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Abstract 

A combined study of coccolithophore assemblages and biomarkers in a gravity 

core situated in the Ría de Vigo (NW Spain) allowed us to reconstruct the 

paleoenvironmental conditions for the last 3000 years. The quantitative 

distribution of coccolithophore species points to three different intervals within 

the core, dated by AMS radiocarbon measurements. The first interval (ca. 975 

BC-252 AD), characterized by high abundances of Calcidiscus leptoporus and 

Gephyrocapsa muellerae, is thought to represent moderate water temperatures, 

suggesting a transition from a warmer to a cooler period. The second interval 

(ca. 252-1368 AD), characterized by the dominance of Coccolithus pelagicus, 

Helicosphaera carteri and Syracosphaera spp., and a high concentration of 

hexacosanol linked to terrestrial input, is interpreted as having been a humid 

period with fluvial input. The third interval (ca. 1368 AD-1950) is characterized 

by a high abundance of Gephyrocapsa oceanica, high values of alkenones and 
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low values of hexacosanol, and is thought to represent a period dominated by 

oceanic conditions within the Ría. 

 

Taking into account the ocean-atmospheric system affecting in the region 

studied, here we propose an alternation in the mean state of North Atlantic 

Oscillation (NAO) on millennial time scales. A well developed upwelling system 

and an active Ría-ocean connection during the warmer interval I, suggest a 

NAO+ phase influenced by a Hypsithermal period. The occurrence of the humid 

and relatively warm Interval II is consistent with a negative phase in the NAO, 

as well as a relative restriction in ocean-Ría exchange. Interval III, which was 

drier and more productive, suggests again a dominance of a positive phase in 

the NAO, with a more intense oceanic connection and more energized 

upwelling. 

 

Keywords: North Atlantic, Ría de Vigo, Coccoliths, Molecular Biomarkers, 

Alkenones, Holocene, Hypsithermal, North Atlantic Oscillation (NAO). 

 

1. Introduction and oceanographic setting 

A ría is a river valley that has been invaded by the sea (Derruau, 1983). The 

Ría de Vigo is located on the Spanish Atlantic coast and is the most southern 

one of the group known as the “Rías Bajas” (Fig. 1). It is oriented along a 

central axis, direction N45°E, and occupies an area of 176 km2. Along the major 

axis (33 km), is a central channel, with a maximum depth of 45 m at the mouth. 

The San Simón Inlet is the narrowest, most inland portion of the Ría (Fig. 1). 
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This Inlet is connected through the narrow (600 m) Rande Strait to the Ría. The 

Cies Islands, to the west, form a natural barrier to the sea, resulting in relatively 

calm conditions in the Ría de Vigo (Vilas et al., 1995; Fig. 1). 

 

The Ría de Vigo overlies a bedrock that was heavily fractured during the 

Hercynian orogeny (IGME, 1981). These tectonic dynamics, together with 

subsidence and the Flandrian transgression (Derruau, 1983) resulted in the 

Fiord-like morphology of the Rías. These characteristics are now seen in a 

complex system in which ocean and continent interact, leaving a mixed 

signature of both environments in the sediments of the Ría. 

 

The Ría de Vigo area is affected by the East North Atlantic Water (ENAW) 

circulation pattern. This anticyclonic circulation produces an upwelling system at 

the mouth of the Ría, resulting in lower surface water temperatures, higher 

nutrient contents, and high primary production (García-Gil et al., 1995; Prego, 

1993). Water dynamics inside the Ría de Vigo, follow an estuarine circulation 

pattern, with a deep current flow into the Ría, and surface water export out of 

the Ría (García-Gil et al., 1995). Overprinting this general pattern, a seasonal 

wind system affects this estuarine circulation. During summer, an anticyclonic 

wind circulation linked to the Azores High belt reinforces the estuarine pattern 

(Álvarez-Salgado et al., 1993), with an enhancement of upwelling due to 

stronger northern winds. Conversely, during winter, the southern position of the 

Atlantic Low belt, defines a dominant southerly wind regime. At this time, the 

interchange between the Ría and the ocean is diminished or is interrupted. 
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The dominant upwelling phases produce a mixture in the water column; 

conversely, when upwelling is weakened, circulation between the Ría and the 

open ocean decreases, and the waters become stratified (García-Gil et al., 

1995). Modern river discharge has also introduced anthropogenically-produced 

nutrients from fertilizers that can produce peaks of higher productivity, although 

always in minor proportions as compared to the above process. Today, the 

sewer outlet of the City of Vigo accounts for most of the organic carbon 

delivered into the Ría de Vigo (Prego, 1993).  

 

The Ría de Vigo is a high-productivity area where diatoms, dinoflagellates, 

coccolithophores and other microorganisms are abundant. Here we focus on 

coccolithophores, planktonic organisms surrounded by calcium carbonate 

scales. Their preservation in the sediment provides an excellent record for 

characterizing surface water-masses. Assemblages of this group respond to 

changes in environmental conditions and, together with biogeochemical 

analyses, provide a tool to reconstruct paleoenvironmental conditions. In the 

present study we combine the characterization of coccoliths and molecular 

biomarkers from a sediment core aiming at elucidating changes in the surface 

water dynamics of the Ría de Vigo for the last 3000 years, monitoring sea-

continent interactions in this particular transitional area. 

 

2. Materials and methods 

Core VIR-18 was collected in 1990 using a “vibrocorer”. This core (380 cm long) 

was retrieved from the central part of the Ría de Vigo (42°14.07 N, 8°47.37W) 

at a water depth of 45 m (Fig 1). Dark olive-grey clay and silt with bioclastic 
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fragments of mollusks (mainly bivalves and gastropods) are the main 

constituents of these sediments. Short intervals of bioturbation are the only 

sedimentary structures observed. Samples for micropaleontological and 

biochemical analyses were taken systematically every 5 cm, providing a 

temporal resolution of about ∼30 years in average. 

 

2.1. Age model 

In this study we used the age model determined by Diz et al. (2002). The 

chronology is based on two Accelerator Mass Spectrometry (AMS) radiocarbon 

measurements: one at the 226–228 cm interval (ca. 907-890 AD) on bivalve 

shells (Venus sp.) found in the same position as when they were alive, and the 

other at the core bottom, 380 cm, where bioclastic fragments are present. 

These analyses were carried out at the Paleobotany and Paleolimnology 

Laboratory of the University of Utrecht. Radiocarbon data were converted into 

calibrated ages using the Calib 4.3 radiocarbon calibration program (Stuiver et 

al., 2000, based on Stuiver and Reimer, 1993) (Table I). Ages between these 

data points are obtained by linear interpolation. Small changes in sedimentation 

rate are no detected and can be the responsible of some fluctuations in the 

coccolith abundance record. 

 

2.2. Smear slide preparations 

Smear slides were prepared using sediment solution decantation. The solution 

was distributed uniformly in Petri dishes by pumping it in and out several times 

with a micropipette (in order to create a little water circulation into the dish). A 

coverslip was placed at the bottom of each dish and decantation was 
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performed. The fluid was then withdrawn from each dish. After the dishes had 

been dried, smear slides were assembled with Canada balsam (Flores and 

Sierro, 1997). 

 

For quantitative analysis, we used a light polarizing microscope (1250x). Around 

500 coccoliths were counted per slide. To provide percentages and absolute 

abundances as Flores and Sierro (1997) referred. Additional Scanning Electron 

Microscope analyses were carried out in selected samples to precise about 

taxonomical aspects and to observe preservation features. 

 

2.3. Coccolith preservation 

Coccolith preservation in the analysed samples can be considered good to 

moderate (see for example Roth and Thierstein, 1972; Flores and Marino, 

2002). Punctual observations in the ring elements of small placoliths and other 

fragile liths allow us conclude that only small etching affected the assemblage 

along the VIR-18 core. In all the cases this dissolution sings does not preclude 

the taxonomical identification. 

 

2.4. Molecular biomarkers 

Variations in selected molecular biomarker abundances through the 

sedimentary record have often been used to assess the relative importance of 

the different organic matter sources over time. Amongst the most studied 

compounds are the C37 alkenones, which allow the establishment of paleo-sea 

surface temperatures (SST) by means of the UK
37 index (initially defined by 

Brassell et al., 1986 and later simplified as UK'
37 by Prahl et al., 1988). These 

 6



Haptophyte algae-derived compounds are also interpreted frequently in terms of 

paleo-marine primary production (e.g. Villanueva et al., 1997a, Budziak et al., 

2000). Other biomarkers of relevance are the higher plant derived long chain 

alkanes and alcohols (Eglinton and Hamilton, 1967), which help elucidate 

changes in continental supply to the sediments (e.g. Ikehara et al., 2000; Calvo 

et al., 2001).  

 

In this study, we present previously published data (Diz et al., 2002) on 

alkenone and n-hexacosan-1-ol concentrations as well as SSTs derived from 

the UK
37 index, that were generated using published methods (Villanueva et al., 

1997b). Translation of UK'
37 ratios into SST was achieved using the global core-

top calibration equation of Müller et al., (1998; UK'
37 = 0.033 SST + 0.044). 

 

3. Results 

3.1. Coccolithophore assemblage 

The coccolithophore assemblage of core VIR-18 is mainly represented for eight 

taxa: Calcidiscus leptoporus (Murray and Blackman, 1898) Loeblich and 

Tappan, 1978 f. leptoporus, Gephyrocapsa muellerae Bréhéret, 1978, 

Coccolithus pelagicus (Wallich, 1877) Schiller, 1930 f. pelagicus, Helicosphaera 

carteri (Wallich 1877) Kamptner, 1954 var. carteri, Syracosphaera spp. 

Lohmann, 1902, Gephyrocapsa oceanica Kamptner, 1943, Emiliania huxleyi 

(Lohmann, 1902) Hay and Mohler, in Hay et. al., 1967 var. huxleyi and the 

group "small” Gephyrocapsa (this group includes species with a maximum 

coccolith diameter of <3µm; Gephyrocapsa aperta Kamptner, 1963 and 

Gephyrocapsa ericsonii McIntyre and Bé, 1967). The "small” Gephyrocapsa 
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group (more than 50% of the total abundance) and E. huxleyi (27%) are the 

dominant taxa. G. oceanica reaches 7% whereas the other species fluctuate 

between 1 and 2% (Fig. 2). The downcore accumulation rate of each taxon is 

shown in Figure 3. C. leptoporus and G. muellerae have similar profiles and the 

maximum accumulation rate of both taxa appears between 380 and 280 cm (ca. 

975 BC-252 AD). From 280 cm to the top of the core the accumulation rate of 

both species diminishes. The trend of E. huxleyi  is similar to those of the two 

above-mentioned species, although its accumulation rate is higher. The “small” 

Gephyrocapsa group shows two peaks of maxima, one in the lower part of the 

core and the other close to the core top; the lowest accumulation rate occurred 

in the central part. The accumulation rates of C. pelagicus, H. carteri and 

Syracosphaera spp. are low in the lower and upper parts of the core, while the 

maximum accumulation rates of these species occurred within the interval 

between 280 to 125 cm (ca. 252-1368 AD). Interestingly, each of these species 

maximize at different times within this period, in the following sequence: first, C. 

pelagicus peaks at ∼1000 yr AD, followed by maxima of H. Carteri at ∼1100 yr 

AD and Syracosphaera spp. at ∼1300 yr AD with G. oceanica having a low 

accumulation rate throughout the core except for an abrupt increase starting 

from 125 cm (ca. 1368 AD). 

 

With the only objective of simplify our results and to compare with other proxy 

techniques, the core is divided in three intervals taking into account the total 

abundance of coccolithophores, as well as the record of selected species (Fig. 

4). Interval I is defined from the core bottom to 280 cm (ca. 975 BC-252 AD), 

and is characterized by a high abundance of C. leptoporus and G. muellerae. 
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Interval II, from 280 to 125 cm (ca. 252-1368 AD), correspond with the lowest 

values in total abundance of coccoliths and highest values in the proportion of 

C. pelagicus, H. carteri and Syracosphaera. Finally, Interval III, from 125 cm to 

the core top (ca. 1368 AD-1950) is defined by moderate values in the total 

abundance of coccoliths and the dominance of G. oceanica in the upper part; 

this variation inside Interval III allow us to separate two different subintervals, 

IIIa and IIIb, respectively (Fig. 3). 

 

4. Ecological meaning of coccolithophore assemblages 

The coccolithophores are authothrophic organisms living in the euphotic layer. 

Assemblage structure is controlled by different factors such as water light 

intensity, water temperature, nutrients content, salinity… (Brand1994; Young, 

1994). We summarized in this section the ecological characteristic of the most 

significant species identified in this study according with data provided by 

different specialist. 

 

E. huxleyi is a cosmopolitan and highly eurytopic species (Roth, 1994). When E. 

huxleyi appear together with “small” Gephyrocapsa (Gephyrocapsa ericsonii 

and Gephyrocapsa aperta) being part of the coccoliths assemblage , is 

considered as upwelling proxy (Wells and Okada, 1997). 

C. leptoporus is a tropical species living habitually between 20 and 30°C in 

oligotrophic conditions (Giraudeau and Rogers, 1994), whereas G. muellerae is 

a cold Atlantic species (Knappertsbusch et. al., 1997; Flores et al., 1997) 

equivalent to the “Gephyrocapsa Cold” morphotype of Bollman (1997). Also, G. 
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muellerae is related to subarctic cold waters with mean temperatures lower than 

20°C and with moderately productive surface waters (Bollman, 1997). 

C. pelagicus is a cold water species (McIntyre and Bé, 1967; Okada and 

McIntyre, 1979), but other factors such as a constant input of nutrients in a 

moderate regime of turbulence can control the presence or abundance of this 

species (Cachão, 1995; Cachão and Moita, 2000). H. carteri preferentially 

occurs in tropical and subtropical waters (Okada and McIntyre, 1979) but can 

also be found in high-productivity waters (Pujos, 1992; Flores et al., 1995), 

whereas Syracosphaera spp. prefers warm and stratified waters (Jordan et al., 

1996). Colmenero-Hidalgo et. al. (2004) (in press) observed in the Gulf of Cadiz 

that increases of H. carteri and Syracosphera spp. are related with input of 

turbid and fresher waters. 

G. oceanica is recorded in upwelling areas, or is at least relatively abundant in 

stratified waters (Winter, 1982) and equivalent to the “Gephyrocapsa Equatorial” 

morphotype of Bollmann (1997) strongly correlated with water temperatures 

above 25ºC. 

 

5. Discussion 

5.1. Interval I: 380-280 cm (ca. 975 BC-252 AD) 

This interval is characterized by the highest abundance of coccoliths. The 

dominant species there are E. huxleyi and “small” Gephyrocapsa, but also C. 

leptoporus and G. muellerae present high values (Figs. 2, 3 and 4). Taking into 

account the environmental preferences of the above mentioned species, we can 
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interpret an oceanic influence with a mixture of relatively warm and cold-water 

markers.  

For this period, calculations obtained using biomarkers give higher temperature 

values (16.5°C at 325 BC) (Fig. 4) the highest recorded along the core, 

although it is important to point out that temperature ranges is around 3ºC, 

coinciding with data previously showed by Desprat et al. (2003) and Bond et. al. 

(1997). 

 

For the same core, Diz et. al. (2002) did not detect significant changes in the 

data from foraminifera and they described only one interval from the core base 

to 1000 years AD but Desprat (2001) and Desprat et al (2003) distinguished two 

periods, based on pollen fluxes, between ca. 950 years BC and 450 years AD 

with a relatively cool period from 1000 to 250 years BC, and a warm period 

between 250 BC and 450 AD (Table. II). The first cold period recorded in the 

VIR-18 core can be correlated with a cold and humid period recorded in North 

Europe and corresponds to the Subboreal-Subatlantic transition (ca. 850 BC-

450 AD) (van Geel et al., 1996). 

 

Interval I, seems to be a transition period between the end of a warmer period 

and the beginning of a colder one. The warmer period could be the 

“Hypsithermal” period, dated between 8000 and 2000 BP (corresponding to 

6050-50 BC) (Levac, 2001; Boudreau et al., 2001). The bottom of core VIR-18 

(975 years BC), with higher SSTs than present and high total abundance of 

coccoliths, may correspond to the last part of the “Hypsithermal” period. The 
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interpretation of this interval as a transition period has also been proposed by 

Martinez-Cortizas et al. (1999) (Table. II), who calculated the temperature index 

in Galicia using the accumulation of atmospheric mercury in a peat. Strong 

temperature fluctuations are the most significant characteristic feature in the 

interval between 1000 to 250 years BC. Moreover, strong sea level oscillations 

and changes in the prevailing winds have been reported during 1050-800 BC in 

northern Spain (Goy et al., 1996). The relatively low values recorded in that 

abundances of C. pelagicus are in agreement with the relatively high 

temperature; however, inversely, the high values of G. muellerare are 

interpreted here as oceanic influence. 

 

5.2. Interval II: 280-125 cm (ca. 252-1368 AD) 

During this interval are recorded the lower values in the accumulation rate of 

total coccoliths, together a net increase in C. pelagicus, H. carteri and 

Syracosphaera spp. (Fig. 3). 

The SST estimeted for this interval reached mean values of 15.5ºC. Alkenones 

display intermediate abundances between ∼1500 ng/g at ∼1000 AD, and 

increases afterwards reaching values of ∼2500 ng/g. During this period, the 

terrestrial marker hexacosanol presents a pattern inverse to that of C37 

alkenones, with maximum values (∼7000 ng/g ) in the earlier part of the interval 

(252-1059 AD) and a decreasing trend afterwards. There is an interesting 

correlation between the abundance of C. pelagicus and hexacosanol (Fig. 5) 

that holds for most of the core. The quasi-parallel record observed between 

hexacosanol and C. pelagicus is not well understood; an suggested 
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explanation, thinking in the observed relationship between this taxon and 

nutrient content (Cachão, 1995; Cachão and Moita, 2000) is the increase in the 

fluvial nutrient supply in the Ría that can enhance the production of C. 

pelagicus. Although a decrease in the SST can produce a similar effect. 

 

Similarly, total abundance of coccoliths depicts an inverse correlation to 

hexacosanol, particularly during this interval but also throughout most of the 

core. This fact can be explained as dilution process due to land input to the 

sedimentary context. 

The observed peaks of H. carteri and Syracosphaera spp. are interpreted here 

as episodes of increase in surface water stratification. Colmenero-Hidalgo et. al. 

(2004, in press) observed the same response of these taxa in the 

Mediterranean sea. In the Ria de Vigo, fluvial input can produce stratification by 

changing the mixing regime (Diz et al., 2002). However, we can not discard a 

relationship with factor no well understood: this time is coincident with the 

Medieval Warm Period (Table 2), that as is shown in Figure 4, is not recorded in 

the surface water temperature. 

Two pollen zones have been defined by Desprat (2001) and Desprat et al. 

(2003) in this interval: from 450 to 950 AD and from 950 to 1400 AD. The first 

interval is considered cold and humid, whereas the second is interpreted as 

warmer. The cold and humid period coincides with a peak in the hexacosanol 

record. 
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In summary, interval II indicates a stronger continental influence, with a 

decrease in SST. A weak upwelling, with episodes of stratification from 

increased river input in the Ría, stopped the estuarine circulation. This 

explanation is in agreement with the wind pattern provided by Goy et al. (1996) 

for this period, which indicated prevailing winds blowing from west-southwest 

and drastic reductions in estuarine connections with the open sea. 

 

5.3. Interval III: 125 cm-core top (ca. 1368-1950 AD)  

This interval characterized for high abundances of “small” Gephyrocapsa, with a 

clear peak of G. oceanica at 1690 AD. (Fig. 6) corresponds with a return of 

oceanic influence, especially enhanced in the top of the core (between 1691 

and 1950 AD). 

 

For this interval, the paleotemperature record shows the lowest values along 

the core, 13.3ºC at 1424 AD (Fig. 4). The profile of hexacosanol shows lower 

values in this interval, whereas the alkenones have also high concentrations in 

the core top. 

 

Desprat (2001) and Desprat et al. (2003), studding pollen defined subintervals 

from 1400-1860 AD and 1860-1983 AD, corresponding with a relatively warm 

and cold periods, respectively. These pollen intervals coincided with those 

defined for us with coccolithophores and are in agreement with the historical 

data provided by Font Tullot (1998), who reported a cold period at around 1760 

AD. 
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The coccolithophore assemblage observed in this interval suggests a 

reinforcement in the connection between the Ría and the ocean, in agreement 

with previous interpretations based on benthic foraminifera and molecular 

biomarkers (Diz et al., 2002). 

A change in the wind direction from the north to the southwest, as suggested 

Goy et al. (1996) and Diz (1998), and a consequent intensification in the 

upwelling, caused a decrease in the surface-water temperature and an increase 

in nutrient fluxes to surface waters. 

In Table II we summarized our results as well as the correlation with 

intervals/episodes defined by other proxies. It is interesting to point out that, 

whereas the continental record (especially the pollen, but also the mercury in 

peat bogs) is easy to correlate with the climatic episodes described during the 

late Holocene in Europe, the Ria the organisms react in different way, not 

always in a direct correspondence with the global temperature. 

 

5.4. Possible inferences on the mean state of the North Atlantic Oscillation  

The North Atlantic Oscillation (NAO) is an alternation of air masses that occurs 

between subtropical regions (centered over the Azores Islands and Portugal), 

and the sub-polar regions of the North Atlantic (centered over Iceland) 

(Fromentin and Planque, 1996). During periods of positive NAO, when a well 

developed high atmospheric pressure close to Azores Islands and a low 

pressure close to Iceland exist, strong westerly winds develop across the mid-

latitude North Atlantic region. In Europe, this situation results in a general 

warming, with enhanced precipitation in the North and dryness in the South 
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(Fig. 7a). Conversely, during periods of negative NAO, when the high 

atmospheric system over Azores Islands is weakened, westerlies across the 

North Atlantic region are weakened, resulting in cold temperatures in northern 

Europe but increased rainfall over southern Europe (Fig. 7b). 

 

The NAO exhibits prolonged periods of both positive and negative phases. 

During the last century, for instance, the positive phase of the NAO dominated 

the atmospheric circulation from the 1900s until about 1930 (Hurrell 1995). 

From the early 1940s until the early 1970s, the negative phase was dominant, 

and later another positive phase was recorded up to the 1990s (Hurrell 1995). 

But the use of other long-term proxies such as ice cores, dendrochronology, 

snow accumulation, etc. allowed reconstruct decadal and even secular 

variations of NAO (Glueck and Stockton (2001); Cullen et. al. (2001)). 

Interpretation of NAO-related processes in the past have been reported 

(Giraudeau et al., 2000; Sánchez-Goñi et al., 2002), in the surroundings of our 

area of study (Dresprat et al., 2003) but also in the North Atlantic (Chapman 

and Shackleton, 2000, Bianchi and McCave, 1999, Bond et al., 1997) revealed 

the Holocene characterized by a millennial scale climatic variability. 

 

As hypothesis, we propose that the surface water variations observed in the Ría 

de Vigo can be controlled for changes in atmospheric cells gradient than modify 

the NAO at millennial scale. As results of that, we interpret that our results 

respond to changes in intensity and wind direction, as well as in precipitations. 

As we explain, the interval I, a transitional period, is characterized by relatively 
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high temperatures and oceanic influence. The higher temperatures are related 

with a progressively weaker Hypsithermal period and the Azores High position 

controls the atmospheric circulation in this zone (Fraga, 1991). Therefore, 

oceanic influence, related to a well developed Azores High, provoking a positive 

NAO (+) situation.  

During Interval II surface-water stratification is the dominant scenario in the Ria 

de Vigo, related with increase of runoff (Desprat, 2001), and changes in the 

wind regime. The available data suggest a negative phase of the NAO (-). 

During interval III, more oceanic influence conditions were dominant in the 

region, with weak freshwater input into the Ría and a well developed upwelling. 

These data are consistent with a lower humidity on the continent linked to a 

dominant positive phase of the NAO (+), with different characteristics that those 

observed in interval I. 

 

6. Conclusions 

Coccolith abundances, and molecular biomarker record obtained from core VIR-

18 from the Ría de Vigo evidence changes in the hydrographic and atmospheric 

regimes and interactions between the Ría and the open ocean over the last 

3000 years. 

 

Our data allowed identify events with different environmental conditions which 

were interpreted here as follows: 

Interval I (ca. 975 years BC-252 AD), is characterized by a maximum 

accumulation rate of C. leptoporus and G. muellerae, suggesting a transition 
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from a warmer to a colder period. This transitional warm interval with oceanic 

influence might be indicative of a prevalence of a positive phase of NAO. 

Interval II (ca. 252-1368 AD) is characterized by asynchronous peaks in the 

accumulation of C. pelagicus, H. carteri and Syracosphaera species. This 

interval is associated with high continental runoff and surface-water 

stratification, as indicated by high hexacosanol concentrations. This humid 

interval could be associated with a prevailing negative phase in the NAO, which 

is commonly associated with enhanced precipitation in southern Europe. 

Interval III (ca. 1368-1950 AD) is characterized by a significant and progressive 

increase in the distribution of G. oceanica, together with higher C37 alkenone 

values. This interval shows an enhanced marine influence to the Ría, 

concomitant with a reduction in fluvial input evidenced by a clear decrease in 

hexacosanol concentrations. This situation is in agreement with a prevailing 

positive phase of the NAO. 
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Tables 

 

Tables captions 

Table. 1. AMS 14C ages (modified after Diz, 2002). 

 

Table 2. Interpretation of different proxies and their relationship with climatic 

events in the Ria de Vigo 

 

Figure captions 

Fig. 1. Situation of core VIR-18 and general pattern of Eastern North Atlantic 

Water (ENAW). 

 

Fig. 2. Percentage of selected coccolitophore taxa in core VIR-18. 

 

Fig. 3. Coccolithophore accumulation rate (N) of selected taxa identified in core 

VIR-18. 

 

Fig. 4. Estimated paleotemperature, molecular biomarker concentration and 

coccolith total abundance (per visual field, x1250) vs. age (years BC/AD). 

 

Fig. 5. Accumulation rate (N) of Coccolithus pelagicus vs. hexacosanol (ng/g). 

 

Fig. 6. Accumulation rate (N) of Gephyrocapsa oceanica vs. total abundance of 

coccolithophores per visual field. 
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Fig. 7. North Atlantic Oscillation (NAO). General model. a) NAO+: intervals I and 

III b) NAO-: interval II. In all cases, arrow denotes intensity of the event. 
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