
DEEP LEARNING OR INTERPOLATION FOR INVERSE

MODELLING OF HEAT AND FLUID FLOW PROBLEMS ?
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Abstract

A comparison of interpolation procedures (IP) and deep learning (DL) methods is presented
for inverse heat transfer problems with linear and non-linear behaviour. The proposed pro-
cedures/methods are tested for linear and non-linear heat conduction, forced convection, and
natural convection problems in which the boundary conditions are determined by providing
four temperature measurements. The results indicate that IP outperforms DL methods in
accuracy for linear heat conduction problems while DL method is better for non-linear heat
conduction problems. For heat convection problems both methods offer similar levels of
accuracy.
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1. INTRODUCTION

In a recent paper, Tamaddon-Jahromi et al [1] proposed the use of deep learning (DL)
via specific deep neural networks (DNNs) and to quickly solve inverse problems arising in
the general field of heat transfer. The approach was tested on a 2-D unit square shown in
Figure 1. The inverse problem was formulated as follows: given a constant (but possibly
different) temperature on each of the 4 walls (i.e. a total of 4 design variables) and the tem-
perature at a series of internal (measuring) points, how accurately can a DNN estimate the
wall temperatures ? Tamaddon-Jahromi et al. [1] performed forward calculations, tabulated
the temperatures at the wall (input of the forward problem) and the resulting temperatures
at the measuring points (output of the forward problem). This database was then used to
train several DNNs, which ranged from 2-4 hidden layers and 16-64 neurons per hidden layer.
The input data for the DNNs was the output of the forward problem, and the output had
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Figure 1: Problem Statement. Geometry, boundary conditions and internal measurement points.

to match as best possible the input of the forward problem. The results showed a very high
predictive accuracy for the DNNs, often exceeding 95%, i.e. less than 5% error.

Intrigued by these results, as well as the high number of neurons needed to get these levels
of accuracy, the question arose whether simple interpolation procedures could not yield a
similar accuracy. After all: if the input-to-output map/function is ill-defined or multivalued
(i.e. requiring a high-fidelity physics simulation), given an arbitrary input neither a DNN
nor an interpolation algorithm would be able to accurately predict outputs.

Interpolation algorithms require fast search techniques. Assuming these are available,
they offer a number of interesting possibilities for both IP and DL:

- One can ‘scan’ the learning data and see if there are gaps/ holes/ ‘empty regions’ that
need further data;

- Given new entries into the learning set, one can judge whether this new data is useful
or not (after all: if a point with similar data exists, why add it to the database ?);

- Given new entries into the learning set, one can judge the level of ‘noise’ or ‘uncertainty’
in the data (i.e. closeness in inputs but differences in output);

- Given new entries into the learning set, one can judge whether the input to output
map is unique, i.e. whether for similar input data large differences in output data are
possible (e.g. butterfly effects);

- New entries that are not duplicating already given information enhance the database
and improve the accuracy of the interpolation; this implies that both IP and DL
algorithms improve and ‘learn’ with more data;
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Interpolation-based algorithms offer further advantages:

- There is no arbitrariness in interpolation algorithms; unlike DNNs, there is no need
to test/evaluate the best combination of number of layers, number of neurons in each
layer, activation function type, etc.

- One can compute local gradients to estimate the accuracy of interpolation algorithms;

- Interpolation should have at least comparable speeds to DNNs; if one can order the
data properly, the number of operations required may even be lower than a complex
DNN;

- Unlike DNNs that ‘saturate’ once their coefficients are fixed after a certain number of
entries in the learning data set, interpolation keeps improving with additional data;

- Unlike DNNs, IPs do not need to be retrained when new data enters the learning data
set.

The biggest drawback of interpolation techniques is the storage; storage grows linearly
with a dataset, while accuracy only increases 1/d, where d is the dimensionality of the prob-
lem.

There are several interpretations of DL and there are various types of DNNs; for a broad
view of the field, we refer to the seminal paper of LeCun, Bengio, Hinton [2]. In particular,
we use the interpretation where in each layer (level) we first apply an affine transforma-
tion followed by an application of a nonlinear activation function. In the end, the DNN
approximation is a composition of such nonlinear transformations in each layer. We further
emphasize there are other more sophisticated DNNs such as Convolution Neural Network
etc., but we do not explore these options further in this paper. We refer to [3] for mathe-
matical approximation properties of DNNs used in our paper and its comparison with linear
and nonlinear interpolation. See also [4] for the approximation properties of finite element
functions by DNNs. For completeness, we also refer to [5] for Physics informed neural net-
works (PINNs), and also [6] for a DNN based approach to learn constitutive relations from
observations.
The goal of the present paper is not to add to this growing list of excellent publications
on the role of DNNs in Physics based modeling and simulations, but to provide IP as an
alternative to DL. A number of multiple inverse problems, illustrate that IP outperforms DL
methods in accuracy for linear heat conduction problems while DL is better for non-linear
heat conduction problems. For heat convection problems both methods provide comparable
levels of accuracy. Even though unrelated, but for completeness we also mention that com-
parison between various approaches is somewhat standard in the literature, see for instance
[7] for a comparison between interpolation, statistical, and data-driven methods for missing
values in datasets.

In order to test the effectiveness of IP and DL methods, the inverse heat and fluid flow
problems considered by Tamaddon-Jahromi et al [1] have been revisited. In the following
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section IP method used is explained. Section 3 provides a brief summary of the deep learning
(DL) methods used. Section 4 presents a comprehensive set of results to compare IP and DL
methods for the classes of problems considered here. Finally, some conclusions are drawn in
Section 5.

2. INTERPOLATION

Given that the training set for the DNNs is usually very large, a possible alternative is
to use this data directly and interpolate from it. Assume as given for each of the N data
entries/ points/ cases of the database: u := u(i), i = 1, . . . , ni input values and v := v(j), j =
1, . . . , no output values. For a new input u∗: find the closest m entries in the database that
minimize some distance norm to u∗, e.g.

d =

[∑
i=1,ni

|u∗(i)− u(i)|p
] 1

p

. (2.1)

Typical values used are p = 1 or p = 2. The final output value is then obtained by some
weighted interpolation, e.g. an inverse distance weight:

v∗ =

∑
k=1,m

1
dqk
vk∑

k=1,m
1
dqk

. (2.2)

Typical values used are q = 1 or q = 2.

3. DEEP LEARNING

Deep learning (DL), a new Artificial Intelligence (AI) trend that uses multi-layer percep-
tion network [8], has received increasing attention from researchers and has been widely ap-
plied to numerous real-world applications and across many fields [2, 9, 10, 11, 12, 13, 14, 15].
Deep learning is able to effectively capture the non-linear and non-trivial user-item relation-
ships, and it enables the codification of more complex abstractions as data representations
in the higher layers. The general structure or configuration of the proposed neural network
consists of L number of hidden layers along with one input and one output layer. Each hid-
den layer, input layer and output layer have K, N and J number of neurons, respectively.
The equation below shows the general structure of the neural network:

BCj = φ

( KL∑
m=1

θLjmG
L
m

)
, j = 1− 4, (3.1)

where G1
k is

G1
k = g

( N∑
n=1

θ1knMn + [bias]1k

)
, k = 1−K1 (3.2)
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and Gl
k is

Gl
k = g

(Kl−1∑
m=1

θlkmG
l−1
m + [bias]lk

)
, k = 1−K l, l = 2− L (3.3)

where φ(x) = max(0, x), θ are weights, and g(x) =

{
x if x > 0

0.3x if x <= 0
are non-linear ac-

tivation functions for the output layer and hidden layers respectively. The input layer is
(Mn) has N number of input neurons. Here, the output layer produces values calculated for
4 boundary conditions, hence number of neurons in this layer, J , is four. Network weights
and biases of Neural Networks (NNs) are tuned based on data using the adaptive moment
estimation (Adam) algorithm [16]. The main part of the DNN methodology is the learning
or training process in which the errors determined at the output layer are successively re-
duced by adjusting the weights and biases throughout the network. The DNN architectures
employed in the present work are listed in Table 1.

Table 1: Architecture of Deep learning models

Inverse Problem Deep Neural Network Architecture

Linear Conduction 4-64-32-16-4
Non-linear Conduction 4-64-32-16-4

Forced Convection 4-64-32-16-16-16-4
Natural Convection (10 x 10 grid) 4-64-32-Dropout(10%)-16-16-16-4
Natural Convection (20 x 20 grid) 4-64-32-Dropout(20%)-32-16-16-4

4. NUMERICAL EXAMPLES

In order to test the ideas, the same test cases as in [1] are considered.

4.1. Linear Heat Conduction

The equation describing the temperature field is given by:

∇k∇T = 0 , k = 1 . (4.1)

The database was generated by an exhaustive combination of 11 possible temperatures on
each wall ([0.00:1.00], with constant increments of 0.1), leading to a total of 114 = 14, 641
cases. FEHEAT [17] was used to solve the heat equation via finite elements. The mesh
size was set to h = 0.1, similar to [1]. For each of these (forward) runs, the temperature
at the 4 points marked M1-M4 was recorded. The data of these runs was stored in a
table and used for interpolation. Thereafter, a second set of runs was performed by an
exhaustive combination of 10 possible temperatures on each wall ([0.05:0.95], with constant
increments of 0.1), leading to a total of 104 = 10, 000 cases. The logic for this choice was
that these locations represent the ‘furthest’ possible distance from the given data, and should
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(b) Deep Learning

Figure 2: Linear heat conduction problem. Maximum error between computed and estimated boundary
temperatures T1-T4; Interpolation (a) vs Deep Learning (b)

therefore be indicative of ‘worst case scenarios’ for both IP and DL techniques. As before,
the temperature at the 4 points marked M1-M4 was recorded for each of these runs. The
wall temperatures for this second set of runs was also estimated via interpolation using the
original database [0.00,1.00,0.1], and the differences in estimated vs. real wall temperatures
recorded. These differences are shown in Figures 2 and 3. The DNN model was trained
on the first set of 14,641 cases and tested on the second set of 10,000 cases. The difference
between DNN calculated vs. real wall temperatures have alse been recorded in Figures 2
and 3. Figures 2 and 3 respectively show the maximum and average errors. Note the vastly
different scales in the graphs. Using interpolation results in errors that are 2-3 orders of
magnitude smaller than DNNs.

4.2. Nonlinear Heat Conduction

The equation describing the temperature field is now given by:

∇k∇T = 0 , k = max(0.01, T ) . (4.2)

As before, the database was generated by an exhaustive combination of 11 possible tem-
peratures on each wall [0.00:1.00:0.1], leading to a total of 114 = 14, 641 cases. FEHEAT
was used to solve the heat equation. The same mesh size of h = 0.1 was used for this
nonlinear case as well. For each of these runs, the temperature at the 4 points marked M1-
M4 was recorded. The data of these runs was stored in a table and used for interpolation.
Thereafter, a second set of runs was performed by an exhaustive combination of 10 possible
temperatures on each wall [0.05:0.95:0.1], leading to a total of 104 = 10, 000 cases. The
wall temperatures for this second set of runs were also estimated via interpolation using the
original database [0.00,1.00,0.1], and the differences in estimated vs. real wall temperatures
recorded. These differences are shown in Figures 4 (maximum) and 5 (average). Note that
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(a) Interpolation
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(b) Deep Learning

Figure 3: Linear heat conduction problem. Average error between computed and estimated boundary
temperatures T1-T4; Interpolation (a) vs Deep Learning (b)

in this case the differences are higher, something that is to be expected for nonlinear cases.
As with the linear case, the DNN model was trained on the first set of 14,641 cases and
tested on the second set of 10,000 cases. The difference between the DNN calculated vs. real
wall temperatures may be seen in Figures 4 and 5. It can be observed here that in this case,
the DNN errors are lower, with averages hovering around 1% for IPs and 0.3% for DNNs.

4.3. Forced convection heat transfer

The equation describing the temperature field is now given by:

∇ · v = 0,

(v · ∇)v = −∇p+
1

Re
∇2v (4.3)

v · ∇T =
1

Pe
(∇2T )

where Re is the Reynolds number defined as Re = uaLchar

ν
and Pe = uaLchar

α
is the Péclet

number. ua is a reference velocity, Lchar is a characteristic dimension, ν is kinematic viscosity
and α is thermal diffusivity of the fluid (see [18] for more details). In this study, the Reynolds
number was selected to be Re = 140 and Pe = 100. FEFLO [19] was used to solve the
Navier-Stokes and heat equations via finite elements.

As before, the database for the IP and DNN consisted of the same 14,641 wall temperature
cases, and both were tested on the second set of 10,000 cases. The results obtained have been
summarized in Figures 6 and 7. It may be observed that, interestingly, IP shows constant
errors at three levels of around 0.0, 0.02 and 0.03, even though the same error measures
as for all other cases were employed. This can be traced to a sudden change in boundary
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(a) Interpolation
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(b) Deep Learning

Figure 4: Nonlinear heat conduction problem. Maximum error between computed and estimated tempera-
tures T1-T4; Interpolation (a) vs Deep Learning (b)

(a) Interpolation
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(b) Deep Learning

Figure 5: Nonlinear heat conduction problem. Average error between computed and estimated temperatures
T1-T4; Interpolation (a) vs Deep Learning (b)
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(a) Interpolation
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(b) Deep Learning

Figure 6: Forced convection problem. Maximum error between computed and estimated temperatures T1-
T4; Interpolation (a) vs Deep Learning (b)

conditions for the walls. The average errors for DNNs are around 0.008 and 0.005 (red lines
in Figures 6 and 7) as compared to 0.005 and 0.002 (green lines in Figures 6 and 7) for IPs.

4.4. Natural convection heat transfer

The equation describing the temperature field is now given by:

∇ · v = 0,

(v · ∇)v = −∇p+ Pr∇2v + Gr Pr2 T ŷ (4.4)

v · ∇T = ∇2T

where p is the pressure, ŷ is the unit vector in the y-direction, and Pr and Gr are the
Prandtl and Grashof numbers, respectively (see [18] for more details). Gr is taken here to
be Gr = 105 and Pr = 0.71 which corresponds to air.

As before, FEFLO was used to generate these data sets, using unstructured grids of
size comparable to 10x10 and 20x20 structured meshes. The first set of 14,641 data points
were chosen as the database for interpolation/training set and the second set of 10,000 were
selected as test candidates. The differences between estimates and actual values have been
summarized in Figures 8, 9 for the 10x10 mesh and Figures 10 and 11 for the 20x20 mesh.
One can see that for this case the error levels are almost the same: by some measures/cases
IPs are better, by others DNNs are better.

5. Conclusions and Outlook

In summary, the comparison of this limited set of results between the two approaches
provide us with the following observations:
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(b) Deep Learning

Figure 7: Forced convection problem. Average error between computed and estimated temperatures T1-T4;
Interpolation (a) vs Deep Learning (b)

(a) Interpolation
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(b) Deep Learning

Figure 8: Natural convection problem. Maximum error between computed and estimated temperatures
T1-T4; Interpolation (a) vs Deep Learning (b), 10x10 structured mesh
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(a) Interpolation
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(b) Deep Learning

Figure 9: Natural convection problem. Average error between computed and estimated temperatures T1-T4;
Interpolation (a) vs Deep Learning (b), 10x10 structured mesh
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(b) Deep Learning

Figure 10: Natural convection problem. Maximum error between computed and estimated temperatures
T1-T4; Interpolation (a) vs Deep Learning (b), 20x20 structured mesh
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(a) Interpolation
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Figure 11: Natural convection problem. Average error between computed and estimated temperatures T1-
T4; Interpolation (a) vs Deep Learning (b), 20x20 structured mesh

- IPs perform better than DNNs for linear heat conduction problems;

- DNNs perform better than IPs for nonlinear heat conduction problems;

- IPs and DNNs perform similarly for forced and natural convection problems.
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