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INTRODUCTION

Large areas of the ocean exhibit relatively constant
phytoplankton biomass with little or no seasonal varia-
tion (Banse & English 1994, Banse 2002). This observa-
tion requires phytoplankton gains and losses to be
balanced. Among the different loss processes, micro-
zooplankton grazing is considered to be the main
factor controlling phytoplankton biomass (Calbet &
Landry 2004, Irigoien et al. 2005).

Different phytoplankton groups co-existing under
the same environment display different growth rates
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ABSTRACT: Phytoplankton distribution is relatively
constant in large areas of the surface ocean. In order to
maintain this apparent stability, phytoplankton produc-
tion and losses have to be balanced. Indeed, growth (μo)
and grazing (g) rates obtained simultaneously with the
dilution technique are often tightly coupled. One prob-
lem with this approach is that growth and grazing are
not independent in the ecological model on which the
method is based (net growth rate = μo – g). We evaluated
to which extent this methodological artefact may influ-
ence the correlation between μo and g estimated using
the dilution technique. Following a Monte-Carlo ap-
proach, we show that the methodological correlation can
be substantial depending on: (1) the % error in the mea-
surement of the state variable ND (e.g. chlorophyll a) and
(2) the range (± SD) of the μo and g considered. As long
as the error of ND is small (< 10%), the measured corre-
lation between growth and grazing closely reflects a true
ecological relationship. For large errors, the dilution
technique can yield a substantial correlation between
both variables, regardless of their ecological relation.
The influence of this methodological correlation de-
creases as the range of growth and grazing rate values
increases. We developed a procedure to evaluate the
ecological versus the methodological nature of the corre-
lation observed between μo and g. The application of this
procedure to a data set obtained from a coastal site re-
vealed that the high correlation observed (rS = 0.881, p <
0.0001) reflected a true ecological relationship.
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Epifluorescence microscope image of heterotrophic protist
Oxyrrhis marina with ingested Synechococcus cells (orange).
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(Furnas 1990, Strom & Welschmeyer 1991, Latasa et al.
1997). This group-specific growth rate diversity
implies that fast- and slow-growing taxa must be
grazed accordingly to keep phytoplankton biomass
constant. Parallel measurements of phytoplankton
growth and grazing have supported this view by show-
ing a good correlation between both variables, either
for phytoplankton measured as a whole (McManus et
al. 2007) or for major phytoplankton groups (Burkill
et al. 1987, Strom & Welschmeyer 1991, Latasa et al.
1997). In these studies, the experimental evidence was
obtained with the dilution technique (Landry & Hassett
1982), the only approach allowing the simultaneous
estimation of phytoplankton growth and grazing rates.

The dilution technique is based on the serial dilution
of natural seawater aiming to generate a gradient of
grazing proportional to the dilution gradient estab-
lished in each incubation bottle (Landry & Hassett
1982, Landry et al. 1995). The apparent growth rate in
each dilution treatment (μD), which is assumed to be
exponential, is assessed from changes in a measured
state variable of the phytoplankton population (chloro-
phyll a [chl a], carbon, cell counts, etc.) as:

(1)

where t is the incubation time and ND(0) and ND(t) are the
chosen state variable of the phytoplankton population at
the beginning and end of the incubation, respectively.

The apparent growth rate in each dilution treatment
can be expressed as a function of the intrinsic growth
rate (μo), fraction of unfiltered seawater or dilution gra-
dient (ƒD) and grazing (g ) following Model A:

μD = μo – ƒD × g (2)

Assuming that g and μo are constant, a set of equa-
tions can be built to describe changes in μD along the
dilution gradient (ƒD) (Landry & Hassett 1982). Linear
regression analysis allows the estimation of μo and g,
with their confidence limits, from μD and the known ƒD.
One problem with this approach is that phytoplankton
μo and g are not mathematically independent, i.e. the
errors in μo and g caused by an error in the calculation
of μD are not independent.

The goal of this work was to unveil the nature of the
correlation between μo and g in data sets obtained
from dilution experiments and to estimate the extent to
which the calculated correlation reflects a method-
ological artefact rather than a true ecological link. We
pursued this objective with 2 different types of approx-
imation: (1) experimental field work and (2) a simula-
tion exercise. In both cases, we modified either μo or g
in order to uncouple their dynamics, yielding 2 inde-
pendent, paired series of μo and g. Our initial hypothe-
sis stated that, when in situ (‘true’) μo and g are inde-

pendent and follow independent dynamics, the corre-
lation between μo and g estimated with the dilution
technique (‘observed’) will not be significantly differ-
ent from zero. ‘True’ rates assume no error, and ‘ob-
served’ rates include a measurement error. We also
checked the variability of the methodological/artefac-
tual correlation as a function of (1) the range of the
measured μo and (2) the number of μo and g pairs.

It is important to note that, in this study, we did not
test the adequacy of the ecological model assumed in
the dilution technique (μnet = μo – g). Instead, we ana-
lyzed how the propagation of errors in the measure-
ment of μnet, inherent to this accepted model, affects
the correlation between μo and g reported in the field.

MATERIALS AND METHODS

Set up and calculations. For the experimental field
work, we uncoupled μo and g by changing the irradi-
ance of the dilution experiment incubations compared
to the original conditions. We carried out 14 pairs of
dilution experiments with surface seawater from Blanes
Bay (NW Mediterranean). One of the pairs was incu-
bated at saturating irradiance levels that simulated in
situ conditions (high light, HL), and the other at limit-
ing irradiance (low light, LL). We expected μo to
decrease under LL conditions (lower irradiance than in
situ). Initially, we assumed grazing to be causally inde-
pendent from phytoplankton growth rate and irradi-
ance, although we are aware that microzooplankton
grazing might respond to irradiance (Strom 2001).

For the simulation exercise, we generated noise-
corrupted dilution experiments using the 14 estimates of
μo and g obtained in the field. We then calculated μo and
g in each simulated experiment (n = 14 experiments) and
the Spearman correlation coefficient (rS) between μo and
g in the parallel series. We repeated this simulation exer-
cise following a Monte-Carlo approach in order to obtain
the statistics for the rS (mean and SD). The correlation
between ‘true’ μo and g was zero because grazing was
kept constant, assuming the same level in all experi-
ments. Thus, any correlation between ‘observed’ μo and
g (hereafter the methodological rS correlation) would be
due to the fact that errors in estimated μo and g are not
independent. We calculated this methodological correla-
tion for different errors in the measurement of the state
variable (e.g. for 10% error, meaning that the measure-
ment of chl a, the chosen state variable in our case, is
made with an error of 10%).

We also checked the variability of the methodologi-
cal rS as a function of 2 factors: (1) the range of the mea-
sured μo, i.e. how the range of the measured μo in our
dataset affects the methodological rS yielded by the
simulation exercise; and (2) the number of μo and g
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pairs (n). This allowed us to interpret the nature
(methodological versus ecological) of the correlation
between μo and g, estimated with the dilution tech-
nique, assuming an error in the state variable mea-
surement (%ND).

Field work. Monthly dilution experiments were per-
formed during 2005 with surface seawater collected
1 km offshore in Blanes Bay (the Blanes Bay Microbial
Observatory, MO, 41° 40’ N, 2° 48’ E). Three additional
experiments were carried out during the summer of
2007; one with surface seawater from the Blanes Bay
MO and the other two with surface seawater retrieved
1 km offshore from Barcelona (41° 21’ N, 2° 10’ E).

The experimental design followed that described in
Landry et al. (1995) and Latasa et al. (2005) and in-
cluded further modifications based on Gallegos (1989)
‘three points’ rationale. Briefly, the experiment in-
cluded 5 bottles filled with appropriate quantities of
filtered seawater to reach 90, 80, 70, 60 and 50% dilu-
tion. Three replicates of 100% unfiltered (whole) sea-
water along with the dilution series (Bottles 1 to 8)
were nutrient amended with f/2 Guillard nutrient
medium and ammonium to a final concentration of
6 μmol l–1. Urea and glucose were also added to a final
concentration of 1.5 μmol l–1 and 1.0 μmol l–1, respec-
tively. Three additional bottles of 100% whole sea-
water without nutrient amendment were included in
the experimental design (Bottles 9 to 11).

Bottles were incubated for 24 h in a temperature and
light controlled culture room in the laboratory. The diel
light/dark cycle was adjusted to the length of the day
on which the experiment was carried out. We prepared
2 complete dilution sets in parallel; one incubated
under HL (320 μmol photon m–2 s–1), aiming to simulate
in situ conditions, and a second set at LL conditions
(10 to 15 μmol photon m–2 s–1). We repeated this experi-
ment on 15 occasions, covering most of the ecological
conditions found at this coastal site throughout the
year. One of the 15 experiments, conducted in Decem-
ber, did not work and was excluded from the analyses.
We obtained 2 data sets of 14 μo and g pairs, the first
reflecting in situ μo and g and the second reflecting the
rates obtained under LL conditions. The non-parametric
spearman correlation coefficient (rS) between μo and g
pairs was estimated for the HL and LL sets. We decided
to use the non-parametric coefficient because of the
low number of μo and g pairs available (14 pairs in our
study).

Phytoplankton growth was assumed to be exponen-
tial and properly described by Model A (Eq. 2). Appar-
ent growth rate of phytoplankton in each bottle was
estimated following changes in pigment concentration,
quantified using either High Pressure Liquid Chro-
matography (HPLC) or a Turner fluorometer. Sampling
for pigment measurement,storage, extraction and quan-

tification followed the protocol described in Latasa et
al. (2005) and references therein.

Grazing was calculated as the slope of the Model A
(Eq. 2) linear regression between μD and ƒD in the nutri-
ent amended set of incubation bottles. When non-
linearities due to saturating feeding were detected,
grazing was estimated as the difference between in-
trinsic growth rate (μn, y-axis intercept, phytoplankton
growth rate in the nutrient amended bottles) and the
mean μD estimated from the non-diluted triplicate
bottles (μnet(n)) of the nutrient amended set. Intrinsic
growth rate at ambient nutrient conditions (μo) was cal-
culated as the mean μD estimated from the non-diluted
unamended triplicate (μnet) plus the estimated grazing
rate (μo = μnet + g ). Grazing is assumed to be equal in
nutrient amended and unamended bottles.

Monte-Carlo dilution experiments simulations. We
first generated a set of 14 virtual dilution experiments
applying Model A (Eq. 2), μD = μo – ƒD × g, where μo and
ƒD correspond to the 14 field experiments carried out at
HL conditions and g was assumed to be constant and
calculated as the mean of the same 14 field experi-
ments. Thus, these virtual dilution experiments were
built under the premise of independence between
‘true’ μo and g.

We then simulated dilution experiments giving
errors to the state variable (chl a in our case). We con-
sidered a random error (εND) associated with the state
variable measurement in each bottle (ND) and
assumed this error to be normally distributed around a
mean of zero and a standard deviation (σ), (εND ~
N(0,σ2)). The SD of the error was given by the % error
in the measurement of the state variable (i.e. the simu-
lation of the 10% error means that our measurement of
ND is made with a 10% error). The condition that the
noise-corrupted ND measurement be positive further
constrained the random error (εND). The μD in each
simulated bottle incubated for 1 d was estimated fol-
lowing Eq. (3):

(3)

The error in the measurement of the state variable
can be incorporated in this expression (εND(0) and
εND(t), error at the beginning and error at the end
of each incubation). The error in μD (ε μD) can be
expressed as:

(4)

where and for 10%

error in the measurement of the state variable (see
Box 1 for details).
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We introduced this error term (εμD) in Model A
(Eq. 2) and obtained Model A1 for the nutrient
amended set (Bottles 1 to 8) 

(5)

and Model A2 for the unamended set (Bottles 9 to 11)

(6)
where μn and μo are phytoplankton intrinsic growth
rates in nutrient amended and unamended bottles,
respectively.

At this stage, we had generated 14 virtual experi-
ments with their corresponding μD for each simulated
incubation bottle (11 bottles in each of the 14 experi-
ments), noise-corrupted with a random error in the
state variable. We then estimated μo and g from each of
these virtual experiments and calculated the rS correla-
tion yielded by this set of 14 pairs of μo and g. This rS is
solely due to the fact that the errors in the estimation of
μo and g caused by the error in the calculation of μD are
not independent; it does not reflect an ecological rela-
tion between μo and g, but only the mathematical for-
mulation of Model A assumed in the dilution method.
The simulation exercise was repeated 1000 times to
obtain the probability distribution of this methodologi-
cal rS correlation for a specific error in the measure-
ment of the state variable. We ran the same simulation
for different errors in the measurement of ND(t) and

ND(0) (5 to 60%) and calculated the mean and SD of the
methodological rS for each error level.

Finally, we analyzed the variation of the method-
ological rS as a function of the number of μo values in
the data set (n), the range of this series (measured as
the SD) and a single parameter that combines the error
in the measurement and the range of the μo values as
expressed in Eq. 7:

(7)

where %ND is the relative error in the measurement of
the state variable and SD is the standard deviation of
the μo values.

RESULTS AND DISCUSSION

Experimental results

Growth and grazing rates results are shown in
Table 1. Phytoplankton structure and associated sea-
sonal dynamics are analyzed elsewhere (Gutiérrez-
Rodríguez 2008). Here, we will focus on the compari-
son between rates under in situ HL and LL conditions.

Growth rates were higher under in situ HL than
under LL conditions (Wilcoxon rank test, p = 0.0001,
Fig. 1A). As expected, this trend was not statistically
significant for grazing (Wilcoxon rank test, p = 0.194,
Fig. 1B). Nevertheless, grazing tended to be higher
under HL than under LL conditions.

Growth and grazing rates from HL experiments were
significantly correlated (rS = 0.881, p < 0.0001, n = 14,
Fig. 2A). Under LL conditions, this correlation was
lower but statistically significant (rS = 0.631, p = 0.016,
n = 14, Fig. 2B).

Simulation results

We calculated the probability distribution of the
rS between μo and g caused by the methodological
approach, i.e. the methodological correlation. We ob-
tained different probability distributions for the
methodological rS (mean ± SD) depending on the mag-
nitude of the measurement error of the state variable.
This probability distribution for a 10% error in the mea-
surement is shown in Fig. 3. The mean rS increases with
the measurement error (Fig. 4). When the measurement
error is low, the methodological mean rS between μo

and g remains low (i.e. mean rS < 0.25 for an error of
10%). For larger measurement errors, the methodolog-
ical mean rS increases (i.e. error > 25%; mean rS > 0.43).
This trend is due to the propagation of the error in the
estimation of g that is caused by errors in the calcula-
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tion of μD being introduced into the esti-
mated μo with the same sign (μo = μnet + g),
i.e. an overestimation of g will cause an
overestimation of μo. For small measure-
ment errors, the error in g is also small.
Because g is assumed to be constant for all
experiments, this error is enough to ran-
domize the rank of the g vector but does not
have the capability of modifying the rank of
the μo vector. Thus, for small measurement
errors, the μo vector conserves its rank free
from the influence of the g vector: the ranks
remain independent.

As the magnitude of the measurement
error increases, so does the error intro-
duced in the estimated grazing. Then, the
effect on μo is large enough to affect the
rank of the μo vector, and the correlation
between the rank of μo and g vectors in-
creases. Thus, for large errors in the mea-
surement of the state variable, the magni-
tude of the error in the ‘observed’ g is large;
the random rank of the g vector influences
the rank of μo and yields a high rS correla-
tion even with uncorrelated ‘true’ μo and g.
In summary, a high methodological rS is ob-
tained when the measurement error leads
to an error in the estimated grazing large
enough to alter the rank of the μo dataset.

This explanation suggests that the vari-
ability of the methodological rS should be
sensitive not only to the magnitude of the
measurement error (Fig. 4A), but also to
the range (SD) of the values of μo. Fig. 4B
shows the different sensitivity of the
methodological mean rS between three μo

5

Table 1. Results of all field dilution experiments carried out in Blanes Bay
and near Barcelona under in situ saturating (high light, 320 μmol photon m–2

s–1) and limiting irradiances (low light, 10 μmol photon m–2 s–1). Intrinsic
growth rate under in situ (μo) and nutrient amended conditions (μn) and
grazing (g). Values are means ± SEM. p-value and r2 from the Model A
(Eq. 2) linear regression applied to estimate growth and grazing parameters

Day of μo g μn r2 p
the year

High light 
20 0.587 ± 0.058 0.154 ± 0.040 0.678 ± 0.038 0.492 0.024
46 0.825 ± 0.093 0.204 ± 0.072 0.898 ± 0.057 0.507 0.001
64 0.663 ± 0.062 0.036± 0.04 0.727 ± 0.039 0.052 0.254
130 1.64 ± 0.125 1.40 ± 0.125 1.75 ± 0.091 0.945 <0.0001
158 0.760 ± 0.117 0.029 ± 0.114 0.519 ± 0.106 0.006 0.859
180a 1.40 ± 0.049 0.710 ± 0.048 1.425 ± 0.036 0.972 0.002
184a 0.905 ± 0.07 0.62 ± 0.059 1.14 ± 0.055 0.9306 <0.0079
187 1.91 ± 0.055 1.04 ± 0.032 1.93 ± 0.027 0.991 <0.0001
191a 0.923 ± 0.134 0.485 ± 0.120 1.31 ± 0.117 0.968 0.016
215 1.06 ± 0.069 0.572 ± 0.048 1.39 ± 0.032 0.959 <0.0001
256 1.16 ± 0.109 0.373 ± 0.051 1.57 ± 0.049 0.952 <0.0001
278 0.768 ± 0.046 0.354 ± 0.022 0.820 ± 0.022 0.947 <0.0001
309 0.651 ± 0.058 0.026 ± 0.050 0.737 ± 0.041 0.025 0.711
339 0.808 ± 0.107 0.417 ± 0.061 0.843 ± 0.059 0.779 0.004
Low light
20 0.342 ± 0.064 0.321 ± 0.063 0.221 ± 0.028 0.80 0.003
46 0.114 ± 0.04 0.100 ± 0.017 0.163 ± 0.012 0.84 0.048
64 0.271 ± 0.394 0.032 ± 0.280 0.219 ± 0.278 0.06 0.370
130 0.913 ± 0.198 0.901 ± 0.195 1.06 ± 0.141 0.76 0.005
158 0.120 ± 0.073 0.148 ± 0.068 0.634 ± 0.068 0.21 0.248
180a 0.543 ± 0.057 0.276 ± 0.035 0.380 ± 0.024 1.00 0.001
184a 0.826 ± 0.085 0.423 ± 0.082 0.618 ± 0.074 0.81 0.039
187 0.520 ± 0.091 0.352 ± 0.056 0.407 ± 0.044 0.87 0.002
191a 0.212 ± 0.108 0.484 ± 0.075 0.381 ± 0.055 0.86 0.001
215 0.137 ± 0.068 0.119 ±0.056 0.114 ± 0.039 0.40 0.093
256 0.564 ± 0.074 0.276 ± 0.045 0.760 ± 0.071 0.69 0.075
278 0.203 ± 0.06 0.456 ± 0.060 0.268 ± 0.055 0.96 0.023
309 0.331 ± 0.094 0.228 ± 0.094 0.231 ± 0.066 0.51 0.071
339 0.785 ± 0.219 0.613 ± 0.213 0.603 ± 0.203 0.80 0.040
aExperiments carried out at the coast near Barcelona
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datasets with different range (SD). The higher the SD
of μo values, the more ‘robust’ is its rank relative to the
measurement error variability. Thus, when dealing
with phytoplankton μo and g obtained with the dilution
technique, the correlation introduced by the method
will be lower for data sets with higher variability
(Fig. 4B). We identified 2 factors that determine to
which extent the correlation observed between μo and
g is real or an artefact of the dilution technique: the
error in the measurement of the state variable and the
range (SD) of μo.

We calculated a single parameter (L = %ND / SD) that
summarizes the combined effect of these factors. Fig. 5
captures the r-methodological variability as a function
of the parameter L. In our simulation exercise, g is as-
sumed to be constant and its variability (Vg) is due to the
error in the measurement of the state variable (the nu-
merator in the parameter L). The variability in μo (V (μo))
accounts for the true variance of μo and the experimen-
tal error, and is quantified as the SD (the denominator

of the parameter L). In summary, as long as Vg remains
low compared to Vx(μo), the r-methodological will re-
main low. This conclusion is implicit in the following ex-
pression (see Appendix 1 for derivation):

(8)

where σ2(μo) is the true variance of μo, σ2 is the variance
in μnet caused by an experimental error, σ2�Σ(ƒ–

–
ƒ)2 is

the variance of g, ƒ is the dilution factor and 
–
ƒ is the

average of the dilution factors used in the dilution
experiments. The methodological correlation between
μo and g will be small if σ2(μo) is large compared to
σ2�Σ(ƒ–

–
ƒ)2.

The probability distribution of the methodological rS

plotted in Fig. 3 shows that some μo and g datasets might
display a relatively high correlation even when the mea-
surement error is low. This is also stressed by the 95%
confidence intervals of the mean rS shown in Fig. 4A.
The SD is linked to the number of dilution experiments
(n) included in the simulation. The larger the μo and
g vectors (higher n), the more precise is the mean
methodological rS yielded by the simulation. The mean
r-methodological does not change with an increase in
the number of μo and g pairs, but the 95% confidence in-
tervals of the mean become smaller (Fig. 5). This plot
shows that the number of μo and g pairs (n) influence the
95% confidence intervals of the mean methodological
rS without affecting the mean itself.

Monte-Carlo simulation suggests that, in our field
data set (μo = 1.01 ± 0.39 d–1, mean ± SD, n = 14), the
methodological correlation between μo and g is low
(0.23 for a 10% error in the measurement of the state
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variable). The rS correlation between μo and g esti-
mated at in situ HL conditions across the year in Blanes
Bay was 0.881. The probability of obtaining such a
high correlation with the dilution technique, if ‘true’ μo

and g were independent, is < 0.1% assuming a reason-
able measurement error of 10% (Latasa et al. 1996).
Thus, the correlation we observed between μo and g in
Blanes Bay reflects a ‘true’ ecological relation between
these variables. Under LL conditions, the rS between μo

and g series estimated from parallel dilution experi-
ments was 0.631. The probability of obtaining an equal
or higher correlation, assuming that in situ μo and g
were uncorrelated, is 6.6% for a 10% measurement
error. Our results show that the steady state relation
between μo and g can be modified by changes in light

conditions, at least on a daily basis. In our simulation, it
was essential that μo and g were independent. To
assure independence, the μo vector maintained the
variability observed in Blanes Bay throughout the year,
while the g vector was assumed constant. However,
the assumption of constant grazing might influence our
results. We explored this possibility by running the
same simulation exercise, but using randomly gener-
ated μo and g vectors, and we obtained the same results
(Appendix 2).

SUMMARY AND CONCLUSIONS

We have demonstrated that the methodological errors
in the estimation of μo and g can affect the correlation
between μo and g obtained with dilution experiments
that is often reported in the field. We have shown that
the extent to which this correlation is due to the
methodological procedure of the dilution experiments
or to a true ecological relationship depends on (1) the
error in the measurement of the state variable and (2)
the range of μo and g values included in the correla-
tion. As long as measurement errors are small (< 10%),
the correlation introduced by the methodological pro-
cedure remains small, with most of the uncertainty
coming from the usually limited number of experi-
ments. Under these conditions, the frequently ob-
served correlation between both variables is reflecting
a true ecological link. For large measurement errors,
the dilution technique can yield a substantial correla-
tion between obtained μo and g, regardless of their
ecological relation. This methodological correlation is
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Fig. 4. Variability of the mean methodological correlation as a
function of the % error in the ND measurements (based on
1000 simulations). The line is composed of discrete values
distributed evenly every 5% error until 30% ND (i.e. 1, 5,
10…30%) and every 10% for errors > 30%. (A) μo and g pairs
estimated in field experiments under high light (HL) condi-
tions (n = 14, SD of μo = 0.40). Dotted lines are the 95% CI of
the mean. (B) Effect of the ranges of μo (expressed as SD) on
the methodological rS. Curve 2 (solid line, n = 14, SD of μo =
0.40) is as in (A), Curve 1 (long dashed line, n = 14, SD of μo =
0.13) and Curve 3 (dotted line, n = 14, SD of μo = 0.90) are
derived from μo and g pairs estimated in field experiments 

under HL conditions

Fig. 5. Variability of the mean methodological rS as a function
of the parameter L for different data sets. Selected data points
are indicated by (z) n = 30, (s) n = 20 and (d) n = 10
simulations. ·······: field data set obtained at high light (HL)
conditions (n = 14 experiments). The 95% CI for n = 30 (solid 

lines) and n = 10 (dashed lines) are shown
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lower when the range of g and μo values is larger. In
addition, we have shown that the number of μo and g
pairs considered in the correlation analysis (n) deter-
mines the confidence interval of the mean method-
ological rS yielded by the simulation, without affecting
the mean value. We have performed the same simula-
tion exercise using a parametric correlation coefficient
(Pearson) and reached the same conclusions.

Finally, we provide an easy and systematic way to
assess the mean methodological correlation of a given
set of μo and g values from the range of μo values (SD)
and the measurement error in the state variable (%ND)
assumed by the scientist. This analysis allows us to
affirm with confidence that the correlation between μo

and g observed in Blanes Bay across the year reflects a
true ecological relation. Moreover, this relation was
affected by light. Irradiance affected μo more strongly
than g, allowing the former to escape from grazing
control, at least on a daily basis.
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Appendix 2. Mathematical demonstration of the influence of the methodological error (%ND) on the correlation (rS) between μo

and g when Model A is applied

We demonstrated that the range of μo vector affects the
methodological rS (Fig. 5). However, the assumption of a
constant grazing makes the rank of the g vector very
sensitive to the measurement error variability. In addi-
tion, natural variability of growth and grazing are of sim-
ilar magnitude, while we have eliminated the g variabil-
ity in our approach. In order to evaluate the influence of
the constant grazing initial conditions on our results, we
performed the same simulation exercise, but using 2
independent vectors of μo and g generated with a ran-
dom variability. This variability was kept within the
range observed for these variables in the field work.
This simulation exercise showed that the pattern of
change in the methodological mean rS as a function of
the measurement error is independent of the variability
of the g vector (Fig. A1). This is because the influence of
the measurement error variability on the rank of
observed μo and g, what we consider the methodological
correlation, is lower when the variability of the true μo

and g is higher.

Fig. A1. Mean rS correlation coefficient between μo and g pro-
duced by the methodological procedure as a function of the mea-
surement error of the state variable. The 2 curves are associated
with different initial μo and g vectors. d: μo from field experiments
with high light conditions and constant grazing; s: curve is ob-
tained using 2 independent vectors (μo and g) generated using a
random variability with the range observed during field work

Appendix 1. Evaluation of the effect of variable μo and g initial conditions on the change of the methodological mean rS as a 
function of the measurement error

The basic Model A is

μD = μo – ƒD × g (A1)

where μo is the intrinsic growth rate of phytoplankton, g is
the grazing and ƒD is the dilution factor (the fraction of un-
diluted seawater in each dilution bottle).

The parameter μnet is the growth rate when ƒ = 1 (whole sea-
water without nutrient amendement). It is estimated from
triplicate measurements. Hence

μnet = μo – g (A2)
and

μo = μnet + g (A3)

The value of g is estimated from a linear regression of μnet

against ƒ in enriched seawater. The assumption is that graz-
ing is not affected by the enrichment. The obvious concern
is the built-in correlation between μo and g in Eq. (A3).

Since the estimation of μnet is based on measurements that
are independent of the measurements used to estimate g,
it follows that

V (μo) = V (μnet) + Vg (A4)

where V(x) is the variance of x. In other words, the variance
of the sum is the sum of the variances when the variables
are independent.

In the virtual experiment we envision, g is constant, and the
variance of μnet is calculated from

(A5)

where σ2 is the variance of a growth rate measurement, and
the factor of 3 accounts for the fact that the estimate is based
on triplicate growth rate measurements.

The term σ2(μo) accounts for the true variance of μo, and σ2/3
accounts for experimental error. The variance of g is given
by the expression

(A6)

where 
–
ƒ is the average of the dilutions used in the dilution

experiments. From Eq. (A4) it follows that

(A7)

We conclude that

(A8)

Vg is less than V (μo). However, if most of the variance of μo

is accounted for by the variance of g (exclusively due to the
random error in the measurement), then μo and g will be
highly correlated. The ratio Vg /V (μo) is negatively corre-
lated with σ2(μo) and positively correlated with σ2. Thus,
there will be little correlation between g and μo when σ2(μo)
is large and/or σ2 is small.

V

V
g

( )

ƒ ƒ

( )
ƒ ƒ

( )
μ

σ

σ μ σ σ σ μo
o o

=
−( )

+ +
−( )

=

+

∑

∑

2

2

2
2 2

2
2

3

1

1
++

−( )∑

σ

σ

2

2 2
3

/ ƒ ƒ

V ( ) ( )
ƒ ƒ

μ σ μ σ σ
o o= + +

−( )∑
2

2 2

23

Vg =
−( )∑ ƒ ƒ

σ2

2

V ( ) ( )μ σ μ σ
net o= +2

2

3


	cite1: 
	cite2: 
	cite3: 
	cite4: 
	cite5: 
	cite6: 
	cite8: 
	cite10: 


