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Applications of Meijer’s Factorization Theorems in
Performance Analyses of All-Optical Multi-Hop

FSO Systems
Tau Raphael Rasethuntsa, Imran Shafique Ansari

Abstract—The use of bivariate Fox H-functions (BFHFs) in
performance analyses of wireless communication systems has
gained considerable attention in past few decades. However, the
non-existence of robust built-in routines for evaluating such func-
tions in standard computing systems poses numerous challenges
in numerical experiments and simulations. Motivated by the
apparent need to circumvent these difficulties in performance
analyses of cooperative wireless communications, this work
presents an alternative method for obtaining the exact, approxi-
mate and asymptotic BFHF-free cumulative distribution function
(CDF) of the end-to-end (e2e) signal-to-noise ratio (SNR) of multi-
hop amplify-and-forward (AF) relaying wireless communication
systems. As an illustration, the e2e performance analysis of an
all-optical dual-hop free-space optical (FSO) transmission system
over Gamma-Gamma turbulence in the presence of pointing
errors is revisited. Specifically, new mathematical formulae for
the statistical characteristics of the e2e SNR for systems with
AF fixed-gain relaying as well as channel-state-information(CSI)-
assisted using heterodyne detection (HD) or intensity modulation
with direct detection (IM/DD) are derived in terms of math-
ematically malleable and uniformly convergent infinite series
of weighted Meijer G-functions. The usefulness of the derived
CDFs is illustrated through derivation of traditional system
performance metrics. The accuracy of the derived analytical
formulae is verified via Monte Carlo simulations in MATLABr.
Finally, based on results observed in this paper, useful expansions
of common BFHFs in terms of easily computable univariate
hypergeometric functions are proposed.

Index Terms—Gamma-Gamma distribution, pointing errors,
bit error rate, outage probability, channel capacity, free-space
optics, Fox H-function, Meijer G-function.

I. INTRODUCTION

Free-space optical (FSO) wireless communication has been
hailed as an eminent alternative solution to optical fiber
and radio frequency (RF) communication due to its cost-
effectiveness, ability to establish full-duplex high-speed wire-
less links over considerable distances, ease of deployment,
energy efficiency, wider bandwidth as well as its operation on
unlicensed spectrum, [1]–[4]. For these reasons, FSO links are
a promising technology in space-based laser communications
for backhauling large amounts of data from satellites to earth
[1]. FSO systems use short optical light wavelengths that
enable higher data transmission rates as well as narrow beam
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width. This increases the difficulty of signal interception and
thus offers more security as compared to RF systems. Despite
all of the aforementioned desirable qualities, FSO technology
is marred by atmospheric conditions such as rain, snow, fog
and turbulence-induced irradiance fluctuations similar to fad-
ing experienced by RF technology [5]. Even in clear weather
conditions, FSO channels will experience scintillation and
these can adversely affect the quality of the FSO propagation
channel [6]. Furthermore, FSO systems suffer from the mis-
alignment between transmitter and receiver caused by small
earthquakes, thermal expansion and winds among others, and
these are known as pointing errors [7], [8]. Therefore, the
effects of pointing errors as well as atmospheric turbulence
need to be accurately characterized in statistical models and
taken into account during system design and performance
evaluation of FSO systems.

Driven by the need for statistical models that better charac-
terize fading, shadowing and atmospheric turbulence-induced
fluctuations, the past few decades have seen a rise in the
interest to develop more flexible statistical distributions. This
is often achieved by adding more parameters to already
existing models [9]–[14]. One such model is the Gamma-
Gamma distribution [6] which encapsulates properties of the
K-distribution [15] and the log-normal distribution [16], [17]
originally developed to model strong and weak turbulence con-
ditions, respectively. Yet, with improvement in the models that
characterize various channel interference phenomena, arise
corresponding increase in mathematical complexities when
attempting to derive statistics of the end-to-end (e2e) signal-
to-noise ratio (SNR) in mathematically malleable forms. This
is particularly ubiquitous in studies of performance of the so-
called dual-hop amplify-and-forward (AF) relaying wireless
transmission systems over FSO channels [3], [18]–[22] in
which a relay is deployed between the source (transmitter)
and the destination as a way of mitigating the effects of
atmospheric turbulence or in order to circumvent lack of
direct transmission. The complexities are evidenced by the
prevalence of the bivariate Fox H-function (BFHF) [23, Eqs
2.2.1-2.2.8], [24, Definition 2.7] in recent literature, [19], [20],
[22], [25]–[27]. We single out the work by Zedini et al. [22] in
which exact and asymptotic closed-form performance metrics
of an all-optical half-duplex AF relaying dual-hop FSO system
are derived in correct albeit very tedious forms involving the
BFHF.

It is well-known that closed-form expressions or accurate
and easily computable approximate forms of performance
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metrics for wireless communication systems are integral in
the design of such systems since they are a better alternative
to the often time-consuming Monte Carlo simulations. It is
the opinion of the authors that for closed-form or approximate
expressions to be useful, they should also be less cumbersome
to enable efficient implementation in standard computing
systems. However, despite its usefulness as a general func-
tion encapsulating most elementary and special functions, the
cumbersomeness of the BFHF coupled with its unavailability
in any of the latest versions of numerical computing systems
such as MATLABr, MATHEMATICAr and MAPLEr, has
presented seemingly insurmountable impediments to efficient
numerical experiments in research.

Several authors proposed codes for computing the BFHF
on different platforms. Based on optimization theory, Chergui
et al. [28] proposed what is undoubtedly the most ambitious
MATLABr and C/MEX routine for computing the general
multivariate Fox H-function in [24, Appendix A.1] with an
automated contour calculator, while a Python code for the
multivariate Fox H-function was given in [29]. For these
codes and many others scattered in the literature [30]–[35], the
method of evaluating the Fox H-function uses direct numerical
integration of the corresponding Mellin-Barnes contour inte-
gral definition. According to Mathai and Saxena [23], the value
of the univariate Fox H-function for a given set of suitable pa-
rameters does not depend on the choice of an eligible contour
(from an infinite number available). Yet, in implementation of
the aforementioned codes, a contour choice does not always
lead to quick convergence or desirable values and manual
readjustments of the contour may become necessary with
steeper penalties in computation time paid for larger contour
lengths, especially when there are empty parameter sets. Given
these and other possible computational issues, it will take
time for the BFHF to be officially implemented in standard
packages as alluded by [35], especially since its univariate
counterpart [24, Definition 1.1] is yet to be implemented as
well.

In the meantime, to maneuver around these limitations
posed by the use of BFHFs in e2e performance analyses of
all-optical dual-hop AF relaying systems, the present work’s
objective is to try and reduce the complexity and tediousness of
the mathematical formulae of performance metrics in [22] so
as to enable an easier implementation and evaluation in stan-
dard computing systems. Specifically, based on the pioneering
work of Meijer [36], a simple method for obtaining BFHF-free
cumulative distribution function (CDF) and probability density
function (PDF) of the e2e SNR under fixed and variable
gain scenarios is proposed. The usefulness of the derived
CDFs and PDFs are explored via the derivation of BFHF-free
traditional performance metrics such as average bit error rate
(BER), outage probability (OP) and channel capacity under
different adaptive transmission schemes. The rest of the paper
is organized as follows : In Section II, model and channel
descriptions are presented. Section III-A proposes the first
main results of the paper with the derivation of exact and
asymptotic statistical properties of the e2e SNR under fixed-
gain relaying. Section IV covers the derivation of various
traditional performance metrics of the system under study

in various forms. In Section V, a variable-gain relay system
is now considered and the statistical characteristics of the
e2e SNR are derived. Numerical experiments and simulations
explore the accuracy of the proposed formulae in Section VI.
Finally, Section VII concludes the paper.

II. MODEL AND CHANNELS DESCRIPTION

Figure 1: Illustration of the considered all-optical dual-hop
FSO system

We consider a dual-hop relay FSO system as depicted on
Figure 1 in which a source (S) sends information to the desti-
nation (D) via a half-duplex AF relay node (R) equipped with
receiver and transmitter apertures. Information is transmitted
from S to R that amplifies the received signal and transmits it
to terminal D. Furthermore, we suppose that the atmospheric
turbulence of the i-th hop (i = 1, 2) independently follows the
Gamma-Gamma distribution (ΓΓ) which is widely accepted
as a suitable model for weak, moderate to strong turbulence
conditions. Assuming that S transmits a signal with an average
power normalized to unity, the end-to-end (e2e) signal-to-
noise-ratio (SNR) at D can be expressed for fixed-gain relay
systems as [37]

γ =
γ1γ2

G + γ2
(1)

where G is the fixed-gain at R, γi = (ηeIi)
θ
i /No, (i = 1, 2), is

the instantaneous SNR of the i-th hop, ηe is the electrical-to-
optical conversion ratio and θi denotes the detection method,
i.e., θi = 1 corresponds to heterodyne detection (HD) and
θi = 2 represents intensity modulation with direct detection
(IM/DD) now commonly employed in practical applications.
Ii is the receiver irradiance and N0 is the single-sided power
spectral density of the additive white Gaussian noise (AWGN)
at the i-th hop. The PDF of the instantaneous SNR of the i-th
hop, denoted by γi, is given by [3]

fγi (γi) =
Ti
θiγi

G3,0
1,3

(
Ki (γi)

1
θi

∣∣∣∣ ξ2
i + 1

ξ2
i , αi, βi

)
(2)

where Ti = ξ2
i / (Γ(αi)Γ(βi)) , Ki = hiαiβi (µi)

− 1
θi , G(·)

is the Meijer G-function [38, Definition. 1] and hi =
ξ2
i /
(
ξ2
i + 1

)
. ξ2

i =
ωzeq,i
2σJ,i

, with σJ,i as the jitter standard
deviation at the receiver and ωzeq,i as the equivalent beam
radius of the photo-detector for the receiver of the i-th hop.
The average electrical SNR is given by µi = E〈γi〉 = γ̄i for
HD and µi = γ̄iαβξ

2
i (ξ2

i + 2)/[(αi + 1)(βi + 1)(ξ2
i + 1)2]
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for IM/DD. The parameters αi and βi represent the effective
number of large-scale and small-scale cells of the scattering
process, respectively [6]. Since using maximum likelihood
estimation for estimating the parameters αi and βi or deriving
their Cramér-Rao lower bound of their estimators is difficult to
carry out, αi and βi are usually calculated through the Rytov
variance with the assumption of a plane wave propagation in
the absence of inner scale and knowledge of link distance as
well as refractive-index structure parameter [39], [40]. Conse-
quently, αi and βi cannot be chosen randomly in numerical
experiments since they are related through the Rytov variance
as follows [6]

αi =

exp

 0.49σ2
Ri(

1 + 1.11σ
12/5
Ri

)7/6

− 1


−1

, (3)

βi =

exp

 0.51σ2
Ri(

1 + 0.69σ
12/5
Ri

)5/6

− 1


−1

(4)

where σ2
Ri

= 1.23C2
n,i(

2π
λi

)
7
6L

11
6
i denotes the Rytov vari-

ance with λi, Li and C2
n,i representing the wavelength, prop-

agation distance and refractive-index structure of the laser light
of the i-th hop, respectively. Furthermore, αi > βi and βi is
lower bounded by 0.91398 as the Rytov variance σRi →∞. In
experimentation, optical turbulence can be varied as follows
: for weak turbulence σ2

Ri
≤ 0.3. For moderate turbulence

0.3 < σ2
Ri
≤ 5 and for strong turbulence, σ2

Ri
> 5. However,

these are not standards and different values may be chosen, see
[41]. In the present work, we use the definition of the Meijer
G-function given in [38, Definition 1] as the Mellin-Barnes
contour integral

Gm,np,q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
=

1

2πi

∫
L

∏m
j=0 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)xsds∏q

j=m+1 Γ(1− bj + s)
∏p
j=n+1 Γ(aj − s)

(5)

satisfying specific conditions of convergence. Using [42, Eqs.
1.16.4(1) and 8.2.2(40)], the CDF of γ1 can be expressed as

Fγi (γi) =TiG3,1
2,4

(
Kiγ

1
θi
i

∣∣∣∣ 1, ξ2
i + 1

ξ2
i , αi, βi, 0

)
=
θαi+βi−2
i Ti
(2π)θi−1

G3θi,θi
2θi,4θi

(
Kθii γi
θ2θi
i

∣∣∣∣ ∆(θi, 1),Ni
Hi,∆(θi, 0)

)
(6)

where we have set Ni ≡ ∆
(
θi, ξ

2
i + 1

)
and also Hi ≡

∆
(
θi, ξ

2
i

)
,∆ (θi, αi) ,∆ (θi, βi) ,∆(θi, 0) for i = 1, 2 with

∆(k, θ) = ( θk , . . . ,
θ+k−1
k ) as a vector comprising k terms.

Recalling the relations Fγ1(γ1) =
∫ γ1

0
fγ1(x)dx = 1 −

∫∞
γ1
fγ1(x)dx, we employ [42, Eq. 2.24.2(3)] to obtain the

CDF of γ in two more alternative forms as

Fγi (γi) =1− TiG4,0
2,4

(
Kiγ

1
θi
i

∣∣∣∣ 1, ξ2
i + 1

ξ2
i , αi, βi, 0

)
=1− θαi+βi−2

i Ti
(2π)θi−1

G4θi,0
2θi,4θi

(
Kθii γi
θ2θi
i

∣∣∣∣ ∆(θi, 1),Ni
Hi,∆(θi, 0)

)
(7)

III. SYSTEMS WITH FIXED-GAIN RELAYS

A. Statistical Properties

In this section, we set out to derive the exact statistical
properties of the e2e SNR for fixed-gain relay systems. We
present the exact CDF, PDF, MGF as well as generalized
moments of the e2e SNR.

1) CDF and PDF of end-to-end SNR:

Theorem 1. The CDF and PDF of the e2e SNR for an all-
optical dual-hop fixed-gain AF relaying system over Gamma-
Gamma turbulence in the presence of pointing errors is given
in three different forms as shown in Table I. Moreover, all the
series are uniformly convergent.

Proof: Please refer to Appendix A.

Remark 1. It is useful to have the CDF of γ expressed in
the three forms displayed in Table I when deriving various
statistical characteristics and system performance metrics. In
particular, it is observed that the form (11) is preferred over
(8) when deriving an expression for channel capacity under
optimal power and rate adaptation (see Section IV-B1) since
it yields formulae that converge faster, while the form (13) is
suitable for asymptotic analysis in Section III-B.

A useful observation from Theorem 1 is that the well-known
method used in [22] would yield the CDF of γ in terms the
BFHF as

Fγ(γ) =
2∏
i=1

(
θαi+βi−1
i Ti
(2π)θi−1

)

×G0,1:3θ2+1,θ2;θ1,3θ1
1,0:2θ1,4θ2+1;4θ1,2θ1+1

 GKθ22
θ
2θ2
2

θ
2θ1
1

Kθ11 γ

∣∣∣∣∣∣∣ H(1)

N(1)


(15)

where H(1) ≡ 1 : ∆(θ2, 1),N2; 1 − H1, 1 −∆(θ1, 0), N(1) ≡
− : 0,H2,∆(θ2, 0); 1 − ∆(θ1, 1), 1, 1 − N1, and G·:·;··:·;·(·)
denotes the bivariate Meijer G-function (BMGF) which is a
special case of the bivariate Fox H-function with the third
characteristic [44, Chap. 2], [24, Def. 2.7]. Furthermore, Eq.
(15) will always converge according to [44, Consequence
13.1].
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H

Table I: Different forms of the CDF and PDF of γ for Fixed-
Gain Relay Systems Based on Meijer [43, Theorem 2, Eqs.
33]

Fγ(γ) =
θα1+β1−2

1 T1

(2π)θ1−1

∞∑
p=0

A(p)

p!

×G3θ1,θ1+1
2θ1+1,4θ1+1

(
Kθ11 γ

θ2θ1
1

∣∣∣∣ 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
(8)

where A(0) = 1 and for p ≥ 1,

A(p) =
θα2+β2−2

2 T2

(2π)θ2−1Γ(p)
G3θ2+1,1
θ2+1,3θ2+1

(
GKθ22

θ2θ2
2

∣∣∣∣ 1,N2

p,H2

)
(9)

fγ(γ) =
θα1+β1−2

1 T1

(2π)θ1−1

∞∑
p=0

A(p)

p!

× 1

γ
G3θ1,θ1+2

2θ1+2,4θ1+2

(
Kθ11 γ

θ2θ1
1

∣∣∣∣ 0, 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1, 1

)
(10)

Fγ(γ) =1− θα1+β1−2
1 T1

(2π)θ1−1

∞∑
p=0

(−1)pA(p)

p!

×G4θ1+1,0
2θ1+1,4θ1+1

(
Kθ11 γ

θ2θ1
1

∣∣∣∣ 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
(11)

fγ(γ) =
θα1+β1−2

1 T1

(2π)θ1−1

∞∑
p=0

(−1)pA(p)

p!

× 1

γ
G4θ1+2,0

2θ1+2,4θ1+2

(
Kθ11 γ

θ2θ1
1

∣∣∣∣ 1− p,∆(θ1, 1),N1, 0

1,H1,∆(θ1, 0), 1

)
(12)

Fγ (γ) =θ1T1

∞∑
p=0

A∗(p)
p!

G3,1
2,4

(
K1γ

1
θ1

∣∣∣∣ 1− p, ξ2
1 + 1

ξ2
1 , α1, β1, 0

)
,

(13)

A∗(0) = 1 and for p ≥ 1, A∗(p) =
θα2+β2−2

2 T2

(2π)θ2−1

∑p
q=0 I(q),

I(q) =
(−1)q

(
p
q

)
Γ( qθ1 )

G3θ2+1,1
θ2+1,3θ2+1

(
GKθ22

θ2θ2
2

∣∣∣∣∣ 1− q
θ1
,N2

0,H2

)
(14)

Corollary 1. For real x 6= 0, y 6= 0, a, b, c,d, e, and f , the
following result can be derived from Eq. (8)

G0,1:m2+1,0;n1,m1

1,0:p2,q2+1;q1,p1+1

(
x, 1

y

∣∣∣ 1 : (a); 1− (c), 1− (d)

− : 0, (b); 1− (e), 1− (f), 1

)
=
∞∑
k=1

1

k!Γ(k)
Gm2+1,1
p2+1,q2+1

(
x

∣∣∣∣ 1, (a)

k, (b)

)
×Gm1,n1+1

p1+1,q1+1

(
y

∣∣∣∣ 1− k, (e), (f)

(c), (d), 1

)
(16)

Proof: Expanding the univariate Meijer G-functions

according to (5) and interchanging the summation and inte-
gration signs, we get an inner sum over k as

S =
∞∑
k=1

Γ(k − s)Γ(k − t)
Γ(k)Γ(k + 1)

=
∞∑
k=0

Γ(1 + k − s)Γ(1 + k − t)
Γ(k + 1)Γ(k + 2)

=Γ(1− s)
∞∑
k=0

(1− s)k(1− t)k
Γ(1− t)(2)kk!

(17)
where we have set k = k+1 and used the Pochhammer symbol
defined by (a)n = Γ(a + n)/Γ(a). Next, application of [42,
Definition 7.2.3(1)] and [42, Eq. 7.3.5(2)] yield

S =Γ(1− s)Γ(1− t)2F1(1− s, 1− t; 2; 1)

=
Γ(1− s)Γ(1− t)Γ(s+ t)

Γ(1 + s)Γ(1 + t)
,<(s+ t) > 0

(18)

Therefore, collecting all Gamma function terms under the
double contour integral, we employ [24, Def. 2.7] to obtain
the desired BMGF expression in Eq. (16).

A plot of PDF and CDF curves of γ based on (10) and
(8) under moderate turbulence are displayed on Figs 2 and 3,
where we have employed the MATLABr code proposed by
[45] to generate 107 ΓΓ random variables for each curve. In

Figure 2: Analytical PDF against the simulated version under
HD based on 25 terms of (10) with average electrical SNR
per hop being 5dB.

Table II at the top of the next page, the behaviour of the CDF
in Eq. (8) is demonstrated for weak turbulence. It is evident
the convergence rate of the series is influenced by the size
of the value being estimated, with some arguments leading to
slower convergence rates. Overall, (8) appears to be accurate
to at least 3 decimal places for a truncation number P = 25
and improves, albeit very slowly due to the oscillatory nature
of the convergence, as P gets larger.

2) Generalized moments of end-to-end SNR: The general-
ized moments of the end-to-end SNR γ make possible the
investigation of the inherent statistical properties of γ such
as mean, variance, kurtosis and skewness among others. Fur-
thermore, the n-th order moment of γ is useful for obtaining
n-th order amount of fading. The n-th order moment of γ is
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Table II: Comparison of Exact CDF of γ and CDF from Theorem 1 for (ξ, α, β) = (6.7, 2.902, 2.51)

(γ̄, γ) Truncation Number P Exact Value Value Based on Theorem 1 Eq.
(8)

Absolute Error

(0dB,0.96) 25 0.900010 0.900400 0.000390
50 0.900131 0.000121

100 0.900096 0.000086
150 0.900037 0.000027

(5dB,1.43) 25 0.500010 0.499896 0.000114
50 0.500071 0.000061

100 0.499988 0.000002
150 0.500021 0.000001

(10dB,2.54) 25 0.200080 0.199985 0.000095
50 0.199957 0.000019

Figure 3: Analytical CDF against the simulated version under
HD based on 25 terms of (8) with average electrical SNR per
hop being 5dB.

derived as for n ≥ 2 as

E〈γn〉 =
nθα1+β1−2

1 T1θ
2nθ1
1

(2π)θ1−1Knθ11

Γ(H′1 + n)

Γ(N′1 + n)

[
1 +

θα2+β2−2
2 T2

Γ(n)(2π)θ2−1

× G3θ2+1,2
θ2+2,3θ2+2

(
GKθ22

θ2θ2
2

∣∣∣∣ 1− n, 1,N2

1,H2, 0

)]
(19)

where N′1 ≡ ∆(θ1, 1),N1 and H′1 ≡ H1,∆(θ1, 0) such that
if A = [a1, . . . , am], then Γ(A) =

∏m
i=1 Γ(ai). The proof of

(19) follows the proof of Corollary 1 by using (11) and the
Mellin Transform in E〈γn〉 = n

∫∞
0
γn−1 [1− Fγ(γ)] dγ.

3) Moment generating function of end-to-end SNR: The
moment generating function (MGF) is another useful statis-
tical characteristic which can be used to generate n-th order
moments and to also obtain the BER of γ under non-coherent
modulation. The MGF of γ is defined as

Mγ(s) = s

∫ ∞
0

e−sγFγ(γ)dγ. (20)

Therefore, substituting (8), individually into (20) followed by
the use of [42, Eq. 2.24.3(1)], we have that the MGF of γ can

be written as

Mγ(s) =
θα1+β1−2

1 T1

(2π)θ1−1

∞∑
p=0

A(p)

p!

×G3θ1,θ1+2
2θ1+2,4θ1+1

(
Kθ11

sθ2θ1
1

∣∣∣∣ 0, 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
(21)

Obviously, we may obtain another form for the MGF of γ
using (11). We will avoid stating these alternative forms for
the sake of brevity.

B. Asymptotic Statistical Properties of e2e SNR

1) Asymptotic CDF of e2e SNR for µ2 → ∞: In this
section, we seek to derive the asymptotic CDF of γ when
the average electrical SNR of the R-D link µ2 is asymp-
totically large. In order to achieve this, we apply [42, Eq.
8.2.2(3)] to A(p) in (13) and recall that the generalized
hypergeometric function [42, Eq. 7.2.3(1)] has the property
that pFq[(·)p; (·)q; 0] = 1 [42, Eq. 7.2.3(3)] so that we obtain
the asymptotic form of I(q) from (13) which is independent
of q as

I(q) ∼̇
θα2+β2−2

2 T2

(2π)θ2−1

Γ(N2)

Γ(H2)
(22)

It follows that
∑∞
p=1

∑p
q=0(−1)q

(
p
q

)
I(q) = 0 and therefore,

the asymptotic CDF of the e2e SNR as µ2 →∞ is equivalent
to the leading term (i.e. series term at p = 0) of (8), (11) and
(13) which is simply the CDF of the S-R link SNR γ1. That
is,

Fγ (γ) ∼̇ θ1T1G
3,1
2,4

(
K1γ

1
θ1

∣∣∣∣ 1, ξ2
1 + 1

ξ2
1 , α1, β1, 0

)
(23)

Following the same procedure as in the case when µ2 →∞,
we can show that the asymptotic CDF of γ as µ1 → ∞ is
also given by (23).

2) Asymptotic MGF of e2e SNR: The asymptotic CDF in
(23) can be used for deriving asymptotic MGF of γ by simply
setting p = 0 in (21) so that we get

Mγ(s) ∼̇
θα1+β1

1 T1

θ1(2π)θ1−1
G3θ1,θ1+1

2θ1+1,4θ1

(
Kθ11

sθ2θ1
1

∣∣∣∣ 0,∆(θ1, 1),N1

H1,∆(θ1, 0)

)
(24)
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IV. APPLICATIONS TO THE PERFORMANCE EVALUATION
OF FIXED-GAIN DUAL-HOP FSO TRANSMISSION SYSTEMS

Channel capacity is an invaluable performance metric in the
design of wireless communication systems since it serves as an
upper limit on the transmission rate for reliable communica-
tions [46]–[48]. This performance metric has been studied over
various communication scenarios and channel interference
models using different adaptive transmission schemes [47]–
[51]. However, in the case of dual-hop AF-relay-assisted
wireless communication systems, the increased mathematical
complexity in the forms of the CDF of the e2e SNR presents
great computational and mathematical difficulties in deriving
e2e channel capacity under different adaptive transmission
techniques. This is particularly true for dual-hop FSO and
mixed RF/FSO transmission systems with existing works such
as [26] and [27] indicating how cumbersome the mathematical
expressions for channel capacity using the OPRA policy are.
In this section, we demonstrate what is undoubtedly the most
attractive feature of the proposed CDF forms from Table I
in simplifying the mathematical hurdles involved in deriving
and computing effective capacity and channel capacity under
ORA, OPRA, and TIFR adaptive transmission policies in
forms which can easily be implemented in standard computing
systems. In this work, we will only focus on HD for effective
capacity as well as the OPRA and the TIFR policies.

A. Channel capacity with receiver CSI

We will first consider schemes with full receiver CSI, i.e.
ergodic capacity (ORA) and effective capacity.

1) Optimal rate adaptation: The optimal rate adaptation
(ORA) transmission policy assumes a constant transmit power
is maintained. Under this scheme, also commonly known as
ergodic capacity, the channel capacity of the e2e SNR is
defined as [3]

CO =
1

2
E〈log2(1 + ϕγ)〉 =

1

ln(4)

∫ ∞
0

ln(1 + ϕγ)fγ(γ)dγ

(25)
where ϕ = e/(2π) and ϕ = 1 for IM/DD and HD, respec-
tively. Note that ϕ = e/(2π) corresponds the value of ϕ for a
lower bound of CO in the absence of peak-power constraints
while the capacity is exact for HD [52, Theorem 6], [22].
Expressing ln(1+ϕγ) in terms of the Meijer G-function using
[42, Eq. 8.4.6(5)] and substituting this together with (10) into
(25), we apply [42, Eq. 2.24.1(1)] to obtain

CO =
θα1+β1−2

1 T1

ln(4)(2π)θ−1

∞∑
p=0

A(p)

p!

×G3θ1+2,θ1+3
2θ1+4,4θ1+4

(
Kθ11

ϕθ2θ1
1

∣∣∣∣ 0, 1− p,∆(θ1, 1), 0, 1,N1

H1, 0, 0,∆(θ1, 0), 1, 1

)
(26)

The asymptotic ORA capacity is obtained by substituting p =
0 into (26) to yield the asymptotic CO as follows

θα1+β1−2
1 T1

ln(4)(2π)θ−1
G3θ1+2,θ1+2

2θ1+3,4θ1+3

(
Kθ11

ϕθ2θ1
1

∣∣∣∣ 0,∆(θ1, 1), 0, 1,N1

H1, 0, 0,∆(θ1, 0), 1

)
(27)

2) Effective capacity under heterodyne detection: Next
generation wireless networks aim at supporting a host of
quality-of-service (QoS) requirements and in order to assess
the performance of these systems with QoS metrics such
as delay, data rate and delay-violation probability, Wu and
Rohit [53] introduced the concept of effective capacity (EC).
EC, which has been studied for AF relay-assisted wireless
networks in [54]–[56], is defined as the maximum constant
arrival rate that a wireless channel can support while a given
QoS requirement is guaranteed [54]. Mathematically, EC is
defined for half-duplex dual-hop AF relay systems as [53],
[55]

CE =
−1

φBTf
ln[

∫ ∞
0

fγ(γ)(1 + γ)−
φBTf
2 ln(2) ] (28)

where φ, B and Tf denote the QoS exponent, system band-
width and fading block/frame length, respectively. Small φ
values correspond to slow decaying rate and looser QoS
constraints while large φ represent fast decaying rate with
more stringent QoS constraints [55]. Here, we are assuming
the relay amplifies and re-transmits the received signal to
the destination without any delays or buffering constraints
[54]. Now, substituting (10) into (28) and employing [42, Eq.
2.24.2(4)], we get the integral in (28) as

I =
T1

Γ(
φBTf
ln(4) )

∞∑
p=0

A(p)

p!
G4,1

2,4

(
K1

∣∣∣∣∣ 1− p, ξ2
1 + 1

ξ2
1 , α1, β1,

φBTf
ln(4)

)
(29)

Therefore, putting (29) into (28) yields the e2e EC for a
dual-hop system over gamma-gamma turbulence with pointing
errors. The asymptotic EC is given by

CE ∼̇
−1

φBTf
ln

[
T1

Γ(
φBTf
ln(4) )

G4,1
2,4

(
K1

∣∣∣∣∣ 1, ξ2
1 + 1

ξ2
1 , α1, β1,

φBTf
ln(4)

)]
(30)

B. Channel capacity with receiver and transmitter CSI

1) Channel inversion with fixed rate under heterodyne
detection: Another simple technique which offers easy im-
plementation is to maintain a constant SNR at the receiver
with fixed-rate modulation and fixed code design or channel
inversion with fixed rate (CIFR) [57]. Under this technique,
the channel capacity of the e2e SNR γ is defined as [57]

CC =
B

2 ln 2
ln

(
1 +

1∫∞
0

1
γ fγ(γ)dγ

)
(31)

It is immediately obvious that (31) is not possible to compute
since the Meijer G-function in (19) is undefined for n = −1
as per definition (5). Furthermore, the CIFR technique may
suffer large capacity penalties in severe fading conditions as
compared to other techniques. To circumvent this shortcoming,
a modified inversion which inverts the channel fading above a
predetermined truncated fade γo (TIFR scheme) is often used.
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2) Truncated channel inversion with fixed rate under het-
erodyne detection: The channel capacity based on the trun-
cated channel inversion with fixed rate (TIFR) policy is defined
as [57]

CT =
B

2 ln 2
ln[1 + (

∫ ∞
γ0

1

γ
fγ(γ)dγ︸ ︷︷ ︸
X

)−1]Pr(γ > γo) (32)

where (12) and [42, Eq. 2.24.2(3)] lead to exact and asymptotic
forms

X = T1

∞∑
p=0

(−1)pA(p)

p!
G5,0

3,5

(
K1γo

∣∣∣∣ 1− p, ξ2
1 + 1, 2

1, ξ2
1 , α1, β1, 1

)
,

(33)∫ ∞
γ0

1

γ
fγ(γ)dγ ∼̇ T1G

4,0
2,4

(
K1γo

∣∣∣∣ ξ2
1 + 1, 2

1, ξ2
1 , α1, β1

)
. (34)

Therefore, substituting (33) into (32), we obtain channel ca-
pacity under the TIFR scheme with Pr(γ > γo) = 1−Fγ(γo),
where Fγ is as defined in (11) or (8). CC can then be computed
as the limit of CT as γo → 0, which from [42, Eqs. 8.2.2(3)
and 7.2.3(3)], implies that CC → 0.

3) Optimal power and rate adaptation under heterodyne
detection: The optimal power and rate adaptation (OPRA)
technique achieves the highest possible capacity with CSI by
employing a multiplexed multiple code-book design in order to
match the transmission power and rate of the system, [47]. The
channel capacity for a system employing the ORA technique
is defined as [57]

CP =
B

2

∫ ∞
γo

log2

(
γ

γo

)
fγ(γ)dγ. (35)

where γo is the optimal cut-off SNR below which data
transmission is not permitted. In order to ensure the latter,
γo must satisfy the relation∫ ∞

γo

(
1

γo
− 1

γ

)
fγ(γ)dγ = 1. (36)

Using integration by parts, (35) may be expressed in terms of
the CDF of γ as [47]

CP =
B

2 ln 2

∫ ∞
γo

1− Fγ(γ)

γ
dγ. (37)

Therefore, substituting (11) into (37) and applying [42, Eq.
2.24.2(3)], we obtain

CP =
BT1

ln(4)

∞∑
p=0

A(p)

p!(−1)p
G5,0

3,5

(
K1γo

∣∣∣∣ 1− p, 1, ξ2
1 + 1

0, ξ2
1 , α1, β1, 0

)
(38)

The asymptotic OPRA capacity is given by

CP ∼̇
BT1

ln(4)
G5,0

3,5

(
K1γo

∣∣∣∣ 1, 1, ξ2
1 + 1

0, ξ2
1 , α1, β1, 0

)
(39)

It is also worth noting that the SNR cut-off relation in (36)
can be re-written as

γo =

∫ ∞
γo

(γ − γo)
γ

fγ(γ)dγ = g(γo) (40)

It was observed during numerical experiments that (40) can
only be derived using (12) since the other PDF forms result

in infeasible solution to (41). Therefore, the use of (12) and
[42, Eq. 2.24.2(3)] in (40) yields

g(γo) = T1

∞∑
p=0

(−1)pA(p)

p!
G5,0

3,5

(
K1γo

∣∣∣∣ 1− p, ξ2
1 + 1, 2

0, ξ2
1 , α1, β1, 1

)
(41)

Clearly, γo is a fixed point of the non-linear equation g(γo) =
γo. According to Annamalai et al. [47], γo ∈ (0, 1] irrespective
of the number of relays or channel model employed and this
follows from the properties of a CDF of a random variable,
see Figure 4. Therefore, g(γo) = γo can be solved via
iterative algorithms such as the Newton-Raphson method with
a starting point conveniently selected from the interval (0, 1].

Figure 4: Typical γo VS CP curves under different turbulence
conditions and pointing errors showing that γo is constrained
to the interval (0, 1] as suggested in [47]. Here, HD is
employed and the average SNR per hop is being varied from
2dB to 50dB over 15 equidistant points for each curve.

C. Outage probability

Outage probability (OP) is defined as the probability that
the e2e SNR does not exceed a predetermined threshold γth.
Mathematically, OP is expressed as

Pop = Pr(γ < γth) = Fγ(γth). (42)

D. Bit error rate probability

For a number of modulation schemes, the average BER of
the e2e SNR γ can be written in terms of its CDF as [19]

P̄e =
δ

2Γ(b)

m∑
l=1

abl

∫ ∞
0

γb−1e−alγFγ(γ)dγ (43)

where the parameters a and b vary according to a modulation
scheme. In particular, for δ = m = 1, al = 1 and b = 1/2,
we obtain the coherent binary frequency shift keying (BFSK)
modulation under heterodyne detection. When δ = m = 1,
and al = b = 1/2, we obtain on-off keying (OOK) modulation
for IM/DD. The reader is referred to [19, Table I] for parameter
choices in the case of M-PSK and M-QAM modulation
schemes under heterodyne detection. Now, substituting (8) into
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(43) and using [42, Eq. 2.24.3(1)], we obtain the BER of the
e2e SNR as

P̄e =
θα1+β1−1

1 T1δ

2Γ(b)(2π)θ1−1

m∑
l=1

abl

∞∑
p=0

A(p)

p!

×G3θ1,θ1+2
2θ1+2,4θ1+1

(
Kθ11

alθ
2θ1
1

∣∣∣∣ 1− b, 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
(44)

The asymptotic BER is given by

P̄e ∼̇ B(δ, b)G3θ1,θ1+1
2θ1+1,4θ1

(
Kθ11

alθ
2θ1
1

∣∣∣∣ 1− b,∆(θ1, 1),N1

H1,∆(θ1, 0)

)
(45)

with B(δ, b) ≡ θ
α1+β1−1
1 T1δ

2Γ(b)(2π)θ1−1

∑m
l=1 a

b
l .

E. Amount of Fading

The n-th order amount of fading (AoF) is defined as [58]

AoF (n)
γ =

E〈γn〉
E〈γ〉n

− 1 (46)

Therefore, we can obtain AoF for fixed-gain relay systems by
substituting (19) into (46).

V. SYSTEMS WITH VARIABLE GAIN RELAY

Zedini et al. [22] only considered the present system model
under the fixed-gain relay scenario. In this section, we show
that the multiplication theorems of Meijer [36, Eqs. 13 and 14]
or [59, Eq. 79] can also be used in reducing the complexity
of the CDF of the e2e SNR for CSI-assisted relay systems.
While the CDF in this case does not enable straightforward
derivation of BFHF-free performance metrics such as BER
and channel capacity, we can nonetheless obtain BFHF-free
expressions for OP and amount of fading (AoF).

A. Statistical Properties

1) CDF of e2e SNR: In CSI-assisted relay systems, the e2e
SNR is accurately approximated by [37]

γ =
γ1γ2

γ1 + γ2
(47)

The ratio (47) arises frequently in many wireless communi-
cation systems. For instance, in multiple-input-multiple-output
(MIMO) AF relay systems employing orthogonal space-time
block codes (OSTBCs) when no information about noise
statistics is available [60], [61].

Theorem 2. The CDF of the e2e SNR for CSI-assisted relay
systems is given by (48). Furthermore, the series are uniformly
convergent.

Fγ(γ) =1− θα1+β1−2
1 T1

(2π)θ1−1

∞∑
p=0

C(p, γ)

(−1)pp!

×G4θ1+1,0
2θ1+1,4θ1+1

(
Kθ11 γ

θ2θ1
1

∣∣∣∣ 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
,

(48)

where C(0, γ) = 1− Fγ2(γ) and for p ≥ 1,

C(p, γ) =
θα2+β2−2

2 T2

(2π)θ2−1
G3θ2+1,0
θ2+1,3θ2+1

(
Kθ22 γ

θ2θ2
2

∣∣∣∣ N2, p+ 1

p,H2

)
(49)

Proof. Please refer to Appendix B

Is is worth pointing out that (48) is more appealing, from a
computational implementation point of view, than the series-
free form that can be proved in a similar manner to the proof
of Corollary 1 as

Fγ(γ) = 1−
2∏
i=1

(
θαi+βi−1
i Ti
(2π)θi−1

)

×G0,0:3θ2+1,θ2+1;4θ1+1,0
1,0:2θ2+1,3θ2+2;2θ1,4θ1+1

 Kθ22 γ
/
θ2θ2

2

Kθ11 γ
/
θ2θ1

1

∣∣∣∣∣∣ H?

N?


(50)

where H? ≡ 1 : 0,∆(θ2, 1),N2; ∆(θ1, 1),N1 and N? ≡
− : 0,H2,∆(θ2, 0), 1; 1,H1,∆(θ1, 0). Moreover, Eq. (50) is
convergent as per [24, Conditions 2.61-2.64]. Another upper
bound for (47) which has been used extensively in the litera-
ture due to its mathematical tractability was proposed in [62]
as

γ =
γ1γ2

γ1 + γ2
≤ min (γ1, γ2) . (51)

The approximate CDF of γ based on (51) can be shown to be

Fγ(γ) =1− F̃γ1(γ)F̃γ2(γ)

=

2∏
i=1

θiTiG4,0
2,4

(
Kiγ

1
θi

∣∣∣∣ 1, ξ2
i + 1

ξ2
i , αi, βi, 0

)
(52)

which corresponds to the asymptotic and leading term (i.e.
term of series at p = 0) in (48). Therefore, it is expected that
min (γ1, γ2) is a good approximate only at high SNR regimes
as shown on Figure 10.

2) Exact and asymptotic general moments of e2e SNR: The
generalized moments may be estimated by substituting (48)
into E〈γn〉 = n

∫∞
0
γn−1 [1− Fγ(γ)] dγ and applying [42,

Eq. 2.24.1(1)] so that we obtain, after some simplifications,
the compact form

E〈γn〉 =n
2∏
i=1

(
θαi+βi−1
i Ti
(2π)θi−1

)(
θ2θ1

1

Kθ11

)n ∞∑
p=0

(−1)p

p!

×G3θ2+1,4θ1+1
4θ1+θ2+2,2θ1+3θ2+2

(
θ2θ1

1 K
θ2
2

θ2θ2
2 K

θ1
1

∣∣∣∣ ♠(n, p)

♣(n, p)

)
(53)

where θ2θ1
1 K

θ2
2 6= θ2θ2

2 K
θ1
1 with ♠ and ♣ given respectively by

♠(n, p) ≡ −n, 1−n−H′1,N2, p+1 and ♣(n, p) ≡ p,H2, p−
n, 1− n−N′1. Using the method from the proof of Corollary
1, (53) can be simplified to

E〈γn〉 =
θ2nθ1

1

Γ(n)Knθ11

2∏
i=1

(
θαi+βi−1
i Ti
(2π)θi−1

)

×G3θ2+1,4θ1+1
4θ1+θ2+1,2θ1+3θ2+1

(
θ2θ1

1 K
θ2
2

θ2θ2
2 K

θ1
1

∣∣∣∣ −n, 1− n− H′1,N2

0,H2, 1− n− N′1

)
(54)
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with θ2θ1
1 K

θ2
2 6= θ2θ2

2 K
θ1
1 . Finally, the asymptotic n-th moment

of γ can be deduced by setting p = 0 in (53) yielding

E〈γn〉 ∼̇ nθ2nθ1
1

Knθ11

2∏
i=1

(
θαi+βi−1
i Ti
(2π)θi−1

)

×G3θ2+1,4θ1
4θ1+θ2+1,2θ1+3θ2+1

(
θ2θ1

1 K
θ2
2

θ2θ2
2 K

θ1
1

∣∣∣∣ 1− n− H′1,N2, 1

0,H2, 1− n− N′1

)
(55)

where θ2θ1
1 K

θ2
2 6= θ2θ2

2 K
θ1
1 . To the best of our knowledge, the

expression in (54) has not been reported before in the open
literature.

Remark 2. It worth mentioning that the model in Eq. (47)
can be extended to a triple-hop system as

γ =
γ1γ2γ3

γ1γ2 + γ1γ3 + γ2γ3
=

γ3

(
γ1γ2
γ1+γ2

)
γ3 +

(
γ1γ2
γ1+γ2

) . (56)

Therefore, we can use a method similar to that used in the
proof of Theorem 2 to obtain the CDF of γ as a single series
of a product of a univariate Meijer G-function and a BMGF.
The series-free form can be expressed as a trivariate Meijer
G-function.

VI. NUMERICAL EXPERIMENTS AND SIMULATIONS

In this section, we investigate and verify the validity of the
analytical formulae derived in the preceding sections through
Monte Carlo simulations. For all curves employing Monte
Carlo simulations, 107 random ΓΓ variables are generated
using the MATLABr code from [45]. (Note that the meijer
G-function of each PDF must be written in the form Gm,0n,m(·)
or the code will not work.) All series have been truncated
at P = 25. Following in line with objectives of the paper
outlined in the introduction, we will avoid repeating the results
already presented in [22] to avoid redundancy. More attention
will be given to studying the results of Sections IV-A and V.
Except for Figures 5, 6 and 8, the simulations have been setup
in a similar manner to [3] with turbulence severity varied as
follows : The combination α = 2.902 and β = 2.51 represents
weak turbulence, α = 2.296 and β = 1.822 denotes moderate
turbulence and α = 2.094 and β = 1.342 stands for strong
turbulence conditions. Pointing error level is set as ξ = 1.1
for severe pointing errors and ξ = 6.7 denotes low pointing
errors. For the fixed-gain relay system, the gain has been fixed
at G = 1 throughout the simulations. Without any loss of
generality, we also assume that γ1 and γ2 are independent and
identically distributed ΓΓ random variables. As expected, in
Figure 5, we observe that ergodic capacity improves substan-
tially with reduction in turbulence or pointing error severity.
It is also worth noting that the asymptotic ergodic capacity
based on (26), which is essentially the ergodic capacity in the
S-R link, is a very good approximate at high SNR regimes,
i.e. for γ̄ ≥ 15dB. This is a far simpler form than dealing with
the asymptotic expansion of Eq. (15) as was the case in [22].
Furthermore, the asymptotic approximates are well behaved
even at low SNR regimes since they do not blowup. Since the
ergodic capacity for IM/DD is a lower bound, we can only

conclude that HD outperforms IM/DD but we cannot quantify
the difference. Figure 6 presents the outage probability based
on Eq. (8). It is evident that the system performance improves
with improvement in pointing error and turbulence conditions.
All these outcomes are in agreement with existing results
reported in the literature and also corroborate the correctness
of our proposed results. It is clear from Figures 5, 6 and 8
that a dual-hop system setup outperforms a single link system
and this improves with increase in average electrical SNR.
In Figure 7, we investigate the capacity of the system under
different adaptive transmission schemes using HD. It can be
deduced that channel capacity under OPRA scheme performs
better than rest of the schemes, especially at 0dB≤ γ̄ ≤ 15dB,
and this is in line with the definition of OPRA capacity as
the highest achievable capacity. This is further supported by
Figure (8). However, the ORA and OPRA capacities are almost
indistinguishable at high SNR regimes. Since implementation
of the OPRA scheme is much more complex that the ORA
policy, it is recommended to employ OPRA scheme only at
low SNR regimes to maximize capacity. As expected, the
TIFR capacity approaches the ORA capacity from below as γ0

decreases. In the case of effective capacity, Figure 9 suggests
that as the product between φ, B and Tf (QoS exponent,
system bandwidth and fading block/frame length) decreases,
the effective capacity increases to match the ergodic capacity.
In Figure 10, we compare the accuracy of min(γ1, γ2) against
γ1γ2/(γ1 +γ2) and it is clearly evident that the former is only
good at high SNR regimes.

Figure 5: Ergodic Capacity under different detection schemes,
atmospheric turbulence and pointing error severity with λ =
1550nm over a propagation distance of 2km.

VII. CONCLUSIONS

In this paper, we have revisited the performance analysis of
an all-optical dual-hop FSO transmission system and presented
a new approach to simplify the mathematical intractability
in the derivation of the CDF and PDF of the e2e SNR.
The proposed analytical formulae enable easy implementation
in latest versions of standard computing systems such as
MATLABr, MATHEMATICAr and MAPLEr. In particular,
the derived CDF expressions make it considerably easier to
study channel capacity under different adaptive transmission
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Figure 6: Outage probability for Dual-Hop and Single Link
under different atmospheric turbulence and pointing error
severity for a propagation distance of 2km and λ = 1050nm.

Figure 7: Channel capacity under strong atmospheric tur-
bulence and high pointing errors using different adaptive
transmission schemes.

Figure 8: Bit Error Rate at different turbulence and pointing
error severity with λ = 1550nm and a propagation distance of
2km.

schemes for AF-based dual-hop FSO systems, which is a
problem that has not been addressed before in the literature
for the present system model. While the evaluation of some of

Figure 9: Ergodic Capacity Vs Effective channel capacity
under weak atmospheric turbulence and low pointing errors
showing the effect of variation in the QoS and/or fading
block/frame length.

Figure 10: CSI-assisted relay systems’s outage probability
based on (48) under weak atmospheric turbulence and low
pointing errors, showing the effect of increase in average SNR
of the R-D link while that of the S-R link is kept constant.

the Meijer G-functions in the present work, particularly under
IM/DD, maybe be slow, the derived expressions can still be
useful for approximate and asymptotic analyses for very low
truncations.

APPENDIX A
DERIVATION OF CDF AND PDF OF γ FOR FIXED-GAIN

RELAYING AND PROOF OF ITS UNIFORM CONVERGENCE

A. Mathematical Derivation

Proof: From Bayes theory, we have that the CDF of γ
can be written as

Fγ(γ) =

∫ ∞
0

Pr

(
γ1γ2

γ2 + G
< γ

∣∣∣∣ γ2

)
f2(γ2)dγ2 (57)
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Now, using (2) and (6) in (57), we have that

Fγ(γ) =
T1T2θ

α1+β1−2
1

(2π)θ1−1

∫ ∞
0

1

x
G3,0

1,3

(
K2x

1
θ2

∣∣∣∣ ξ2
2 + 1

ξ2
2 , α2, β2

)
×G3θ1,θ1

2θ1,4θ1

(
Kθ11 γ

θ2θ1
1

(
1 +
G
x

) ∣∣∣∣ ∆(θ1, 1),N1

H1,∆(θ1, 0)

)
︸ ︷︷ ︸

H

dx

(58)
Observing that 1 + G

x >
1
2 for all x ∈ R+ within the integral

and employing [36, Eq. 13], H can be expanded as
∞∑
p=0

Gp

p!(x+ G)p
G3θ1,θ1+1

2θ1+1,4θ1+1

(
Kθ11 γ

θ2θ1
1

∣∣∣∣ 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
(59)

Therefore, substituting (59) into (58), the CDF of γ can be
derived using [42, Eq. 2.24.2(4)] as given in (8). Note that
an equivalent CDF expression can be obtained by factorizing
H using [59, Eq. 79] with l = 0. The PDF of γ may be
obtained by deriving (8) once with respect to γ using [42,
Eq. 8.2.2(40)]. On the other hand, if one considered using the
CDF of γ1 as given in the second form of (7), then it is fairly
straightforward to show that [63, Eq. 18] and [36, Eq. 14]
lead to the CDF and PDF of the e2e SNR being given in (11)
and (12), respectively. For the third and final CDF, we use the
first form of (6) and apply [36, Eq. 13] to extract the term

{1−γ
1
θ1
2 /[(γ2 +G)

1
θ1 ]}p and then use the binomial expansion

to obtain the CDF of γ as given in (13).

Remark 3. The shifted term (x + G)/x is what makes the
evaluation of the integral (58) a daunting task. As observed
from (59), the novelty of the proposed method of deriving
CDFs is based on the observation that either of [36, Eqs.
13 and 14], [43, Theorem 2, Eq. 33] or [59, Eq. 79] can
be used in extracting this term out of the Meijer G-function,
which greatly simplifies the integration.

B. Proof of Uniform Convergence
In order to prove the uniform convergence of the CDFs

and PDFs given in Table I, we first start by recalling Abel’s
criterion for test of uniform convergence in R [64, Theorem
0.304] :

Theorem 3 (Abel’s Test For Uniform Convergence in R).
Suppose that the series

∑∞
p=1 fp(x) converges uniformly in

a region R. Furthermore, suppose that the set of functions
gp(x) constitutes (for each x) a monotonic sequence, and that
these functions are uniformly bounded; i.e. suppose that there
exists a number L such that the inequalities

1) |gp(x)| ≤ L hold for all p and x. Then, the series
2)
∑∞
p=1 fp(x)gp(x) converges uniformly in the region R.

Now, considering CDF form (8), define the functions fp(x)
and gp(x) respectively as

fp(x) =
θα1+β1−2

1 T1

(2π)θ1−1

1

p!

×G3θ1,θ1+1
2θ1+1,4θ1+1

(
Kθ11 x

θ2θ1
1

∣∣∣∣ 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
,

(60)

gp(x) =
θα2+β2−2

2 T2

(2π)θ2−1Γ(p)
G3θ2+1,1
θ2+1,3θ2+1

(
GKθ22

θ2θ2
2

∣∣∣∣ 1,N2

p,H2

)
(61)

for p ≥ 1 with g0(x) = 1. Next, we invoke [42, Eq. 6.11.1(5)]
to obtain
∞∑
p=0

1

p!
G3θ1,θ1+1

2θ1+1,4θ1+1

(
Kθ11 x

θ2θ1
1

∣∣∣∣ 1− p,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)

=
Γ(

ξ21
2 )Γ(α1

2 )Γ(α1+1
2 )Γ(β1

2 )

[Γ(β1+1
2 )]−1Γ(

ξ21+2
2 )

=
(2π)Γ(α1)Γ(β1)Γ(ξ2

1)

2α1+β1−2Γ(ξ2
1 + 1)

(62)
for θ1 = 2 and
∞∑
p=0

1

p!
G3,1

2,4

(
K1x

∣∣∣∣ 1− p, ξ2
1 + 1

ξ2
1 , α1, β1, 0

)
=

Γ(α1)Γ(β1)Γ(ξ2
1)

Γ(ξ2
1 + 1)

(63)
for θ1 = 1. That is,

∑∞
p=0 fp(x) converges pointwise to 1.

In order to establish the uniform convergence of
∑∞
p=0 fp(x)

on R+, we need to show that the sequence of partial sums
{Sk(x)}k∈N0 , where Sk(x) =

∑k
p=0 fp(x), converges uni-

formly to the pointwise limit 1 as k →∞. Since R is a com-
plete metric space, the uniform convergence of {Sk(x)}k∈N0

on R+ can be characterized as a simple convergence with
respect to the supremum metric dk = sup

x∈R+

|Sk(x)−1|. Thanks

to the flexibility of the proposed CDF forms, an explicit
expression for Sk(x) can be obtained using the simple method
from the proof of Corollary 1 as

Sk(x) =
θα1+β1−2

1 T1

(2π)θ1−1

1

k!

×G3θ1,θ1+1
2θ1+1,4θ1+1

(
Kθ11 x

θ2θ1
1

∣∣∣∣ −k,∆(θ1, 1),N1

H1,∆(θ1, 0), 0

)
.

(64)
Now, using [65, Eq. 5.11.12], we have that Γ(1+k+s)

Γ(1+k) ∼ k
s as

k →∞ resulting in

Sk(x) ∼ θα1+β1

1 T1

θ1(2π)θ1−1
G3θ1,θ1

2θ1,4θ1+1

(
kKθ11 x

θ2θ1
1

∣∣∣∣ ∆(θ1, 1),N1

H1,∆(θ1, 0), 0

)
(65)

for large k. Comparing (65) with the CDF of γ1 (i.e. the first
equation of (6)), we note that the two expressions are identical
save the extra factor 1/Γ(1+s) in the integrand of the Meijer
G-function in (65) whose effect is negligible for large k. It
follows from properties of CDFs that Fγ1(z)→ 1 as z →∞
and the latter implies that Sk(x)→ 1 as k →∞. This can also
be observed from Figure 12. Therefore, dk → 0 as k →∞ and
thus the uniform convergence of

∑∞
p=0 fp(x) is established. It

is also clear that for each x ∈ R+, |gp(x)| ≤ 1 and gp+1(x) ≤
gp(x) for all p due to the presence of the factor 1/Γ(p).
The latter implies that {gp(x)}p∈N0

is a monotonic decreasing
sequence as depicted in Figure 13. Finally, in order to ensure
that the exchange of differentiation and summation are per-
missible, i.e. d

dx

∑∞
p=0 fp(x)gp(x) =

∑∞
p=0

d
dx [fp(x)gp(x)],

we need to prove that
∑∞
p=0

d
dx [fp(x)gp(x)] also converges

uniformly on R+. Therefore, following the same procedure
as above, we can show that

∑∞
p=0

d
dx [fp(x)gp(x)] and its

sequence of partial sums converge point-wise and uniformly to
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0, respectively. This completes the proof and justifies the term-
wise differentiation and integration as well as the interchange
of integral and summation signs performed throughout the
paper. The proofs for the rest of the CDF and PDF forms
in Table I can be derived in a similar manner.

C. Upper Bound for the Truncation Error
Since, [43, Theorem 2] is based on a Taylor series expan-

sion, we use to the Cauchy form of the remainder [64, Eq.
0.317(4)] for truncating the series representation at n terms
which can be derived as

Rn(x) =
%n

n!

(
G

x+ %G

)n+1

×G3θ1,θ1+1
2θ1+1,4θ1+1

(
Kθ11 γ(x+ G)

θ2θ1
1 (x+ %G)

∣∣∣∣ −n,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
(66)

where 0 < % < 1. As n → ∞, Γ(1+n+s)
Γ(1+n) ∼ ns [65, Eq.

5.11.12] so that

Rn(x) ∼ 1

%

(
%G

x+ %G

)n+1

×G3θ1,θ1
2θ1,4θ1+1

(
nKθ11 γ(x+ G)

θ2θ1
1 (x+ %G)

∣∣∣∣ ∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)
→ 0

(67)
It is not easy to determine the sign of the Meijer G-function
in (66) as x or n varies. However, from Figure 11, we
note that |Rn(x)| exhibits a similar monotonic decreasing
property which was observed for (61) in Figure 13. Therefore,
assuming the latter, |Rn(x)| is upper-bounded by Ru(n) =
sup{|Rn(x)| : x ∈ R+}, where

Ru(n) =
1

n!%

∣∣∣∣∣G3θ1,θ1+1
2θ1+1,4θ1+1

(
Kθ11 γ

θ2θ1
1 %

∣∣∣∣ −n,∆(θ1, 1),N1

H1,∆(θ1, 0), 1

)∣∣∣∣∣ .
(68)

An upper-bound for the error of truncating the CDF (8) after n
terms can thus be obtained by substituting (68) into (58) which
yields Ru(n) as well. Therefore, to get within ε of the exact
CDF of γ, we would have to determine a n such that Ru < ε.
While this is clearly not rigorous enough, it should suffice to
give us a general idea on the convergence rates of the series-
based formulae proposed in the present work. Finally, for the
variable gain scenario, a similar procedure can be followed to
obtain the remainder as

Rn(x) =
(−1)n+1%n

n!

(
γ

x+ %γ

)n+1

×G4θ1+1,0
2θ1+1,4θ1+1

(
Kθ11 γ(x+ γ)

θ2θ1
1 (x+ %γ)

∣∣∣∣ −n,∆(θ1, 1),N1

1,H1,∆(θ1, 0)

)
(69)

APPENDIX B
DERIVATION OF THE CDF AND PDF OF γ UNDER

CSI-ASSISTED RELAYING

Proof: The CDF of γ can easily be shown to be [66, Eq.
6]

Fγ(γ) = 1−
∫ ∞

0

F̃γ1

[
γ
(

1 +
γ

x

)]
fγ2(x+ γ)dx (70)

Figure 11: The truncation error Rn(x) showing the effect
of increase in n for moderate turbulence and strong pointing
errors with % = 0.01.

Figure 12: Several curves showing the convergence of Sk(x)
as well as the effect of the increase in the involved Meijer
G-function argument using heterodyne detection.

Substituting (7) and (2) into (70) and applying [36, Eq. 14]
yields a BFHF-free approximate CDF of γ as given in (48),
where C(p, γ) is given by

θα2+β2−2
2 T2

(2π)θ2−1

∫ ∞
0

γpdx

(x+ γ)p+1
G3θ2,0
θ2,3θ2

(
Kθ22

θ2θ2
2

(x+ γ)

∣∣∣∣ N2

H2

)
(71)

The integral C(p, γ) can be evaluated by setting x = z − γ
and then invoking [42, Eq. 2.24.2(3)] so that we obtain (49).
The proof of uniform convergence of the series follows along
the lines of the proof given for Theorem 1 in Appendix A.
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