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ABSTRACT

The three-dimensional motion of mesoscale baroclinic dipoles is simulated using a nonhydrostatic Bouss-
inesq numerical model. The initial conditions are two ellipsoidal vortices of positive and negative potential
vorticity anomalies. The flow is moderately ageostrophic with a maximum absolute Rossby number equal
to 0.71. The trajectory of the dipole is related to the maximum potential vorticity anomaly and size of the
vortices. Three cases are considered depending on the curvature of the dipole trajectory: negative, close to
zero, and positive. The ageostrophic flow strongly depends on the distance between the ellipsoidal vortices
d,. For small d,, the vortices move steadily as a compact dipole, and the vertical velocity w has an octupolar
three-dimensional pattern. The horizontal ageostrophic velocity is due to the advective acceleration of the
flow, particularly the centripetal acceleration. The speed acceleration is only relatively important at the rear
and front parts of the dipole axis, where the flow curvature is small but where the flow confluence and
diffluence are, respectively, large. The geostrophy is maximal at the dipole center, on the dipole axis, where
both curvature and speed acceleration are minimal. As d, increases, the dipole self-propagating velocity and
the extreme values of |w| decrease, and vortex oscillations highly distort the octupolar pattern of w. In all
cases, as is typical of balanced mesoscale geophysical flows, the vertical velocity is related to the advection
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of vertical vorticity by the horizontal shear velocity u,,, - V(.

1. Introduction

Mesoscale dipole eddies are flow structures consist-
ing of two patches of oppositely signed vertical vorticity
(Tkeda et al. 1984; Ginzburg and Fedorov 1984; Fe-
dorov and Ginsburg 1986). These dipole eddies, or
mushroom-like currents, are unsteady coherent phe-
nomena, which are found widespread in both the
oceans and atmosphere. They have been the subject of
extensive observational, theoretical, laboratory, and
numerical research. For example, mesoscale dipoles
have been repeatedly observed from satellite imagery
in surface coastal currents (Millot 1985; Fedorov and
Ginsburg 1986; Ahlnéds et al. 1987; Johannessen et al.
1989), and recently from a hydrographic cruise south of
Madagascar (de Ruijter et al. 2004).

Laboratory experiments have reproduced quasi-two-
dimensional dipoles when a jet is applied to a volume
fluid with some vertical motion constraint, typically 1)
stable stratification (van Heijst and Flor 1989; Voro-
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payev et al. 1991; Flor and van Heijst 1994), 2) rotation
in a homogeneous fluid (Flierl et al. 1983; Fedorov and
Ginsburg 1986), or 3) both rotation and stable stratifi-
cation (Voropayev et al. 1997). Other processes involv-
ing dipole generation are the development of centrifu-
gal instability of a barotropic anticyclonic vortex in a
rotating fluid (Kloosterziel and van Heijst 1991; Or-
landi and Carnevale 1999) and the motion of a vertical
cylinder through a rotating fluid in a sloping bottom
tank (Fuentes and van Heijst 1994; Sansén et al. 2001).

Numerical models have successfully simulated the
oceanic dipole formation through the instability of cur-
rents. An initially unstable barotropic jet on the 8 plane
splits up into dipoles that migrate following a curved
trajectory (Flierl et al. 1987). Shimada and Kubokawa
(1997), using the contour dynamics method, simulated
an unstable boundary current evolving into barotropic
dipoles that transported the trapped coastal water mass
away from the boundary. The interaction between de-
tached rings and near-field circulation of a baroclinic
meandering jet produces isolated dipolar eddies, which
propagate with a path curvature that depends on the
strength of the vorticity poles (Flierl et al. 1983; Rob-
inson et al. 1988; Bush et al. 1996; Spall and Robinson
1990; Spall 1995). Similar results on the dipole trajec-
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tory have been recently obtained in quasigeostrophic
numerical simulations of the interaction between a
stable zonal jet and a vortex (Vandermeirsch et al. 2003a,b).

Analytical solutions of the two-dimensional Euler
equation for dipoles were given by Meleshko and van
Heijst (1994) and Lamb (1932). Form-preserving, uni-
formly translating vortex dipoles solutions, or modons
(Stern 1975), have been extensively studied in layer
models. A modon consists of two separated uniform
vorticity cores with a relationship between streamfunc-
tion and vorticity within the vortex core that can be
linear (e.g., Lamb 1932; Stern 1975; Flierl et al. 1980;
Kizner 1997) or nonlinear (McWilliams 1983; Morel
and McWilliams 1997; Kizner et al. 2003; Khvoles et al.
2005).

Mesoscale vortex dipoles are also important because
of their role in the mixing processes and transport of
water properties in the ocean. Their ability to transport
heat or other scalar quantities was addressed, in a two-
layer flow, by Hogg and Stommel (1985), who named
these baroclinic dipoles hetons. Analytical solutions for
a two-layer geophysical heton and the coalescence of
geostrophic vortices have been obtained by Pedlosky
(1985) and Griffiths and Hopfinger (1987), respectively.
More recently, Gryanik et al. (2000) developed an ana-
lytical theory, using the quasigeostrophic form of the
potential vorticity (PV) evolution equation, for the dy-
namics of a population of three-dimensional hetons in a
fast-rotating stratified fluid. Point-vortex dynamics
(Batchelor 1967, section 2.6) was used to address the
volume transport by the dipole propagation (Flierl
1987), a feature also observed experimentally in strati-
fied fluids (Voropayev et al. 1991; Flér and van Heijst
1994). The mass exchange and chaotic particle trans-
port by a dipole in the B plane is related to the change
of vertical vorticity ¢ and potential vorticity conserva-
tion in the vortices (Fuentes et al. 1995), where the
main transport mechanism is the fluid entrainment and
detrainment from the vortices interior (Eames and Flér
1998). Unsteady dipoles in a balanced flow may also
produce the spontaneous generation of inertia—gravity
waves. This process has been observed experimentally
in unsteady vortex collisions (Afanasyev 2003).

Most of the research mentioned above has dealt with
the two-dimensional (2D) characteristics of the dipolar
vortex, which is consistent as a first approximation to
mesoscale geophysical dynamics. Beyond the 2D ap-
proximation mesoscale oceanic dipoles are inherently
three-dimensional (3D) structures. For example, the
mesoscale upwelling associated to these coherent struc-
tures contributes significantly to the biological produc-
tivity increasing the nutrients and phytoplankton con-
centrations in the euphotic zone (e.g., Strass 1992; Flierl
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and Davis 1993; Robinson et al. 1993; McGillicuddy et
al. 1998). The aim of this paper is to describe, using
numerical simulations, the full 3D ageostrophic motion
of these geophysical dipolar vortices.

The analysis of the relatively small 3D ageostrophic
motion of inherently ageostrophic structures as meso-
scale dipoles requires two important conditions,
namely, (i) the dynamical equations must be precise
and diffusionless enough to reproduce the small bal-
anced vertical velocity field in the dipole along its trans-
lation and (ii) the numerical initialization technique
must prevent the generation of inertia—gravity waves
due to the initial imbalance between density and veloc-
ity fields (Hoskins et al. 1985; Ford et al. 2000; Mohe-
balhojeh and Dritschel 2000; Mohebalhojeh and
Dritschel 2001; Vitdez and Dritschel 2004a). Quasigeo-
strophic (e.g., Daley 1991, section 7) or semigeostrophic
dynamics prohibit this generation but they may filter an
important part of the balanced 3D flow as well (Vitdez
and Dritschel 2004b). The numerical model, initializa-
tion, and initial conditions are described in section 2.
Here we use a 3D nonhydrostatic Boussinesq numerical
model (Dritschel and Viddez 2003, hereinafter DV03)
initialized using the PV initialization approach (Vitdez
and Dritschel 2003, hereinafter VDO03). The PV is rep-
resented by contours lying on isopycnal surfaces and is
explicitly conserved so that the numerical diffusion is
very small. The PV initialization approach is based in
the slow increase, during the initialization period, of the
prescribed PV in every fluid particle, in a Lagrangian
way. This method avoids, for sufficiently large initial-
ization periods, the initial generation of inertia—gravity
waves.

Section 3 describes the numerical results. We select
three classes of numerical simulations depending on the
amount of PV in each vortex. These correspond to di-
pole trajectories with negative, close to zero, and posi-
tive curvature. The negative-curvature case is used as
the reference simulation and explained with more de-
tail. While the 3D vertical velocity pattern of isolated
vortices is octupolar, it is found that the vertical velocity
in the pair of vortices forming the dipole has an octu-
polar structure as well, as long as the initial distance
between vortices is close enough. Vortex—vortex inter-
actions inside the dipole may however eventually break
this octupolar structure and originate more complex
patterns.

2. The numerical model and initial conditions

a. The numerical model

We use a 3D triply periodic nonhydrostatic model to
simulate rotating, inviscid, stratified, and volume-pre-
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serving flows under the Boussinesq and f-plane ap-
proximations. The model conserves explicitly the po-
tential vorticity II on a contour representation on iso-
pycnals using the contour-advective semi-Lagrangian
algorithm (Dritschel and Ambaum 1997). The state
variables are the components of the vector potential
@ = (¢, ¥, ¢ ), which provide the 3D velocity u and the
vertical displacement of isopycnals D:

u=—-fVXe and D= -V,

where € = 1/c = f/N is the ratio between the constant
Coriolis and the mean Brunt-Viisild frequencies. The
three prognostic equations are (i), (ii) the equations for
the rate of change of the horizontal ageostrophic di-
mensionless vorticity A, = (4, B) = w/f = (0, — w})/f,
where w;, and w§ are the total and geostrophic hori-
zontal vorticity, respectively; and (iii) the explicit ma-
terial conservation of PV anomaly w on isopycnals. The
horizontal components of the vector potential ¢, = (¢,
) are recovered every time step from the inversion of
A,, = V¢, while the vertical potential ¢ is obtained
from the inversion of the definition of the dimension-
less PVanomalyw=1—-1l=1- (0/f + k) - (k — VD).
More details are given in DV03 and VDO03.

b. Model parameters

In the reference simulation we use a 64° grid with 64
isopycnals in a domain of vertical extent L, = 27
(which defines the unit of length) and horizontal ex-
tents Ly = Ly = cL,, with ¢ = N/f = 100 as the ratio
of the mean Brunt—Viiséld to Coriolis frequency. We
take the (mean) buoyancy period (b.p.) as the unit of
time by setting N = 2. Thus, one inertial period (i.p.)
equals 100 b.p.

To avoid the generation of grid-scale noise, a bihar-
monic hyperdiffusion term —uw(V;Aa, V;3), where
V., x = (9x/dx, dx/dy, edx/0z) is the gradient operator in
the vertically stretched space, is added to the equations
for the rate of change of A,. The hyperviscosity coef-
ficient w is chosen by specifying the damping rate (e-
folding, ey) of the largest wavenumber in spectral space
per inertial period, which was set constant to 10.

The other parameters are the time step 6t = 0.1 b.p.,
and the initialization time At, = 5 i.p. The initialization
time is the minimum time required for the fluid to reach
its initial perturbed state with minimal generation of
inertia—gravity waves. The total period of simulation is
tp = 200 i.p.

c. Initial conditions

The 3D dipoles are simulated as two equal ellipsoids
of oppositely signed PV anomaly. The initial PV con-
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Fi1G. 1. Initial PV contours in the middle isopycnal / = 32. Hori-
zontal domain is x, y € [—r, 7]c. The vortex trajectories for the
three cases (positive, close to zero, and negative curvature) at the
layers i, € [24, 32] are also included. The trajectories of the
deeper part of the vortices experience oscillations seen as depar-
tures from the constant curvature observed in the middle layer.

tours, identical in the three cases, are shown in Fig. 1.
The dipole, with the cyclone located in the north and
the anticyclone in the south, is initially placed in the
western side of the domain since an eastward self-
propagation is expected. The number of initial PV
contours in the middle isopycnal (/ = 32) in every vor-
tex is n. = 10, varying from w = 0 on the outermost
surface to extreme PV anomaly w = w, at the
core, where w, and w, are the maximum and mini-
mum PV anomalies in the cyclone and anticyclone, re-
spectively.

The PV jumps, that is, the PV increment across each
PV contour, differ in the ellipses and depend on the
magnitude of w,. Therefore the PV anomaly incre-
ment is fixed for all contours Aw = w/n, (exception is
the outermost contour where Aw/2). The outermost PV
ellipsoidal layer has horizontal major, minor, and ver-
tical semiaxes (a,,, a,,, a,) = w(c/3, c/5, '/5). The initial
distance between the vortex centers is dy, = \/% Fur-
ther details about the configuration of a single ellipsoid
are given in VDO03. Henceforth, a vortex core refers to
the fluid with extreme constant values of w; that is, w €
[n. — 1, n]w /n,. For a fixed vortex volume, defined by
(an a,,, ay), the trajectory curvature of the dipole k,
depends on the two values @, . The next section de-
scribes the numerical results for three cases: k; < 0,
k; =0, and k; > 0.
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=18

F1G. 2. Time evolution at r = 6, 12, and 18 i.p. of the PV con-
tours in the middle isopycnal for the case k, < 0 (w; = *0.75).
Horizontal domain is x, y € [—m, m]c. The vortex trajectories,
computed every inertial period and starting at = 5 i.p. (black
symbols), are included.

3. Numerical results
a. Potential vorticity

1) CASE k; <0

In this case wg = — w, = 0.75 (Fig. 2). The PV
anomalies cause a moderately large ageostrophic flow
both inertial and statically stable. The time average of
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the extreme Rossby numbers in the domain %" =
+(max{=*{(x, 1)})/f, where { is the vertical vorticity and
the time average ( ) is from t = 5 to ¢t = 30 i.p., are {X_,
R} = {=0.71, +0.52}. The time average of the maxi-
mum Froude number = (max{|w,(x, 7)|})/N = 0.27.

The PV vortices soon deform from their initial ellip-
tical configuration to a more steady shape and start
their eastward propagation (Fig. 2, = 6, 12 i.p.). Some
PV filaments from the outermost PV layers are ex-
pelled back from the dipole axis at later times (Fig. 2,
t = 18 i.p.), but the vortices remain close from each
other and propagate together as a compact dipolar
structure. There is also a clear vortex asymmetry with
the cyclone being more elliptical than the anticyclone
(Fig. 2, t = 18 i.p.).

Because of the small numerical diffusivity of the al-
gorithm the lifetime of the dipoles is very long. Most of
simulations were carried out until 7, = 200 i.p., though
only results from the first 30 i.p. are described here.
Diabatic effects and eddy diffusion do, however, signifi-
cantly contribute to the dynamical decay of these struc-
tures on large time scales (Morel and McWilliams
1997).

2) CASES k; =0 AND k,; > 0

In these cases the PV anomaly of the cyclone is in-
creased to wg = +0.95 (case k,; = 0) and wy = +1.15
(case k; > 0, i.e., approximately 25% and 50% with
respect to their values in the reference simulation),
while the PV anomaly of the anticyclone w, = —0.75 is
unmodified.

The time-averaged Rossby number %" increases to
0.62 (case k; = 0) and 0.71 (case k, > 0), due to the
larger PV in the cyclone. The time-averaged Froude
number ¥ remains however close to the value of the
reference simulation, with 7 = 0.27 (case k, = 0) and
F = 0.28 (case k,; > 0).

The PV contours for cases k; = 0 and k; > 0 are
shown in Figs. 3 and 4, respectively. The vortices bound
together again and move eastward, peeling off fila-
ments during their self-propagation (Fig. 3, 1 = 12, 18
i.p.; Fig. 4,1 = 12, 18 i.p.). In the case k, = 0 the dipole
remains more axisymmetric (Fig. 3, r = 18 i.p., though
this is more clearly seen at later times) than in both the
reference case k,; < 0 (Fig. 2, t = 18 i.p.) and the posi-
tive curvature case (Fig. 4, t = 18 i.p.).

b. Trajectories and curvatures

Since the 3D vortices may be considered as a family
of closed isosurfaces of @, their position at any time can
be defined as
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FIG. 3. As in Fig. 2 but for the case k, = 0 (wy; = 0.95 and
w, = —0.75).

w(x, Hr(x, 1) dV
pE

f w(x, 1) dV
1V+

R ()= ; 1)

where 7 is the volume of the cyclone and anticyclone,
and r is the position vector. The position of the dipole
R,(¢) can be defined as the average:

1
R,=5(R"+R).
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FIG. 4. As in Fig. 2 but for the case k, > 0 (wy = 1.15 and
w, = —0.75).

The vortices and dipole velocities, V*(¢) and V (1),
respectively, can be computed from the vortices and
dipole trajectories R™(¢) and R(7),

dR™

7 and Vd = ? . (2)

This choice is, in practice, more precise than obtaining
V, from the velocity of every vortex defined as (1) but
replacing r(x, ) with the velocity of the fluid particles
u(x, 1), because V~ is very small as compared with u,
approximately O(V*)/O(u) ~107>.

) dR,
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The trajectory curvature « (e.g., Gill 1982, section
7.10) of the vortices or dipole is obtained from the
Frenet-Serret formula:

and N=k XS, 3)

where S and N are the unit vectors tangent and normal
to the dipole trajectory, respectively.

1) CASE k; <0

The trajectories & are shown in Fig. 2. The negative
dipole trajectory in this case, where the PV anomalies
have the same magnitude (w, = —w, ), is due to the
different vertical displacement of isopycnals D in each
vortex, that is, to the different vertical size of the gyres.
The south-north vertical cross section in Fig. 5a, dis-
playing the contours of D and vertical vorticity ¢, shows
this vertical asymmetry. The isopycnals of the cyclone
(right-hand side in Fig. 5a) are displaced vertically in-
ward in the cyclone core, that is, sgn{D(x, y, z)} = sgn{z}
(shrinking), whereas the isopycnals of the anticyclone
(left-hand side) are displaced vertically outward in an-
ticyclone core; that is, sgn{D(x, y, z)} = sgn{z} (stretch-
ing). Thus, the anticyclone has a vertical extent larger
than the cyclone and, since the magnitude of w, are
identical for both vortices, it also has a larger relative
vorticity (Fig. 6). As a consequence of this vertical ex-
tent and vorticity asymmetry, the anticyclone domi-
nates the cyclone and moves along a trajectory with a
negative curvature around a center common to both
vortices.

The time evolution of the angle of V*= = (U™, V")
with the x axis ©®(¢) = arctan[V*(£)/U*(¢)] is shown in
Fig. 7a. A linear fit using a gradient-expansion least
squares method gives O(¢) = [O7 (1) + O (1)] = O, +
Ot (variance 6* = 5.72 X 107°) where the frequency
Q = dO/dt = —3.36 X 102 (i.p.)”". Thus, the dipole
moves clockwise tracing a circle with a time-averaged
curvature k; = —0.161, and a time-averaged period T =
2m/Q = 186 i.p.

The time evolution of V* is shown in Fig. 8. The
amplitude of V= is several orders of magnitude smaller
than the maximum fluid velocity (which is of order 1).
Consistent with the dipole trajectory curvature the cy-
clone has larger speeds {|V'|(f)  [2.34, 2.49] X 1077}
than the anticyclone {|V7|(f) < [1.83, 2.00] X 1073
The time-averaged speed of the dipole is [V,| =
220 X 1077,

The deformation of the 3D dipole can be also in-
ferred from Fig. 1. The surfaces of w at the lower layers
of the vortices are displaced inward (toward the dipole
axis) periodically so that the vortices acquire the shape
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F1G. 5. South—north vertical cross section of w at the x index
iy =12 [x =2m(iy — 1)/64 — m = —2.0] for the cases (a) k; < 0,
(b) k, =0, and (c) k, < 0 att = 6 i.p. Axis domain y € [—m, 7]c,
and z € [, m]. Medium thick lines indicate upwelling (w > 0)
and thin lines downwelling (w < 0) (minimum contour is +2.5 X
107> and D = +2.5 X 107°). The contours of D = =1 X 1072
(dashed thick lines) and ¢ = *=1 X 102 (thickest lines) are in-
cluded. Zero contour lines are always omitted.

of a vertical banana, the cyclone experiencing a larger
deformation than the anticyclone. This is related to in-
ternal oscillations in the dipole (described below in sec-
tion 3g). Such banana-shaped dipoles have been al-
ready observed in full 3D numerical simulations (Beck-
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FiG. 6. Time series (from ¢ = 5 to 30 i.p.) of the maximum
dimensionless relative vorticity ¢/fin the cyclone (continuous line)
and anticyclone (dashed line) for the cases k, < 0 (thin line),
K, =0 (medium thick line), and k, > 0 (thickest line). The cyclone
and the anticyclone are defined, here and in the following figures,
as those locations having wy = +5 X 1072,

ers et al. 2002) and also experimentally in a linearly
stratified nonrotating fluid (Praud and Fincham 2005).

2) CASES k; =0 AND k; >0

The dipole, in the case k,; =0 and due to the increase
of @y, has a quasi-straight trajectory (Fig. 3). The two
vortices now have a similar isopycnal vertical displace-
ment |D(x, y, z)| (Fig. 5b). However, the relative vor-
ticity is still larger in the anticyclone than in the cyclone
(Fig. 6). For this reason the trajectories R™ are not
exactly straight (Figs. 3 and 7b) but have a small fre-
quency Q) = — 2.75 X 1073, obtained from the linear fit
of O(t) = (O () + O (1)] = 0, + Qt (6 = 2.70 X
1073, Fig. 7b), a very large period T = 2285 i.p., and a
small clockwise rotation (k; = —0.014). The speed of
displacement of the vortices [V™| (Fig. 8) are similar
{IVF1(¢) < [2.31,2.48] X 1073 and [V7|(¢) < [2.27, 2.46]
X 1073} because of the small dipole frequency Q). The
time-averaged speed of the dipole is somewhat larger
than in the case k,; < 0, with [V, = 2.40 X 107>

Increasing, again, w; by an amount Aw; = 0.2, now
the cyclone dominates because of its larger vertical ex-
tent with respect to the anticyclone (Fig. 5¢). The rela-
tive vorticity ¢ is approximately equal in both vortices
(Fig. 6). The dipole acquires a clockwise rotation (Fig.
4) with k; = +0.097, a positive frequency Q = +2.57 X
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F1G. 7. Time series (from ¢ = 5 to 30 i.p.) of the angle of V* with
the x axis for the cyclone (continuous line) and the anticyclone
(dashed line) for the cases (a)k, < 0, (b) k, = 0, and (c) k, > 0.

1072 (6% = 3.49 X 1077, Fig. 7c), and a period T = 244
i.p. Consistent with the positive curvature the anticy-
clone speed [V7|(¢) c [2.65, 2.87] X 1072 is larger than
[V*|(t) < [2.31, 2.46] X 1072 (Fig. 8). In this case the
dipole has the largest time averaged speed of the three
cases, [V, = 2.60 X 1072,

c¢. Horizontal velocity
1) CASE k; <0

The magnitude of the total horizontal velocity u,,
(Fig. 9) reaches maximum values of 1.60 at the middle
layer (z = 0) and along the dipole axis. These maxima
are associated with the confluence and difluence of the
horizontal flow in the dipole entrance (rear part) and
exit region (front part), respectively. The minima of |uy|
are located in the vortex centers where the small fluid
speed is similar to the dipole displacement speed.

2) CASES k; =0 AND k; >0

The maximum values of |uy,| are 1.73 (case k, = 0, Fig.
10) and 1.85 (case k,; > 0, Fig. 11). The increase of |u,|
in the dipole axis relative to the reference case is due to
the larger PV gradients, which increase the confluence
and difluence of the horizontal flow.

The effect of the mirror dipole (due to the triply
periodic boundary conditions) is very minor. This can
be deduced, for example, from Fig. 9 where only the
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time (i.p.)

FIG. 8. Time series (from ¢ = 5 to 30 i.p.) of (a) V' and (b) V~
for the cases k,; < 0 (thin line), k = 0 (medium thick line), and
Kk, > 0 (thickest line). The vertical axis is in units of 1072,

smallest contour of |u,| in the dipole is connected with
the one in the mirror dipole. The triply periodic domain
is large enough to largely avoid the influence of neigh-
boring dipoles.

d. Particle trajectories

Introducing the streamfunction @ for the horizontal
and area-preserving flow at z = 0,

u,=-kXV,0, 4)

the co-moving streamfunction W, in a reference frame
connected to the dipole, may be written as

¥==&-(r,xXV,)-k, (5)
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F1G. 9. Time evolution (¢ = 6, 12, and 18 i.p.) of the horizontal
distribution of u, at the middle layer z = 0 for the case k,; < 0.
Horizontal domain is x, y € [—r, 7|c. Only every other vector has
been plotted. The contour @, = +5 X 1072 at z = 0 (thick lines)
is included for reference. Thin lines indicate the speed |u,| (A =
1.5 X 107", with a minimum contour of 1 X 107').
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D

FiG. 10. As in Fig. 9 but for the case k, = 0. F1G. 11. As in Fig. 9 but for the case k, > 0.
where V, = (u,, v,) is the dipole velocity and r, = (x, Np Np o
y) is the position vector. The distribution of W(x, y) 2 2 [V () — W],
i=1 j=

(Fig. 12) shows the elliptical shape of the separatrix of
the dipole. The separatrix was fitted to the zero contour ~ where W ,(i, j) are the values of W in the N, points of the
of W through the minimization of separatrix. The ellipse aspect ratio was matched to
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F1G. 12. The co-moving streamfunction W on the plane z = 0 for
the case k = 0 (thin lines; A = =1.0 X 107°; the zero contour is
included). The horizontal domain is x, y € [—, 7]c. The separa-
trix of the dipole (dashed line), and the outermost positive and
negative PV contours are included (thick lines).

R/R, = 1.09, where R, and R, are the ellipse radii
along the x and y axes. Elliptical separatrices in baro-
tropic dipoles have been found both numerically (Hest-
haven et al. 1995) and theoretically (Khvoles et al. 2005).

Dipoles are almost impermeable to outward particle
fluxes. The separatrix may be regarded as a vortex fron-
tier (closed streamline) between the interior and exte-
rior flow, the latter resembling the 2D irrotational flow
around an elliptical cylinder. Three transport regimes,
depending on the length L, and geometry of the path of
the particles, can be inferred from Figs. 12 and 13,
namely (i) particles with 7/2 = L, < 7 (dots in Fig. 12)
and nonvortical path (Fig. 13a), (ii) particles with L, <
7/2 (blanked region in Fig. 12) and vortical path (Fig.
13b), and (iii) particles with L, = ar (X symbols in Fig.
12) and vortical path (Fig. 13c). The particles located
inside the separatrix experience the largest trajectories.
A few particles initially located outside the separatrix
can be trapped inside the dipole for long times and
transported by the vortex motion over large distances
L, = m (Fig. 12). Some permeability and particle ad-
vection can be inferred from the motion of the fila-
ments that are released during the first stages of the
dipole evolution. These filaments are too thin to modify
the PV field and can be considered as passive
Lagrangian tracers located outside the vortical flow.
Some of them are left behind but most of them move
with the dipole (Figs. 2, 3, and 4 at t = 18 i.p.).
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FiG. 13. Particle trajectories: particles having moved a distance
(a) w2 = Ly, < = with a nonvortical path, (b) L, < m/2 with a
vortical path, and (¢) L, = 7 with a vortical path. Solid dots and
diamonds indicate the initial and final positions of the particle,
respectively. The separatrix of the dipole (dashed line) is in-
cluded.

e. Vertical velocity

1) CAsE k,; <0

The vertical velocity w has an octupolar structure in
the 3D space, or quadrupolar pattern in the horizontal
or vertical 2D planes, of alternating upwelling and
downwelling cells (Fig. 14). The horizontal distribution
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Fi1G. 14. Time evolution (1 = 6, 12, and 18 i.p.) of the horizontal
distribution of w in the grid plane i, = 27 [z = 27 (i, — 1)/64 —
7 = —0.59] for the case k, < 0 (w > 0, medium thick lines; w <
0, thin lines; A = +2.5 X 10~°; minimum contour of =2.5 X 107%).
Horizontal domain is x, y € [—, 7|c. The contour w, = =5 X
1072 at z = 0 (thickest lines) is included.

of w in an isolated mesoscale ellipsoidal vortex has a
quadrupolar pattern (VDO03) However, when two ellip-
soidal vortices get close enough to form a vortex dipole,
they lose their PV symmetry along the major axis: the
PV contours of the outermost part of every vortex ac-
quire a larger curvature than the PV contours located
close to the dipole axis. Thus, the vortices no longer
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F1G. 15. Horizontal distribution of w at ¢ = 12 i.p. on the plane
iy, =53 [z =27w(i, — 1)128 — 7 = —0.59] for the case k; < 0
(w > 0, medium thick lines; w < 0, thin lines; A = +2.5 X 107,
the minimum contour is =2.5 X 107°). The horizontal domain is
x,y € [—m, mc. The contour w, = *+5 X 10"2 at z = 0 (thickest
lines) is included. The dots indicate the grid points.

remain ellipsoidal and their individual quadrupolar w
pattern is lost.

Instead, the largest PV contour curvature occurs at
both sides of the dipole axis, at the rear and front parts,
and hence the new quadrupolar w pattern.

The horizontal distribution of w, in a similar simula-
tion but with higher numerical resolution (128° grid
points, Fig. 15), shows that the quadrupolar structure
remains similar to the lower resolution case (Fig. 14;¢ =
12 i.p.). A small perturbation appears now in the nega-
tive cell of the anticyclone. Results using higher nu-
merical resolution (256> grid points) suggest that this
perturbation could be related to the spontaneous emis-
sion of inertia—gravity wave packets by the balanced
dipole flow.

Extreme values of w in the dipole reaches max{w} =
{25.0, 17.5, 27.5} X 107> and min{w} = —{32.5, 17.5,
25.0) X 1075, at times t = {6, 12, 18} i.p., respectively
(Fig. 14). The time series of max{|w|} (Fig. 16) display a
number of time oscillations. It is shown below that
these are a consequence of the internal dipole motion,
namely the small fluctuations in the vortex trajectories
seen in Fig. 1. As a consequence w in the vortices ex-
perience important changes both in pattern and mag-
nitude. For example, both single extrema of w at r = 6
i.p. are split into two extrema at ¢t = 12 i.p. (Fig. 14), and
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FIG. 16. Time series of the extrema of |w| in the (a) cyclone and
(b) anticyclone for the three cases k, > 0 (thin lines), k = 0
(medium thick line), and k, < 0 (thickest line). The vertical axis
is in units of 1077,

the magnitudes of the maxima decrease approximately
40% (Fig. 16).

The vertical cross section (Fig. 5a) shows the vertical
component of the octupolar structure of w. As is typical
of mesoscale geophysical flows the motion is largely
horizontal, with a ratio O(|u,,|)/O(w) ~10*. The anticy-
clone has larger vertical gradients of w than the cyclone,
consistently with having larger |w/|, as is clearly seen in
the time series of max{|w|} (Fig. 16).

2) CASES k; =0 AND k,; > 0

In these cases w also displays an octupolar pattern
(Figs. 17, 5b, 18, and Sc). The distributions of w are very
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F1G. 17. As in Fig. 14 but for the case k, = 0.

similar to those of the reference simulation and only
changes in magnitude are observed. The w extrema
in the vortices are max{w} = {25.0, 20.0, 32.5} X 107>
and min{w} = —{35.0, 30.0, 32.5} X 107> (case k, = 0,
Fig. 17), and max{w} = {32.5, 27.5, 37.5} X 10~ and
min{w} = —{37.5, 32.5, 37.5} X 107> (case k, > 0, Fig.
18), at times ¢t = {6, 12, 18} i.p., respectively. As ex-
pected, the larger wg in the cyclone, i.e., larger 8" (Fig.
6), increases dw/dz, and the anticyclone has the largest
values of w as observed in the time series of max{|w|}
(Fig. 16).
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F1G. 18. As in Fig. 14 but for the case k,; > 0.

f- Vertical velocity and vertical vorticity

The quadrupolar distribution of w can be diagnosed
from the main forcing term in the generalized omega
equation, which for mesoscale geophysical flows can be
approximately interpreted (Pallas-Sanz and Vitudez
2005) as proportional to the horizontal advection by the
vertical shear velocity of the vertical vorticity:

(fgph + szh@) ’ V121“h = (2f€ph - fé"ph) ’ Vlzzuh
=2f(k X w,,) - (k X V,0) = 2fu, - V,(,
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F1G. 19. Horizontal distribution of w,,_ - V,{ (thick/thin lines
mean positive/negative values) at z = —0.59 and at times ¢ = 6 and
18 i.p. for the case k; < 0 (A = 0.5 X 10~* and minimum contour
of 0.5 X 10~*). Horizontal domain is x, y € [—r, 7]c. The contour
of m, = =5 X 1072 at z = 0 (thickest line) is included for refer-
ence.

where N°V,D = fg8,, and £, = —v.i + u_j is the hori-
zontal pseudovorticity. The horizontal distribution of
w,,, - V,{ is shown in Fig. 19. In the lower layers (z < 0)
the velocity shear u,, is in the direction of u. As the
fluid particles close to the dipole axis move forward
reaching the front, their |{| decreases because the de-
crease in shear vorticity is larger than the increase of
curvature vorticity. Particles in the right (left) side of
the dipole axis lose negative (positive) vorticity. Thus,
w, -V, >0 (u, -V, <0) in the right (left) side,
which implies w < 0 (w > 0). A parallel argument
applies to the rear part of the dipole. In the upper layers
(z > 0) the velocity shear uy, is in the direction of —u,
and therefore sgn{w(z > 0)} = —sgn{w(z < 0)}. The
interpretation of w in terms of w,,.-V,{ predicts the cor-
rect sign of w in both upper and lower layers, indepen-
dent of whether the vertical shear u,,_ is in the same or
opposite direction to w,. The visual quasigeostrophic
interpretation of w in terms of u,, - V,,{ would however
infer the wrong sign in the upper half of subsurface
vortices or meanders where inverse baroclinicity is im-
portant.

g. Horizontal ageostrophic velocity
Using the inviscid horizontal momentum equation
du,,

W"'ka“};:Ov (6)
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the horizontal ageostrophic velocity u;, = u, — u® can
be expressed as
1 du,, _ 1 o (auh

ouy,
?+uh~thh+ WE R

(7)

in terms of the local and the horizontal and vertical
advective accelerations.

In the reference frame defined by the horizontal unit
vectors tangent and normal to the flow, s = w,/u and
n =k Xs (u=|u, #0), the total horizontal and
geostrophic velocities are u, = us, and v® = ués + usn,
respectively. We define that the flow w, is supergeo-
strophic (subgeostrophic) if u > uf,(u < uf). In the (s, n)
reference frame the m component of the horizontal
momentum balance (6) for steady flow (gradient bal-
ance) is

Wk = —f(u — uf), ®)

where k = k-V, X s = n-(s-V,s) is the streamline
curvature. Hence, positive (negative) streamline curva-
ture implies subgeostrophic (supergeostrophic) flow.

1) CASE k; <0

The horizontal ageostrophic velocity at the depth of
maximum speed (z = 0) is shown in Fig. 20. In general
uy, is opposite to uy, in the cyclone, but both point in the
same direction in the anticyclone. Thus, consistent with
(8), the cyclone is subgeostrophic and the anticyclone is
supergeostrophic. The largest |u;| occur in the anticy-
clone (reaching up to 0.35, two times larger than in the
cyclone), consistent with the spatial average time series
of &~ (Fig. 6) and the time series of the extrema of |u/,|
(Fig. 21).

The ageostrophic characteristics of the dipole are
preserved during its time evolution, indicating the
soundness of the gradient balance (8) when the local
acceleration [first term in the rhs of (7)] is small com-
pared to the horizontal advective acceleration [second
term in the rhs of (7)]. The ratio between the horizontal
advective and local accelerations in a simple kinemati-
cal model of a vortex whose center is rotating as P(¢) =
P.e'Y, evaluated at a distance yP(f) (see the appen-
dix), is

[w-V,u

| lol19 = ol =i
lowor] X 7 Q]

Q) — w] ’ ©)

where w is the frequency of the rotating fluid particles
in the vortex, and () is the frequency of the vortex
relative to its center of curvature. In our cases this ratio is
large since (1 — y)|w|/|Q] =[1 — (R; — a,,)/R ]| w|/|Q]| =
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F1G. 20. Time evolution (t = 6, 12, and 18 i.p.) of the horizontal
distribution of wy, at z = 0 for the case k,; < 0 (speed |uy|, thin line
with A = 0.5 X 107", and minimum contour of 10~ "). Horizontal
domain is x, y € [—m, m]c. Only every other vector has been
plotted. The contour of w, = *5 X 1072 at z = 0 (thick line) is
included.
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Fi1G. 21. Time series of the extrema of |uy|, in the (a) cyclone and
(b) anticyclone for the cases k,; < 0 (thin line), k, = 0 (medium
thick line), and k, > 0 (thickest line). The vertical axis is in units
of 107",

(a, /R o)|Q] ~10"w|/|Q] > 1. Hence, the contribu-
tion to wuy, due to the local acceleration is only a small
fraction of the component due to the horizontal advec-
tive acceleration. On the other hand, the ratio between
the horizontal advective acceleration and vertical ad-
vective acceleration [third term in the rhs of (7)],

u,-V,u
[y, h' hl’ (10)
[wou,/az|

has an order of magnitude of O(10%). Thus, the most
important contribution to wj, is due to the horizontal
advective acceleration.

In the (s, n) reference frame, the horizontal advective
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acceleration may be decomposed into speed accelera-
tion and centripetal acceleration:

8 (u? 5
u, Vu,=— = |s+ukn, (11)

os \ 2
where 6/6s = s - V,, is the directional derivative along s.
The horizontal advective acceleration in the dipole is
mainly due to the centripetal acceleration because it
has a large n component (Fig. 22).

The distribution of wu;, (Fig. 20) agrees with the pat-
tern expected from the horizontal advective accelera-
tion (Fig. 22). On one side, the advective acceleration in
the vortices points to the center of the vortices since the
centripetal acceleration is important. On the other side,
along the dipole axis the speed acceleration is more
important, which produces northward (southward)
cross-stream ageostrophic flow entering (leaving) the
speed maxima in the dipole axis. The maximum values
of u;, = |u;| occur at both sides of the rear and front
parts of the dipole axis, where both speed and centrip-
etal accelerations contribute. The flow is more geo-
strophic at the dipole center where the total speed is
maximum (seen as a minimum in u;, in Fig. 20) because
of the lack of curvature and speed acceleration (Fig. 22).

Introducing the unit tangent vector of the horizontal
ageostrophic flow s’ = w;/u;, (u;, # 0), the divergence of
the ageostrophic flow V,, - u;, can be decomposed into
two contributions:

(12)

where s' - V,u;, and u;,V,, - s are the speed acceleration
and the confluence of the ageostrophic flow, respec-
tively. Since the magnitude of the mesoscale vertical
velocity is small, the ageostrophic speed acceleration
and confluence have similar amplitudes but opposite
signs (Figs. 23a,b), reaching extrema of {—5.9, 6.1} and
[—6.6, 6.8} (X107%), respectively.

The vertical shear of the vertical velocity dw/dz (Fig.
23c), computed from (12), shows that the agesotrophic
confluence dominates over the ageostrophic speed ac-
celeration along the axis dipole, while away from the
axis the opposite occurs. As expected, the pattern of
dwldz (Fig. 23c) is similar to the pattern of w (Fig. 14b).

V,-u',=—-ow/az=s"-V,u, +u,V, s,

2) CASES k; =0 AND k; >0

Similar to the reference case, the ageostrophic veloc-
ity w;, for k, = 0 and k, > 0 (Figs. 24 and 25, respec-
tively) has an eightlike pattern with clockwise circula-
tion in both the cyclone (subgeostrophic) and anticy-
clone (supergeostrophic), again with u;, larger in the
anticyclone (Fig. 21). The ageostrophic speed u;, in the
case k, = 0 reaches 0.25 (cyclone) and 0.35 (anticyclone)
(Fig. 24), while in the case k,; > 0 reaches [0.30, 0.35,
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F1G. 22. Horizontal distribution of u,, - V,u,, at time ¢ = 6 i.p. for
the cases (a) k; <0, (b) k, =0, and (c) k, > 0. Horizontal domain
isx, y € [—, m]c. Only every other vector has been plotted. The
magnitude |u,, - V,u,| is shown (thin line, A = 4 X 1073, with a
minimum contour 2 X 10~?). The contour of w, = +=5 X 10" at
z = 0 (thickest line) is included.
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FiG. 23. Horizontal distribution of (a) s’ - V,u,, (b) u,V, -s’
(A = +1 X 1073 with extreme contours =1 X 107%), and (c) aw/dz
(A = =1 X 10~* with extreme contours =1 X 10~%), at r = 12 i.p.
on the middle plane (z = 0) for the case k, < 0. Horizontal
domain is x, y € [—m, m]. Thick (thin) contours mean positive
(negative) values. The vortex locations and the ageostrophic hori-
zontal velocity are included.



100 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 37

F1G. 24. As in Fig. 20 but for the case k, = 0.

0.30] (cyclone) and 0.35 (anticyclone) (Fig. 25) at times
t = {6, 12, 18} i.p. Similar to the reference simulation,
the extreme values of u;, occur where the horizontal
advective acceleration, or more precisely the centrip-
etal acceleration, is large (Figs. 22b,c).

F1G. 25. As in Fig. 20 but for the case k,; > 0.

The minimum of ageostrophy at the dipole center,
also seen in the reference simulation, is highlighted in
these cases, with values of 0.10 at times ¢ = {6, 12, 18}
i.p., because the cyclone is more ageotrophic than in the
reference simulation. Thus, geostrophy is large in the
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F1G. 26. Three-dimensional sketch of the ageostrophic motion
in the baroclinic dipole. The circled cross and circled dot indicate
upwelling and downwelling, respectively.

dipole center (seen as a minimum in u;, in Figs. 24 and
25) because of the lack of curvature and speed accel-
eration at the center of the dipole axis (Figs. 22b,c).

A 3D sketch of the ageostrophic flow is shown in Fig.
26. The eightlike pattern of the horizontal ageostrophic
motion and the four-cell pattern of the vertical motion
are the main characteristics of the ageostrophic flow in
the 3D vortex dipole.

h. Internal oscillations

Results from several numerical simulations starting
from different values of the initial distance between
vortices d,, showed that the process of dipole formation
from two ellipsoidal vortices of opposite PV highly de-
pends on d,,. This is consistent with previous results in
stratified nonrotating fluids (e.g., Couder and Basde-
vant 1986; Beckers et al. 2002). The dipole formation
process involves the interaction between the oppositely
signed PV vortices whose distance of separation d(r)
oscillates with time. We have found no evidence of
reaching a total steady state during the first = 150 i.p.
Equilibrium states have been found in the 2D case
(Pierrehumbert 1980; Dritschel 1995; Billant et al.
1999); however, 3D effects and stratification may play
an important role in this case.

Figure 27 shows the time series of the distance d()
during 50 i.p. For small initial distances d,, the oscilla-
tions are small. For large d,, the dipole experiences
longer phase rotations and consequently larger oscilla-
tions. When the vortices are close enough, the phase
rotation is blocked and only small internal oscillations
are observed. These oscillations remain, however, long,
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F1G. 27. Time series (from ¢ = 5 to 55 i.p.) of the distance
between the vortices d(¢) as a function of the initial distance d,,.

at least longer than ¢ = 150 i.p. in this simulation. The
time average of the dipole speed smoothly decreases
with increasing d, (Fig. 28), and the vertical velocity w
is highly dependent on the initial distance d, (Fig. 29),
decreasing with larger d, as well. During the dipole
stabilization the direction of V, oscillates with a period
of about 6 i.p. (Fig. 7), consistent with the formation of
dipoles from two interacting monopoles in stratified
nonrotating fluids (Beckers et al. 2002).

This adjustment process especially affects the meso-
scale vertical velocity because of its small amplitude, as
observed in the time series of max{w}, (Fig. 16), that
shows periodic oscillations with a period of about 6 i.p.
in both vortices, but with larger amplitude in the anti-
cyclone. These oscillations may be important enough to
change the quadrupolar pattern of the dipole vertical
velocity shown in section 3d. The oscillations affect the
horizontal ageostrophic speed uy, as well (Fig. 21); how-
ever, their amplitude represent only Yo of u;,, while the
relative amplitude of the oscillations in the vertical ve-
locity is 10 times larger.

To asses the effect of the shape of the initial PV
configuration on the ageostrophic motion, a new simu-
lation with two equal spheroids of oppositely signed PV
anomaly was performed (Fig. 30a). In this case, the
ageostrophic motion develops also a quadrupolar pat-
tern on the mesoscale vertical velocity (Fig. 30b) and an
eightlike pattern on the horizontal ageostrophic veloc-
ity (Fig. 30c). Thus, the main characteristics of the ageo-
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FIG. 28. The time-averaged dipole speed | V,,| (in units of 1072)
as a function of the distance between the vortices d,, in the case
Ky < 0. The time average is from ¢ = 5 to 55 i.p.

strophic motion highly depend on the initial distance d,,
between vortices but are largely independent of the
initial PV configuration of the vortices in the dipole.

4. Concluding remarks

This paper is a first attempt to describe the charac-
teristic features of the three-dimensional ageostrophic
motion in baroclinic oceanic mesoscale dipoles. Three
classes of dipole motion, depending on the initial po-
tential vorticity configuration on isopycnals in every el-
lipsoidal vortex, have been numerically simulated.
These three cases correspond to dipole motion with
negative, close to zero, and positive trajectory curva-
ture.

The flow characteristics strongly depend on the dis-
tance between the ellipsoidal vortices d,, relative to the
vortex radius. For small d,, the phase rotation of each
vortex is blocked, the vortices move steadily as a com-
pact dipole, that is, without internal changes, around
the center of curvature. In this case the vertical velocity
w has an octupolar three-dimensional pattern (quadru-
polar in the horizontal plane). Since the w of one iso-
lated elliptical vortex is also octupolar, the octupolar
pattern of w in the dipole is a consequence of the in-
teraction between the vortices. The horizontal ageo-
strophic velocity of the dipole is due to the advective
acceleration of the flow, particularly to the horizontal

d

F1G. 29. The time and spatial averaged positive vertical velocity
in the cyclone (w" > 0) (solid dots), and anticyclone (w~ > 0)
(solid diamonds), as a function of d,, for the case k < 0. The time
average is from ¢ = 5 to 55 i.p. The vertical axis is in units of 107>,

centripetal acceleration. Since the anticyclone is super-
geostrophic and the cyclone is subgeostrophic, the
streamlines of the horizontal ageostrophic velocity in
the dipole form an eightlike pattern, flowing along the
current in the anticyclone and countercurrent in the
cyclone. The speed acceleration is only relatively im-
portant at the rear and front parts of the dipole axis
where the flow curvature is small, but where the flow
confluence and diffluence are, respectively, very large.
The geostrophy is maximal at the dipole center, on the
dipole axis, where both curvature and speed accelera-
tion are minimal.

As the distance between vortices d,, increases, the
dipole self-propagating velocity decreases, the extreme
values of |w| decrease, and the permissible phase rota-
tions of every ellipsoidal vortex highly distort the octu-
polar pattern of w, which is the velocity component
more susceptible to the vortex oscillations. The oscilla-
tions induce a more complex w pattern composed by
additional upwelling and downwelling cells. For very
large d,,, the double octupolar pattern of w correspond-
ing to two separated ellipsoidal vortices is recovered,
though both vortices still move slowly as a noncompact
dipole around the center of curvature. In all cases, as is
typical of balanced mesoscale geophysical flows, the
vertical velocity is related to the advection of vertical
vorticity by the horizontal shear velocity w,,, - V,{.

The characteristics of the ageostrophic motion of a
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F1G. 30. Numerical simulation initialized with two equal spheroids
(aylc = a,/c = a, = wl5) for the case k < 0. Horizontal domain is
x,y € [—m, ). (a) Initial PV contours in the middle isopycnal ¢ = 32.
The vortex trajectory is included. (b) Horizontal distribution of w at
time ¢ = 18 i.p. on the plane i, = 27 (w > 0, medium thick lines; w
< 0, thin lines; A = =1 X 107 with extreme contours *=1.5 X 1075).
The contour of @, = =5 X 1072 at z = 0 (thick line) is included. (c)
Horizontal distribution of wj, at time ¢ = 18 i.p. and z = 0 (speed [u}|,
thin line with A = 0.5 X 10~" and minimum contour 0.25 X 107 1).
Only every other vector is plotted. The contour of @, = +5 X 1072
at z = 0 (thick line) is included.
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single dipole investigated here are the basis for future
research on the interaction processes between dipoles,
specifically dipole collision and the possible generation
of inertia—gravity waves.
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APPENDIX

Derivation of (9)

We consider the horizontal motion of a rotating fluid
in constant solid body rotation with frequency w rela-
tive to a point P(f) = Pye'¥, which is itself constantly
rotating around the origin of coordinates with fre-
quency . We use here the boldface type to denote
complex numbers as horizontal vectors in the plane (x,
y). The motion is described by the position of every
fluid particle,

r(X.0) = Pee'™ + (X — Po)e'”, (A1)

where X is the label of the fluid particle (equal to its
position at ¢t = 0).
The inverse function gives the particle at every loca-
tion:
R(x,) = xe " = Pye' ™" + P, (A2)

The fluid velocity in the material description is
~ ar - iQr . iwt
uX,r) = ! (X,0) = iP,Qe™™ + i(X — Py)we',

Using (A2), the velocity in the spatial description is
u(x,f) = iPy(Q — w)e'Y + ixw.

The first term above is the velocity due to the rotation
of P(¢) (which only depends on 7) and the second term
is the velocity due to the solid-body rotation (which
only depends on x). At points x = xP(¢), where 0 < y =
1, the ratio between the advective and local accelera-
tions is

[u-V,u B |w(Q — w)P(f) + 0’x|
lowdt]  |POQUQ — )]

(@ — ) + o'yl
120 - )]

10l 19— (1 — )
0] 1= ol

for (1 — x)lw| > Q.

>1 (A3)
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