) + \frac{1}{3}\operatorname{tr}\left(\Omega^{3}\right) + \frac{1}{4}\left(\frac{1}{2}(\operatorname{tr}\left(\Omega\right)^{2})^{2} - \operatorname{tr}\left(\Omega^{4}\right)\right) + \cdots$$

Now, we consider here the Levi-Civita connection ∇ and the linear connection $\widetilde{\nabla} = \nabla - S$, with connection form $\widetilde{\omega}$ and curvature form $\widetilde{\Omega}$ (as in the previous section), where S is a homogeneous pseudo-Riemannian structure on (M,g), so that the general equation (2.2) can be written in this case as

$$(3.1) s_r(\Omega) - s_r(\widetilde{\Omega}) = dQ(\omega, \widetilde{\omega}).$$

If $s_r(\Omega) = s_r(\widetilde{\Omega})$, then $Q(\omega, \widetilde{\omega})$ is closed, so determining a secondary class. In particular, if r = 2, 3, then this happens if $\operatorname{tr}(\Omega^r) = \operatorname{tr}(\widetilde{\Omega}^r)$. We shall denote by $Q_{2r-1}^S(M,g)$, or simply by Q_{2r-1}^S , the form $Q(\omega, \widetilde{\omega})$ in (3.1).

Definition 3.1. Let (M,g) be a pseudo-Riemannian manifold and let S be a homogeneous pseudo-Riemannian structure on M. We shall call the forms $Q_{2r-1}^S(M,g)$, for each $3 \leq 2r-1 \leq \dim M$, Chern-Simons forms of pseudo-Riemannian homogeneity (or simply forms of homogeneity) on (M,g,S). We shall call the corresponding real cohomology classes $[Q_{2r-1}^S](M,g)$ secondary classes of pseudo-Riemannian homogeneity (or simply secondary classes of homogeneity).

The case r=1 in (3.1) is trivial, as the forms $\omega-\widetilde{\omega}$, Ω , and $\widetilde{\Omega}$ take values in $\mathfrak{o}(k,n-k)$. For r=2, we get the formula

$$(3.2) Q_3^S = -\frac{1}{2}\operatorname{tr}\left(2\,\sigma\wedge\widetilde{\Omega} + \sigma\wedge d\sigma + 2\,\sigma\wedge\widetilde{\omega}\wedge\sigma + \frac{2}{3}\,\sigma\wedge\sigma\wedge\sigma\right),$$

where $\sigma = \omega - \widetilde{\omega}$. One can obtain similar formulas for any r with $2r \leq \dim M$. We give also the formula for r = 3:

$$(3.3) \quad Q_5^S = \frac{1}{3} \operatorname{tr} \left\{ 3 \, \sigma \wedge \widetilde{\Omega}^2 + \frac{3}{2} (\sigma^2 \wedge \widetilde{\Omega} \wedge \widetilde{\omega} + 2 \, \sigma \wedge \widetilde{\Omega} \wedge \sigma \wedge \widetilde{\omega} + \sigma \wedge \widetilde{\Omega} \wedge d\sigma \right. \\ \left. + \sigma^2 \wedge \widetilde{\omega} \wedge \widetilde{\Omega} + \sigma \wedge d\sigma \wedge \widetilde{\Omega} + 2 \, \sigma^4 \wedge \widetilde{\omega} + \sigma^3 \wedge d\sigma \right. \\ \left. + 2 \, \sigma^3 \wedge \widetilde{\Omega} + 3 \, \sigma^2 \wedge \widetilde{\omega} \wedge \sigma \wedge \widetilde{\omega} + 2 \, \sigma \wedge \widetilde{\omega} \wedge \sigma \wedge d\sigma + \sigma^3 \wedge \widetilde{\omega}^2 \right. \\ \left. + \sigma^2 \wedge \widetilde{\omega} \wedge d\sigma + \sigma^2 \wedge d\sigma \wedge \widetilde{\omega} + \sigma \wedge (d\sigma)^2 + \frac{3}{5} \, \sigma^5 \right\},$$

where $A^j = A \wedge \cdots \wedge A$ for any matrix A. We now give some general results for the forms Q_{2r-1}^S .

Proposition 3.2. If S = 0 then $Q_{2r-1}^S = 0$, for each r.

Let S_1 and S_2 be homogeneous pseudo-Riemannian structures on (M_1,g_1) and (M_2,g_2) respectively. We recall [11, pp. 33–34] that an isomorphism between S_1 and S_2 is an isometry $\varphi \colon (M_1,g_1) \to (M_2,g_2)$ which is also an affine transformation with respect to the connections $\widetilde{\nabla}_1 = \nabla_1 - S_1$ and $\widetilde{\nabla}_2 = \nabla_2 - S_2$. Then we have the following proposition.

Proposition 3.3. If $\varphi: (M_1, g_1) \to (M_2, g_2)$ is an isometry between S_1 on (M_1, g_1) and S_2 on (M_2, g_2) , then $\varphi^*(Q_{2r-1}^{S_2}) = Q_{2r-1}^{S_1}$, for each r.

Proof. According to the previous definition, we have that $\varphi^*\omega_2 = \omega_1$ and $\varphi^*\widetilde{\omega}_2 = \widetilde{\omega}_1$. Thus we have that $\varphi^*((\omega_t)_2) = \varphi^*(\widetilde{\omega}_2 + t(\omega_2 - \widetilde{\omega}_2)) = (\omega_t)_1$, and so $\varphi^*((\Omega_t)_2) = \varphi^*(d(\omega_t)_2 + (\omega_t)_2 \wedge (\omega_t)_2) = (\Omega_t)_1$. Hence for any invariant polynomial I we have that

$$\varphi^* \{ I(\sigma_2, (\Omega_t)_2, \dots, (\Omega_t)_2) \} = I(\sigma_1, (\Omega_t)_1, \dots, (\Omega_t)_1).$$

As I is multilinear, we conclude.

Proposition 3.4.

$$\operatorname{tr}(\Omega^r) - \operatorname{tr}(\widetilde{\Omega}^r) = \operatorname{tr}\left\{\sum_{l=0}^{r-1} \binom{r}{l} \Omega^l \wedge (3[S,S] - \mathcal{A}S_S)^{r-l}\right\},\,$$

where AS_S is defined by $(AS_S)(X,Y) = S_{S(X,Y)-S(Y,X)}$.

Proof. First we recall that $d^{\nabla}S$ is defined [7, p. 22] by

$$(3.4) (d^{\nabla}S)(X,Y) = \nabla_X S_Y - \nabla_Y S_X - S_{[X,Y]},$$

and we put

$$[S, S](X, Y) = S_X S_Y - S_Y S_X = [S_X, S_Y].$$

On the other hand, Ambrose-Singer's third equation (2.1) can be written as

(3.6)
$$(\nabla_X S)(Y, Z) = [S_X, S_Y](Z) - S_{S(X,Y)}Z.$$

Since ∇ is torsionless, by (3.4) we can write $(d^{\nabla}S)(X,Y)(Z) = (\nabla_X S)(Y,Z) - (\nabla_Y S)(X,Z)$, and thus from (3.6) one has that

(3.7)
$$(d^{\nabla}S)(X,Y)(Z) = \{2[S_X, S_Y] - S_{S(X,Y)-S(Y,X)}\}(Z).$$

Hence, on account of (3.5) we have that $(d^{\nabla}S)(X,Y) = (2[S,S] - \mathcal{A}S_S)(X,Y)$. Substituting now (3.7) in Koszul's formula $\widetilde{\Omega} = \Omega + [S,S] + d^{\nabla}S$ (see [7, p. 22]), we obtain that $\widetilde{\Omega} = \Omega + 3[S,S] - \mathcal{A}S_S$. Finally, calculation of $\operatorname{tr}(\widetilde{\Omega}^r) = \operatorname{tr}(\Omega + 3[S,S] - \mathcal{A}S_S)^r$ gives us, on account of the property $\operatorname{tr}(\Phi \wedge \Psi) = \operatorname{tr}(\Psi \wedge \Phi)$ for any two $\operatorname{End}(TM)$ -valued 2-forms Φ , Ψ , the expression in the statement. \square

In particular, if $3[S, S] = \mathcal{A}S_S$, then $\operatorname{tr}(\Omega^r) - \operatorname{tr}(\widetilde{\Omega}^r) = 0$, and Q_{2r-1}^S defines, for r = 2, 3, a secondary class $[Q_{2r-1}^S]$.

4 Examples of forms Q_{2r-1}^S associated to homogeneous pseudo-Riemannian structures

4.1 The 3-dimensional unimodular Lie groups

Let G be a connected unimodular Lie group (with Lie algebra \mathfrak{g}) endowed with a left-invariant Riemannian metric g. We consider the homogeneous Riemannian structure S on (G,g) defined [11, p. 83] by

$$(4.1) \quad 2g(S_XY,Z) = g([X,Y],Z) - g([Y,Z],X) + g([Z,X],Y), \quad X,Y,Z \in \mathfrak{g}.$$

If dim G = 3 there exists [8] an orthonormal basis $\{E_1, E_2, E_3\}$ of \mathfrak{g} such that

$$(4.2) [E_1, E_2] = \lambda_3 E_3, [E_2, E_3] = \lambda_1 E_1, [E_3, E_1] = \lambda_2 E_2.$$

If ∇ is the Levi-Civita connection of G then $\nabla_{E_i}E_i=S_{E_i}E_i=0$ and the remaining components of ∇ and S are given by

$$\nabla_{E_1} E_2 = S_{E_1} E_2 = \frac{1}{2} (-\lambda_1 + \lambda_2 + \lambda_3) E_3, \quad \nabla_{E_1} E_3 = S_{E_1} E_3 = \frac{1}{2} (\lambda_1 - \lambda_2 - \lambda_3) E_2,$$

$$\nabla_{E_2} E_1 = S_{E_2} E_1 = \frac{1}{2} (-\lambda_1 + \lambda_2 - \lambda_3) E_3, \quad \nabla_{E_2} E_3 = S_{E_2} E_3 = \frac{1}{2} (\lambda_1 - \lambda_2 + \lambda_3) E_1,$$

$$\nabla_{E_3} E_1 = S_{E_3} E_1 = \frac{1}{2} (\lambda_1 + \lambda_2 - \lambda_3) E_2, \quad \nabla_{E_3} E_2 = S_{E_3} E_2 = \frac{1}{2} (-\lambda_1 - \lambda_2 + \lambda_3) E_1.$$

Let $\{\theta^1, \theta^2, \theta^3\}$ be the basis dual to $\{E_1, E_2, E_3\}$. We obtain for ω , $\widetilde{\omega}$ and $\widetilde{\Omega}$ defined as in Section 3, that $\widetilde{\omega} = 0$, $\widetilde{\Omega} = 0$,

$$\omega = \frac{1}{2} \begin{pmatrix} 0 & (-\lambda_1 - \lambda_2 + \lambda_3)\theta^3 & (\lambda_1 - \lambda_2 + \lambda_3)\theta^2 \\ (\lambda_1 + \lambda_2 - \lambda_3)\theta^3 & 0 & (\lambda_1 - \lambda_2 - \lambda_3)\theta^1 \\ (-\lambda_1 + \lambda_2 - \lambda_3)\theta^2 & (-\lambda_1 + \lambda_2 + \lambda_3)\theta^1 & 0 \end{pmatrix},$$

and then from (3.2), after some calculations, the next proposition.

Proposition 4.1. The Chern-Simons form associated to the homogeneous Riemannian structure S on G, for arbitrarily fixed $\lambda_1, \lambda_2, \lambda_3$ as in (4.2), is given by

$$(4.3) Q_3^S(G_{\lambda_1,\lambda_2,\lambda_3},g) = -\frac{1}{2} \left(\sum_{i \neq j} \lambda_i \lambda_j^2 + 4\lambda_1 \lambda_2 \lambda_3 \right) \theta^1 \wedge \theta^2 \wedge \theta^3.$$

If S=0 then $\lambda_i=0$ $(1 \leq i \leq 3)$ and the group G is commutative; in this case $Q_3^S(G_{0,0,0},g)=0$. Since $S_{E_1}E_1=S_{E_2}E_2=S_{E_3}E_3=0$, one has $c_{12}(S)=0$ and hence S is of type $\mathcal{S}_2 \oplus \mathcal{S}_3$ (see [11, p. 84], [5]). In particular, S is of type \mathcal{S}_2 , that is $\mathfrak{S}_{XYZ}S_{XYZ}=0$ for every $X,Y,Z\in\mathfrak{g}$, if and only if $\lambda_1+\lambda_2+\lambda_3=0$; and S is of type \mathcal{S}_3 , that is $S_XY+S_YX=0$ for $X,Y\in\mathfrak{g}$, if and only if $\lambda_1=\lambda_2=\lambda_3$. By [8] (see also [11, p. 84]), if $S\neq 0$ is of type \mathcal{S}_2 then the Lie algebra \mathfrak{g} of G is either the Lie algebra $\mathfrak{e}(1,1)$ of the Lie group of rigid motions of the Minkowski plane or $\mathfrak{sl}(2,\mathbb{R})$, and we have that

$$Q_3^S(G_{\lambda_1,\lambda_2,\lambda_3},g) = -\frac{1}{2} (\lambda_1^3 - \lambda_2^3 - \lambda_3^3 + 4\lambda_1\lambda_2\lambda_3) \theta^1 \wedge \theta^2 \wedge \theta^3,$$

with $\sum \lambda_i = 0$. If $S \neq 0$ is of type S_3 we may suppose $\lambda_i = 1$, i = 1, 2, 3; then $\mathfrak{g} = \mathfrak{su}(2)$, and we have that

$$Q_3^S(SU(2),g) = -\frac{1}{2}\theta^1 \wedge \theta^2 \wedge \theta^3.$$

As a consequence of Milnor's classification [8] of 3-dimensional unimodular Lie algebras, if S is neither of type S_2 nor S_3 then \mathfrak{g} is either the Heisenberg Lie algebra \mathfrak{h}_3 or the Lie algebra \mathfrak{e}_2 of the Lie group of rigid motions of the Euclidean space. If \mathfrak{g} is the Lie algebra of the Heisenberg group H_3 we may suppose that $\lambda_1 = 1$ and $\lambda_2 = \lambda_3 = 0$; in this case,

$$Q_3^S(H_3,g) = -\frac{1}{2} \theta^1 \wedge \theta^2 \wedge \theta^3.$$

If $\mathfrak{g} = \mathfrak{e}_2$, then one of the constants, suppose λ_3 , is null; in this case,

$$Q_3^S(E(2)_{\lambda_1,\lambda_2},g) = -\frac{1}{2} (\lambda_1 + \lambda_2)(\lambda_1 - \lambda_2)^2 \theta^1 \wedge \theta^2 \wedge \theta^3.$$

4.2 The Heisenberg group

Consider again the Heisenberg group H_3 , that is, the simply connected Lie group corresponding to the Lie algebra $\mathfrak{h}_3 = \langle a, x, y \rangle$ with non-zero bracket [x, y] = a. We now endow H_3 with the left-invariant pseudo-Riemannian metric defined at \mathfrak{h}_3 by the diagonal matrix $g = \text{diag}(\varepsilon, 1, 1)$ with respect to the given basis, where $\varepsilon = \pm 1$. Let $\{\tau, \alpha, \beta\}$ be the basis dual to $\{a, x, y\}$. Then, integrating Ambrose-Singer's equations (2.1), we obtain [5, 11] the 1-parameter family of homogeneous pseudo-Riemannian structures

$$(4.4) S_{\lambda} = \lambda \tau \otimes (\alpha \wedge \beta) + \frac{1}{2} \varepsilon \beta \otimes (\tau \wedge \alpha) - \frac{1}{2} \varepsilon \alpha \otimes (\tau \wedge \beta), \lambda \in \mathbb{R}.$$

From this we have that

$$\begin{split} \omega &= \frac{1}{2} \begin{pmatrix} 0 & -\beta & \alpha \\ \varepsilon \beta & 0 & \varepsilon \tau \\ -\varepsilon \alpha & -\varepsilon \tau & 0 \end{pmatrix}, \text{ and letting} \quad A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} : \\ \widetilde{\omega} &= \left(\frac{\varepsilon}{2} + \lambda\right) \tau A, \qquad \widetilde{\Omega} = \left(\frac{\varepsilon}{2} + \lambda\right) \alpha \wedge \beta A, \end{split}$$

and then, after some computations from (3.2), we obtain the following proposition.

Proposition 4.2. The form of homogeneity on (H_3, g_{ε}) corresponding to the homogeneous pseudo-Riemannian structure S_{λ} is given by

$$Q_3^{S_{\lambda}}(H_3, g_{\varepsilon}) = -\frac{1}{2} \left(\frac{1}{2} - 2\lambda(\lambda + \varepsilon) \right) \tau \wedge \alpha \wedge \beta.$$

Notice that in the Riemannian case (that is, when $\varepsilon = 1$) and if $\lambda = -\frac{1}{2}$, then S_{λ} is the homogeneous Riemannian structure on H_3 obtained in Section 4.1, where the Heisenberg group was considered as a particular case of 3-dimensional unimodular Lie group.

4.3 The generalized Heisenberg group H(1,2)

Consider [3] a 2-nilpotent Lie group N with the left-invariant metric induced by a (not necessarily positive definite) inner product in their Lie algebra $\mathfrak n$. If $\mathfrak n$ is a Lie algebra with inner product $\langle \ , \ \rangle$ and $\mathfrak z$ is the center of $\mathfrak n$, one considers a decomposition $\mathfrak n=\mathfrak z\oplus\mathfrak v$, where $\mathfrak z=\mathfrak U\oplus\mathfrak Z$, $\mathfrak v=\mathfrak V\oplus\mathfrak E$, $\mathfrak U$ stands for the null subspace of $\mathfrak z$, and $\mathfrak V\subset\mathfrak v$ for a complementary null subspace. An example of the construction in [3] is the generalized Heisenberg group H(1,2) of dimension 5, whose Lie algebra is $\mathfrak n=\mathfrak U\oplus\mathfrak Z\oplus\mathfrak V\oplus\mathfrak E=\langle\{u,z,v,e_1,e_2\}\rangle$, where $\mathfrak U=\langle\{u\}\rangle$, $\mathfrak Z=\langle\{z\}\rangle$, $\mathfrak V=\langle\{v\}\rangle$ and $\mathfrak E=\langle\{e_1,e_2\}\rangle$, with non-vanishing brackets $[e_1,e_2]=z$, $[v,e_2]=u$, and non-trivial inner products

$$\langle u, v \rangle = 1, \quad \langle z, z \rangle = \varepsilon, \quad \langle e_1, e_1 \rangle = \bar{\varepsilon}_1, \quad \langle e_2, e_2 \rangle = \bar{\varepsilon}_2,$$

where each ε -symbol is ± 1 independently, so that the pseudo-Riemannian metric on H(1,2) defined by $\langle \ , \ \rangle$ has signature $(k,5-k), 1 \le k \le 4$. Let $\{\eta, \theta, \tau, \alpha^1, \alpha^2\}$ denote the dual basis to $\{u, z, v, e_1, e_2\}$. Then integration of Ambrose-Singer's equations (2.1) gives us [5] the only homogeneous pseudo-Riemannian structure

$$(4.5) \ S = \frac{\varepsilon}{2} \alpha^2 \otimes (\theta \wedge \alpha^1) - \frac{\varepsilon}{2} \alpha^1 \otimes (\theta \wedge \alpha^2) - \frac{\varepsilon}{2} \theta \otimes (\alpha^1 \wedge \alpha^2) - \tau \otimes (\tau \wedge \alpha^2).$$

We obtain that

$$\omega = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 & 2\tau \\ 0 & 0 & 0 & -\alpha^2 & \alpha^1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \varepsilon \bar{\varepsilon}_1 \alpha^2 & 0 & 0 & \varepsilon \bar{\varepsilon}_1 \theta \\ 0 & -\varepsilon \bar{\varepsilon}_2 \alpha^1 & -2\bar{\varepsilon}_2 \tau & -\varepsilon \bar{\varepsilon}_2 \theta & 0 \end{pmatrix}, \qquad \widetilde{\omega} = 0, \qquad \widetilde{\Omega} = 0,$$

and by means of some computations from (3.2) and (3.3), we have the following proposition.

Proposition 4.3. The forms of homogeneity on $(H(1,2), g_{\varepsilon\bar{\varepsilon}_1\bar{\varepsilon}_2})$ corresponding to the homogeneous pseudo-Riemannian structure S are

$$Q_3^S(H(1,2), g_{\varepsilon\bar{\varepsilon}_1\bar{\varepsilon}_2}) = -\frac{1}{2}\,\bar{\varepsilon}_1\,\bar{\varepsilon}_2\,\theta \wedge \alpha^1 \wedge \alpha^2, \qquad Q_5^S(H(1,2), g_{\varepsilon\bar{\varepsilon}_1\bar{\varepsilon}_2}) = 0.$$

5 Secondary classes $[Q_{2r-1}^S]$ of compact quotients of Lie groups

Now, we determine the secondary classes $[Q_{2r-1}^S]$ of the compact quotients of the spaces considered in Section 4. For this, we first note that given a left-invariant form α on a Lie group G, then it is invariant under the action of a discrete subgroup Γ of G, so that there exists a form $\widehat{\alpha}$ on the quotient $\Gamma \backslash G$ such that $\pi^*(\widehat{\alpha}) = \alpha$, where π denotes the natural projection $\pi \colon G \to \Gamma \backslash G$. In the sequel, we shall denote by $\widehat{\alpha}$ such a projected form of a left-invariant form α on G onto a compact quotient $\Gamma \backslash G$. If g is a left-invariant metric on G then it projects to a metric \widehat{g} on $\Gamma \backslash G$ such that the map $\pi \colon (G,g) \to (\Gamma \backslash G,\widehat{g})$ is a local pseudo-Riemannian isometry. Moreover, the Levi-Civita connection $\widehat{\nabla}$ projects to the Levi-Civita connection $\widehat{\nabla}$ on $\Gamma \backslash G$ and each homogeneous pseudo-Riemannian structure \widehat{S} on $\Gamma \backslash G$, where Γ is a uniform discrete subgroup of G.

5.1 The 3-dimensional unimodular groups

We first recall that for a compact orientable 3-dimensional manifold M one has $H^3(M,\mathbb{R}) \approx \mathbb{R}$. On the other hand, the compact quotients of the 3-dimensional

unimodular Lie groups G were classified in [10], and such manifolds are orientable. Thus, $H^3(\Gamma \backslash G, \mathbb{R}) \approx \mathbb{R}$ in all the cases, which we now recall:

The Abelian group \mathbb{R}^3 has vanishing Chern-Simons form, so its only compact quotient, the 3-torus T^3 , has no non-trivial corresponding secondary class.

The compact quotients of the Heisenberg group are the S^1 -bundles over the torus T^2 with Euler class $m \in H^2(T^2, \mathbb{Z})$. One has such a bundle for each $m \in \mathbb{Z}$.

Let $\widetilde{E^0}(2)$ be the universal covering of the identity component $E^0(2) = SO(2) \ltimes \mathbb{R}^2$ of the Euclidean group E(2). The compact quotients of $\widetilde{E^0}(2)$ are the 2-torus bundles over S^1 , which are flat manifolds with cyclic holonomy equal to either \mathbb{Z}_2 or \mathbb{Z}_3 or \mathbb{Z}_4 or \mathbb{Z}_6 or 1.

The compact quotients of the group E(1,1) of rigid motions of the Minkowski plane are torus bundles over S^1 satisfying a supplementary condition.

The group $SU(2) \approx S^3$ is compact. Their quotients as above are either lens spaces when Γ is a cyclic group (one for each $m \in \mathbb{Z}$, m > 1), or well the quotient spaces by Γ , where Γ is either the binary dihedral group, or the binary tetrahedral group, or the binary octahedral group, or the binary icosahedral group.

The compact quotients of the universal covering $\widetilde{SL}(2,\mathbb{R})$ of the Lie group $SL(2,\mathbb{R})$ are defined by a Fuchsian group Γ of the first kind satisfying certain conditions. We have the following proposition.

Proposition 5.1. For any 3-dimensional unimodular Lie group G, the Chern-Simons form $Q_3^S(G_{\lambda_1,\lambda_2,\lambda_3},g)$ in (4.3) defines the secondary class

$$-\frac{1}{2} \left(\sum \lambda_i^3 - \sum_{i \neq j} \lambda_i \lambda_j^2 + 4 \lambda_1 \lambda_2 \lambda_3 \right) \left[\widehat{\boldsymbol{\theta}}^{\ 1} \wedge \widehat{\boldsymbol{\theta}}^{\ 2} \wedge \widehat{\boldsymbol{\theta}}^{\ 3} \right],$$

associated to the homogeneous pseudo-Riemannian structure \widehat{S} induced on any of the compact quotients $(\Gamma \backslash G, \widehat{g})$ by the homogeneous pseudo-Riemannian structure S in (4.1). If $G = H_3$, SU(2), the secondary class is given by

$$-\frac{1}{2} [\widehat{\theta}^1 \wedge \widehat{\theta}^2 \wedge \widehat{\theta}^3].$$

For $G = E(1,1), \widetilde{SL}(2,\mathbb{R}),$ we have the class

$$-\frac{1}{2} \left(\lambda_1^3 - \lambda_2^3 - \lambda_3^3 + 4\lambda_1\lambda_2\lambda_3\right) [\widehat{\theta}^1 \wedge \widehat{\theta}^2 \wedge \widehat{\theta}^3], \qquad \sum \lambda_i = 0.$$

If $G = \widetilde{E}^0(2)$, one has the class

$$-\frac{1}{2}(\lambda_1+\lambda_2)(\lambda_1-\lambda_2)^2 [\widehat{\theta}^1\wedge\widehat{\theta}^2\wedge\widehat{\theta}^3].$$

5.2 The Heisenberg group

The cohomology of the compact quotient of the Heisenberg group H_3 by a discrete subgroup Γ is known to be [2], as a consequence of Nomizu's Theorem

[9], equal to

$$H^{0}(\Gamma \backslash H_{3}, \mathbb{R}) = \{[1]\}, \qquad H^{1}(\Gamma \backslash H_{3}, \mathbb{R}) = \{[\widehat{\alpha}], [\widehat{\beta}]\},$$

$$H^{2}(\Gamma \backslash H_{3}, \mathbb{R}) = \{[\widehat{\tau} \wedge \widehat{\alpha}], [\widehat{\tau} \wedge \widehat{\beta}]\}, \qquad H^{3}(\Gamma \backslash H_{3}, \mathbb{R}) = \{[\widehat{\tau} \wedge \widehat{\alpha} \wedge \widehat{\beta}]\}.$$

Then we have the following proposition.

Proposition 5.2. The Chern-Simons form $Q_3^{S_{\lambda}}(H_3, g_{\varepsilon})$ in Proposition 4.2 determines the secondary class $-\frac{1}{2}(\frac{1}{2}-2\lambda(\lambda+\varepsilon))[\widehat{\tau}\wedge\widehat{\alpha}\wedge\widehat{\beta}]$ associated to the homogeneous pseudo-Riemannian structure \widehat{S}_{λ} induced on the compact quotient $(\Gamma\backslash H_3, \widehat{g}_{\varepsilon})$ by the homogeneous pseudo-Riemannian structure S_{λ} in (4.4).

5.3 The generalized Heisenberg group H(1,2)

We can compute, again as a consequence of Nomizu's Theorem, the cohomology of the compact quotient $\Gamma \setminus H(1,2)$ of the generalized Heisenberg group H(1,2) by a discrete subgroup Γ , obtaining:

$$\begin{split} H^0(\Gamma\backslash H(1,2),\mathbb{R}) &= \langle 1\rangle, \qquad H^1(\Gamma\backslash H(1,2),\mathbb{R}) = \langle [\widehat{\tau}], [\widehat{\alpha}^1], [\widehat{\alpha}^2]\rangle, \\ H^2(\Gamma\backslash H(1,2),\mathbb{R}) &= \langle [\widehat{\eta}\wedge\widehat{\tau}], [\widehat{\eta}\wedge\widehat{\alpha}^1+\widehat{\theta}\wedge\widehat{\tau}], [\widehat{\eta}\wedge\widehat{\alpha}^2], \\ & \qquad \qquad [\widehat{\theta}\wedge\widehat{\alpha}^1], [\widehat{\theta}\wedge\widehat{\alpha}^2], [\widehat{\tau}\wedge\widehat{\alpha}^1]\rangle, \\ H^3(\Gamma\backslash H(1,2),\mathbb{R}) &= \langle [\widehat{\eta}\wedge\widehat{\theta}\wedge\widehat{\alpha}^2], [\widehat{\eta}\wedge\widehat{\tau}\wedge\widehat{\alpha}^1], [\widehat{\eta}\wedge\widehat{\tau}\wedge\widehat{\alpha}^2], [\widehat{\eta}\wedge\widehat{\alpha}^1\wedge\widehat{\alpha}^2], \\ & \qquad \qquad [\widehat{\theta}\wedge\widehat{\tau}\wedge\widehat{\alpha}^1], [\widehat{\theta}\wedge\widehat{\alpha}^1\wedge\widehat{\alpha}^2]\rangle, \\ H^4(\Gamma\backslash H(1,2),\mathbb{R}) &= \langle [\widehat{\eta}\wedge\widehat{\theta}\wedge\widehat{\tau}\wedge\widehat{\alpha}^1], [\widehat{\eta}\wedge\widehat{\theta}\wedge\widehat{\tau}\wedge\widehat{\alpha}^2], [\widehat{\eta}\wedge\widehat{\theta}\wedge\widehat{\alpha}^1\wedge\widehat{\alpha}^2]\rangle, \\ H^5(\Gamma\backslash H(1,2),\mathbb{R}) &= \langle [\widehat{\eta}\wedge\widehat{\theta}\wedge\widehat{\tau}\wedge\widehat{\alpha}^1\wedge\widehat{\alpha}^2]\rangle. \end{split}$$

Then we have the following proposition.

Proposition 5.3. The Chern-Simons form $Q_3^S(H(1,2), g_{\varepsilon\bar{\varepsilon}_1\bar{\varepsilon}_2})$ in Proposition 4.3 determines the secondary class $-\frac{1}{2}\bar{\varepsilon}_1\bar{\varepsilon}_2\left[\widehat{\theta}\wedge\widehat{\alpha}^1\wedge\widehat{\alpha}^2\right]$ associated to the homogeneous pseudo-Riemannian structure \widehat{S} induced on the compact quotient $(\Gamma\backslash H(1,2), \widehat{g}_{\varepsilon\bar{\varepsilon}_1\bar{\varepsilon}_2})$ by the homogeneous pseudo-Riemannian structure S in (4.5).

6 Final remarks

For the class of pseudo-Riemannian homogeneity in Proposition 5.2, we have

$$[Q_3^{S_\lambda}](\Gamma \backslash H_3, \widehat{g}_\varepsilon) = 0, \text{ for } \varepsilon = 1, \, \lambda = \frac{\pm \sqrt{2} - 1}{2}, \text{ or } \varepsilon = -1, \, \lambda = -\frac{1}{2},$$

so that in these cases the pseudo-Riemannian compact quotient of the Heisenberg group, endowed with that homogeneous pseudo-Riemannian structure, is "more symmetric" (although they are never symmetric in the usual sense) than

the spaces corresponding to the rest of values of λ . Consider a compact quotient $\Gamma \backslash H(1,2)$ of the generalized Heisenberg group. By Proposition 5.3, we have that

$$[Q_3^S](\Gamma \backslash H(1,2), \widehat{g}_{\varepsilon\bar{\varepsilon}_1\bar{\varepsilon}_2}) \neq 0, \qquad [Q_5^S](\Gamma \backslash H(1,2), \widehat{g}_{\varepsilon\bar{\varepsilon}_1\bar{\varepsilon}_2}) = 0.$$

Hence this compact quotient, endowed with that homogeneous pseudo-Riemannian structure, is "more symmetric" than other pseudo-Riemannian manifold of the same dimension whose classes of pseudo-Riemannian homogeneity are nonnull

References

- W. Ambrose & I.M. Singer, On homogeneous Riemannian manifolds, Duke Math. J. 25 (1958) 647–669.
- [2] L.A. Cordero, M. Fernández & A. Gray, The failure of complex and symplectic manifolds to be Kählerian, Proc. Symp. Pure Math. **54** (1993), Part 2, 107–123.
- [3] L.A. Cordero & P.E. Parker, Pseudo-Riemannian 2-step nilpotent Lie groups (preprint).
- [4] P.M. Gadea & J.A. Oubiña, Homogeneous pseudo-Riemannian structures and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1992) 449– 465.
- [5] —, Reductive homogeneous pseudo-Riemannian manifolds, Monatsh. Math. 124 (1997) 17–34.
- [6] —, Chern-Simons forms of pseudo-Riemannian homogeneity on the oscillator group, to appear in Internat. J. Math. Math. Sci. (2003).
- [7] J.L. Koszul, Lectures on fibre bundles and Differential Geometry, Tata Institute, Bombay, 1960.
- [8] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. in Math. 21 (1976) 293–329.
- [9] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) **59** (1954) 531–538.
- [10] F. Raymond & A.T. Vasquez, 3-manifolds whose universal covering are Lie groups, Topology Appl. 12 (1981) 161–179.
- [11] F. Tricerri & L. Vanhecke, Homogeneous Structures on Riemannian Manifolds, London Math. Soc. Lect. Notes Ser. 83, Cambridge Univ. Press, Cambridge, 1983.

Authors' addresses:

- P.M.G., Institute of Mathematics and Fundamental Physics, CSIC, Serrano 144, 28006 Madrid, Spain. *e-mail*: pmgadea@iec.csic.es
- J.A.O., Departamento de Xeometría e Topoloxía, Facultade de Matemáticas, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain. *e-mail*: oubina@zmat.usc.es