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Effective dimensions and percolation in hierarchically structured scale-free networks
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We introduce appropriate definitions of dimensions in order to characterize the fractal properties
of complex networks. We compute these dimensions in a hierarchically structured network of partic-
ular interest. In spite of the nontrivial character of this network that displays scale-free connectivity
among other features, it turns out to be approximately one-dimensional. The dimensional char-
acterization is in agreement with the results on statistics of site percolation and other dynamical
processes implemented on such a network.
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I. INTRODUCTION.

The most basic characteristic of any geometric struc-
ture is perhaps its dimensionality. The notion of dimen-
sion is intuitively associated with the amount of data nec-
essary to locate a point on the structure, but the difficul-
ties to formalize this association are known since more
than a century ago [1]. A distinction should be made
between definitions of dimensions based on topology and
those based on measures and distances or metrics. While
both types are important in different fields of science, the
latter is very relevant in the description of fractal struc-
tures [2] and in dynamical systems theory [3].

Complex networks are a category of geometrical struc-
tures that has been thoroughly investigated in the last
few years[4]. However, the possible characterization of
complex networks in terms of suitably defined dimen-
sions remains practically unexplored, with the exception
of a few cases of networks constructed from or embed-
ded in regular Euclidean lattices [5, 6]. This charac-
terization should not only improve understanding of the
different geometrical properties of various networks, but
also clarify its impact on the dynamics of processes that
might take place on them—percolation, disease propaga-
tion, information transmission, etc. Fractal dimensions,
for example, might be useful to elucidate the connec-
tions between network topology correlations and dynam-
ics which, apart from some isolated results [7], remain
essentially not understood. Issues such as why two net-
works with the same degree distribution but different
wiring details show different dynamical properties [8] are
good candidates to be tackled with the tools of fractal
geometry.

The aim of this Paper is to introduce a set of quan-
tities, namely, the network dimensions with the purpose
of providing a finer classification of networks with simi-
lar topological structure. As an application, we analyze
a particular type of structured scale-free network [9, 10].
We show that some of its properties can be understood
from the fact that it behaves close to one-dimensional
with appropriately defined dimensions.

II. DEFINITIONS.

A network is a set of lines, the links, connecting points
named nodes or sites. Topologically, any network is a
one-dimensional object that by virtue of Whitney’s theo-
rem [1] can always be embedded in the three-dimensional
Euclidian space. However, this topological dimension
does not carry information related to the many inter-
esting properties of networks. In a regular square lat-
tice, for example, the number of sites within a given dis-
tance from a particular node asymptotically grows as the
square of this distance. This example suggests that a
metric definition of dimension could highlight better the
two-dimensional character of the lattice than the topo-
logical dimension does.

A hierarchy of definitions for the dimension of a set
that are associated to the properties of measures defined
on that set were long ago introduced by Renyi [11], and
have since been used with success in several fields. These
dimensions were particularly helpful for the description
of several natural fractal objects as well as for the char-
acterization of chaotic trajectories in dynamical systems
theory. In the standard definition the set to be charac-
terized is first covered with a number N(ǫ) of boxes of
size ǫ. Let µi be the measure associated to the box i.
Then, the spectrum of dimensions D̃q is defined by the

scaling of the quantity Γ(q, ǫ) ≡
∑N(ǫ)

i=1 µq
i for small ǫ:

D̃q = lim
ǫ→0

1

q − 1

ln Γ(q, ǫ)

ln ǫ
. (1)

D̃0, D̃1, and D̃2 are the so-called capacity, information,
and correlation dimensions respectively. It can be shown
that D̃q ≥ D̃q′ if q < q′. D̃1 in Eq. (1) can in principle
depend on the particular set of boxes covering the set
which implies that an extremum requirement similar to
the one in the original definition by Haussdorf [3] may be
technically needed. Here we will postpone the consider-
ation of these refinements to simplify implementation of
practical numerical algorithms.

One natural way to define a measure on a network is
to assign the unit of mass to each node. In this case,
the measure of a portion of the network is the number of
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FIG. 1: a) The three initial steps in the construction of an
infinite network of the Sierpińsky gasket type. The unit of
length is kept to one link at each step of the construction,
so that the relevant scaling is at large distances. b) The two
initial steps in the construction of the nonbranching Koch-like
network.

nodes that it contains. It is less easy to define a ‘covering’
of the network with boxes because it requires an a priori

knowledge of the Euclidean space in which the network
can be embedded. Since many networks are defined with-
out referencing any embedding in a Euclidean space, al-
ternative definitions based on intrinsic distances are nec-
essary. In our context, a convenient distance dist(X, Y )
between two nodes X and Y is the minimum number of
links contained by a path connecting nodes X and Y .
This is a well-defined metric sometimes called chemical

distance [12]. Distinctively from Euclidian and other dis-
tances commonly used to define dimensions, this one is
integer valued. As a consequence, the scaling properties
should be referred to the large distances limit instead of
the opposite one usually considered.

A definition of the dimensions spectrum Dq, equiva-
lent to Renyi’s one (1) in those systems where both are
applicable, is based on the scaling of the q-correlation
function C(q, L) [13]. In a network of M points, C(q, L)
is the number of q-tuplets of points in the network with
mutual distances smaller than L, and divided by M q. We
then have:

Dq = lim
L→∞

1

q − 1

lnC(q, L)

lnL
(2)

The advantage of using (2) instead of (1) with the Eu-
clidean distance replaced by the chemical one is that (2)
does not require any box covering and therefore no a pri-

ori knowledge of the Euclidean embedding is necessary.
Finally, another equivalent definition [14] with easy

practical implementation is the one based on the scaling
of the number of neighbors within a given distance L of a
given site Xi: µL(Xi) ≡ (M −1)−1

∑

j 6=i Θ(L−dist(Xi−

Xj)). Dq is determined from moments of µL(Xi):

Dq = lim
L→∞

1

q − 1

ln
〈

µL(X)q−1
〉

X

lnL
, (3)

where the averages 〈.〉X are taken over all the nodes X
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FIG. 2: Average number of nodes at distance L from a given
node. System sizes 10000, 20000, 40000, 80000, 160000. The
dashed line grows as ∼ L0.92. The averages have been done
over 10 different networks and on each 1000 different starting
nodes.

in the network. Application of l’Hôpital’s rule gives

D1 = lim
L→∞

〈

lnµL(X)

lnL

〉

X

. (4)

Other equivalent definitions, based on the scaling of
nearest-neighbor distances, or fixed mass methods [15],
could be also implemented on networks, but we find defi-
nition (3) to be appropriate for our purposes. In cases in
which an Euclidean distance can be defined, it can also
be used in (2) or (3) to define quantities that would be
denoted by low-case letters, dq, to distinguish them from
the case in which the chemical distance is used. The dq

are essentially the classical fractal dimensions, but asso-
ciated to the large-distance scaling.

It is instructive to calculate the dimension values for
several simple networks. For example, for regular tri-
angular, square, etc. lattices, it is easy to check that
Dq = 2 ∀q. Dq = 3 for the classical three-dimensional
lattices (e.g. cubic, ...), etc. For a network with a star

topology (i.e., a large number N of nodes connected to a
central hub), Dq = ∞, since all the nodes are at a finite
distance (1 or 2) of each other even in the limit N → ∞.
The same happens for randomly wired networks. The
usual implementation of the small world property, i.e.
the introduction of links connecting arbitrarily remote
nodes, leads also to Dq → ∞. This has been explicitly
demonstrated for a small-world model in [5], where ef-
fective dimensions essentially equivalent to D2 are intro-
duced and calculated as a function of spatial scales. At
large scales (L → ∞ in our notation) a divergent quan-
tity is obtained. Thus, it is useful to think of some of
the characteristics of small worlds or random graphs as
being associated to an infinite dimensionality. From the
expressions in [16] or [17] one can also show that Dq = ∞
for the structures presented there.

After considering these examples, one may wonder if
there is any non-regular complex network structure char-
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FIG. 3: Average local ratio 〈ln(µL)/ ln L〉. The plateau indi-
cates a value D1 = 0.97. Symbols and averaging as in Fig. 2.

acterized by finite dimensions. We will show below that
the answer is positive and that this finite dimensionality
has dynamical consequences that distinguish processes
occurring on these networks from the infinite-dimensional
ones. Before that, we can mention that networks of
arbitrary dimensionality can be constructed by follow-
ing the rules used to construct recursively fractals of
given dimension. For example, a classical fractal is the
Sierpińsky gasket [2], constructed, generation after gen-
eration, by inscribing triangles inside the triangles orig-
inated in the previous generation. Since we are here
characterizing large-scale features, it is better to con-
sider the construction as the recursive joining of trian-
gles to construct a larger and larger object (see Fig.
1a). Since the resulting fractal structure is embedded
in the plane, one can use the Euclidean distance and
find as usual that dq = d0 = ln 3/ ln 2, ∀q. If we use
instead the chemical distance, with the lines in Fig. 1a
identified as links of unit chemical length, we have also
Dq = dq = ln 3/ ln 2, ∀q. The situation is rather different
for non-branching fractal constructions. For example, the
classical Koch curve (Fig. 1b) has dq = ln 4/ ln 3. But in
terms of the chemical metrics, dist(X, Y ), the distance
between two points is always the number of nodes in be-
tween along the curve, so that we have Dq = 1 ∀q, as for
any other non-branching structure. In general, for net-
works constructed from the node and link structure of
a classical fractal object, one expects Dq ≤ dq since the
Euclidian distance is in general shorter than the chemical
one. This generally leads to finite chemical dimensions.
In other constructions, the inequality may be reversed
[6]. This last reference also provides an additional exam-
ple of a network with finite dimensionality (in this case
embedded in a Euclidean lattice).

More interesting is the fact that one can construct net-
works with finite dimensionality without any reference to
fractal objects nor to Euclidean embedding spaces. We
show here that the networks introduced by Klemm and
Egúıluz [9, 10] are of such kind. This helps to understand
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FIG. 4: Average 〈ln(µ−1

L
)〉. the dashed line corresponds to a

function ∼ L−1. Symbols and averaging as in Fig. 2.

the distinct behavior of these structures as compared to
other considered in the literature.

III. DIMENSION ANALYSIS OF THE
KLEMM-EGUÍLUZ (KE) NETWORK.

We have performed extensive numerical studies on the
KE structured scale-free networks [9]. The procedure to
generate them is as follows. Start with m active, fully-
connected nodes. At each time step add a new node and
attach m new links between the new node and the old
active nodes. Activate the new node and deactivate one
of the active nodes according to the probability Π(k) ∝
k−1, where k is the degree of the node. This algorithm
generates networks with a power law degree distribution
P (k) ∼ k−γ , where γ ≃ 3 − 1/m [19]. In Fig. 2 we
plot the average normalized number of nodes at distance
L, 〈µL(Xi)〉 for different system sizes, with m = 3. By
using (3) we find that the best fit gives the correlation
dimension D2 = 0.92. In Fig. 3 we plot the average
slope 〈ln µL(Xi)/ lnL〉 for different system sizes. From
(4) the plateau regime indicates an average value of the
information dimension D1 = 0.97. Finally from Fig. 4,
the best fit gives, via (3), the capacity dimension D0 =
1.0.

The differences in the values of Dq for different q are
a consequence of the inhomogeneity of the network. We
will not concentrate here on this interesting point, but
focus on the fact that the dimension estimates are finite
and close to 1. This confirms the conclusions in [10, 18],
obtained from the scaling of the network’s diameter, and
opens the way for future characterization of the whole
spectrum of dimensions in this and other network mod-
els. We can say that the network behaves, in the sense
of the definitions introduced above, very close to one-
dimensional. It should be stressed that a priori there
has not been an obvious Euclidian space containing the
structure from which to calculate the dimensions dq. In
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FIG. 5: Average relative size of the largest cluster s in
site percolation for different occupation probabilities p in
m = 3 KE networks. The inset shows a finite size scaling
s = F ((1 − p)N0.35). The average values have been obtained
from 1000 percolation realizations in 10 different networks.
Network size N =10000 (circles), 20000 (squares), 50000 (tri-
angle up), 100000 (triangle down), 200000 (diamonds).

the following we consider dynamical processes occurring
in KE networks and interpret them to the light of the
dimension study.

IV. SITE PERCOLATION.

An important process occurring on real networks is the
propagation of information, or of diseases. If the nodes
of the network are either susceptible to the disease with
probability p or immune to it with probability 1 − p,
and the disease propagates through the links, the max-
imum number of individuals that can be affected by an
epidemic outbreak is given by the size of the largest con-
nected cluster in site percolation, where occupation of a
site means susceptibility to the disease. We have per-
formed numerical simulations of such a process in KE
networks. In Fig. 5 we show the average relative size s
of the connected cluster around an occupied site for dif-
ferent system sizes and m = 3. The results indicate that

for any system size N there is a (broad) transition to the
percolating state at some value of the occupation prob-
ability pc. However it is seen that pc → 1 as N → ∞.
Thus, the percolating transition occurs at pc = 1 in the
infinite-size limit. This is precisely the expected behavior
in a one-dimensional structure. The inset shows that the
relative size of the largest cluster scales as F ((1−p)Nα),
where the exponent α depends on the average connec-
tivity of the network. This finite size scaling behavior
is also what one finds for percolation in one-dimensional
regular lattices. In addition we have found that α = 0.35
for m = 3, while α ≃ 0.21 for m = 5, suggesting that α
is a decreasing function of the average degree 〈k〉 = 2m.
These numbers are in good agreement with site percola-
tion in one-dimensional lattices with radius of interaction
z (i.e. two occupied sites are considered connected if they
are z or less sites apart, so that the degree of each site is
2z). There one can show that α = z−1.

It is worth noting that this result is in contrast with
the zero percolation threshold found [20] in random scale-
free networks of the Barabási-Albert type [21]. For such
networks, we have checked (for q = 0, 1, 2) that the mo-
ments 〈µq〉 do not scale as a power law of L, but instead
Dq → ∞ in this case. Thus, the different behavior may
be associated to the different dimensionality.

V. CONCLUSIONS.

We have introduced definitions of dimensions useful for
the study of complex networks. In particular, we have
calculated the capacity, information and correlation di-
mension of a type of hierarchically structured scale-free
network. We have shown that some dynamical properties
of this class of networks can be understood in the light of
the dimension analysis. It would be worth to search for
other complex networks displaying finite dimension spec-
tra. We think that possible candidates would be those
with some underlying “regular” topology [6, 22].
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