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Large-scale hierarchies characterize complex networks in different domains. Elements at the top, usually the
most central or influential, may show multipolarization or tend to club together, forming tightly interconnected
communities. The rich-club phenomenon quantified this tendency based on unweighted network representa-
tions. Here, we define this metric for weighted networks and discuss the appropriate normalization which
preserves the nodes’ strengths and discounts structural strength-strength correlations if present. We find that in
some real networks the results given by the weighted rich-club coefficient can be in sharp contrast to the ones
in the unweighted approach. We also discuss the ability of the scanning of weighted subgraphs formed by the
high-strength hubs to unveil features in contrast to the average: the formation of local alliances in multipolar-
ized environments, or a lack of cohesion even in the presence of rich-club ordering. Beyond structure, this
analysis matters for correct understanding of functionalities and dynamical processes relying on hub
interconnectedness.
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I. INTRODUCTION

A common feature of many real systems is a strongly
hierarchical organization which arises at the large scale as a
consequence of their microscopic dynamics. As a result,
many structural properties describing these systems are far
from uniform and show an extreme dispersion, which marks
a few of their elements with the highest values as dominant.
It is common to extrapolate their prevalence beyond struc-
ture to recognize them as the most central, influential, or
primal in general terms. In what manner these top elements
relate to each other, in particular, whether they are polarized
or, on the contrary, show a tendency to club-forming elites or
backbones, is an open question that matters for understand-
ing the makeup and performance of the whole system.

In the context of complex network science �1�, the quan-
titative discussion of this issue is known as the rich-club
phenomenon. In the network conceptualization of a real sys-
tem, the most fundamental statistic associated with the ele-
ments represented as nodes is the number of neighbors they
are connected to, the degree k. In a vast majority of real
networks the degree distribution P�k� is very broad and de-
fines a topological hierarchy with rich nodes, those with a
high degree, at the top. To detect if they aggregate in a well-
interconnected core, a first uniparametric measure, the rich-
club coefficient, was proposed as the fraction of edges actu-
ally connecting nodes with degree larger than a certain
threshold kT out of the maximum number of connections if
they formed a perfect clique �2�. Later on, the original metric
was redesigned in order to discount structural effects forcing
hubs to be connected without the intervention of special or-
dering principles �3�. In this way, rich clubs have been found
in scientific collaboration networks and in critical infrastruc-
tures such as the world air transportation system �3�, or in the
protein interaction map of the human malaria parasite �4�.

However, the first approximation of taking the interac-
tions between pairs of elements i and j as binary, just present
or absent as described by the adjacency matrix aij, turns out

to be an oversimplification that in many analyses can distort
the interpretation of the results. An interaction can more ex-
actly be quantified by its intensity or weight wij, and a node
can better be characterized by its strength si, giving the ac-
tual intensity of the interactions it handles and defined as the
sum of the weights on the links attached to it.

Here, we explain how to generalize the concept of rich-
club ordering to evaluate weighted networks �5,6�. More spe-
cifically, our work makes the following contributions. �1� We
define the rich-club coefficient in weighted networks as a
function of the total weight of links connecting nodes of
strength larger than a certain value as compared to the ap-
propriate normalization �Sec. II A�. �2� To compute the nor-
malization, we introduce a null model for weighted networks
that preserves the nodes’ strengths but otherwise produces
maximally random networks. This null model can provide a
reference value in weighted networks beyond the rich-club
coefficient �Sec. II A�. �3� We compute analytically the
strength-based rich-club coefficient in the uncorrelated limit
�Sec. II B�. �4� We explore the role of structural strength-
strength correlations by introducing two further metrics: the
average nearest neighbor strength and the weighted average
nearest neighbor strength �Sec. II C�. �5� We apply the meth-
odology to three different real networks and find that the
consideration of weights can bring results in sharp contrast to
those obtained from the degree-based measure �Sec. III�. �6�
We also discuss the fact that the measurement of the rich-
club coefficient is not enough for a complete assessment of
the rich-club phenomenon. The averaging character of the
metric hides the particulars about the internal organization of
the subsets gathering the richest nodes. Their direct inspec-
tion, comparing the real weight in each inner link with the
reference value given by the null model, uncovers features
sometimes contrary to what the overall measure is implying:
very fragmented subsets in the presence of rich-club ordering
or local alliances when the dominant trend is rivalry or mul-
tipolarization �avoidance of connection to each other in a
group formed by several� �Sec. IV�. �7� Finally, conclusions
can be found in Sec. V.
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II. DETECTING RICH-CLUB ORDERING IN WEIGHTED
NETWORKS

We begin by noticing that the degree-based rich-club co-
efficient ��kT� of a given graph is computed in two recursive
steps. In the first, a simple degree thresholding procedure is
applied to produce a hierarchy of nested subgraphs formed of
nodes with degrees larger than an increasing threshold kT.1 In
the second, the number of connections within each subgraph
k�kT is evaluated and compared to the corresponding value
in the randomized version of the graph that preserves the
degree distribution P�k� �8�. Hence, the rich-club coefficient
can be written as �3�

��kT� =
Ek�kT

Ek�kT

ran . �1�

A ratio larger than 1 indicates the presence of a rich-club
phenomenon, high-degree nodes being intertwined with one
another more tightly than expected from randomness. In con-
trast, a ratio less than 1 is a signature of an opposite orga-
nizing principle that leads to a lack of interconnectivity
among high-degree nodes.

A. Null model that preserves the strength distribution and
definition of the rich-club coefficient

The computational procedure for weighted networks
needs to redefine the subgraphs and the appropriate null
model. There is not a unique choice, since one could, for
instance, be interested in a topology where weights and links
are randomized, keeping the nodes’ strengths and degrees
constant �9�. Here we are, however, interested in avoiding
the constraint of the actual topology of the real network in
order to detect departures from the random counterpart not
only in terms of intensities but even in the presence or ab-
sence of interactions. A link between hubs predicted by the
null model that is actually missing in the real network clearly
indicates a tendency contrary to club formation.

Hence, we focus exclusively on strengths and assume that
the rich nodes are those with the highest values. The appro-
priate thresholding procedure applied to the weighted net-
works generates then a hierarchy of nested subgraphs of
nodes with strengths larger than an increasing threshold sT,
and the sum of the weights on the links within each sub-
graph, Ws�sT

, is considered. Regarding the normalization, we
propose to compare to a randomized version of the graph
that preserves the strength distribution P�s�. This null model
can be achieved by approximating the weights in the network
by integers, so that they could be considered as multiple
connections formed by decoupled links. Then, the usual ran-
domization based on rewirings �8� can be done, avoiding
self-connections but not multiple ones. In this way, the nodes
maintain their strength but the weights in the links �or the
degrees� can change in the process. To avoid inducing corre-

lations, notice that each decoupled link should be selected
independently with the same probability. This ensures that in
the steady state the weights agree with the expected values in
a strength-preserving but otherwise maximally random con-
formation. Formally, the rich-club coefficient in the weighted
approach can be written as

��sT� =
Ws�sT

Ws�sT

ran . �2�

B. Analytical computation of the uncorrelated limit in the
weighted approach

Strengths are less prone than degrees to be affected by
structural constraints �10,11�. This fact makes meaningful the
consideration of the uncorrelated limit in the weighted ap-
proach,

�unc�sT� = Ws�sT
/Ws�sT

unc , �3�

in which the strengths of attached nodes are independent.
The normalization Ws�sT

unc can be computed analytically. In
the same spirit of the original measure of Zhou and Mon-
dragon �2�, it is given by the sum of the uncorrelated weights
in fully connected subsets, which can be calculated just by
taking into account that, on average, they must be propor-
tional to the product of the strengths of the nodes i and j they
are associated with �11�. If loops are not allowed,

Ws�sT

unc = �
�i

�
�j�i

wij
unc = �s�

�
�i

�
�j�i

sisj

N�s�2 − �s2�
, �4�

where �i designates the subsets of nodes such that si�sT, N
is the total number of nodes in the network, and �s� and �s2�
are the first and second moments of the strength distribution.

C. Structural strength-strength correlations

As happens for the degrees �10�, in some networks clo-
sure conditions enforce the presence of correlations between
the strengths of connected pairs that cannot be avoided even
in maximally random configurations. Equation �2� discounts
these structural strength-strength correlations and other
higher-order effects which are not removed by the random
procedure. However, the uncorrelated approximation as-
sumes a total absence of dependencies between strengths and
it is not perfectly valid if structural strength-strength corre-
lations are present. To help to discern in which networks
these are important, we define—from the formalism in �12�
and in analogy to the average nearest neighbor degree �13�—
the average nearest neighbor strength and the weighted av-
erage nearest neighbor strength, both as functions of the
strength,

s̄nn�s� =
1

Ns
�

i�s,j

aij

ki
sj, s̄nn

w �s� =
1

Ns
�

i�s,j

wij

s
sj , �5�

Ns being the number of nodes with strength s. The average
s̄nn�s� is coupled to the underlying degree structure and com-

1This nested hierarchy of subgraphs turns out to have self-
similarity properties for some real scale-free networks such as the
Internet at the autonomous system level; see �7�.
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putes strength-strength correlations that are structural and
cannot be destroyed by the randomization. In contrast, s̄nn

w �s�
is disentangled from degrees and expected to be perfectly flat
in the maximally random case. Both measures combined en-
able the discrimination of structural and nonstructural
strength-strength correlations in weighted networks, setting
up the validity of the uncorrelated approximation.

III. REAL NETWORKS

In the graphs of Fig. 1 �top�, we report the behavior of
��sT� and �unc�sT� in three different real networks, and for
comparison we also provide the curves for the degree-based
definition ��kT� �insets�. These examples correspond to �a�
the world trade web �WTW� of commercial relationships be-
tween states �14� in 2000, where the weights give the annual
merchandise exchanges in millions of current-year U.S. dol-
lars ��15��, �b� the domestic segment of the U.S. airport net-
work �USAN� for the year 2006,�16� where the weights are
given by numbers of passengers �6�, and �c� an extract of the
actual scientific collaboration network �SCN� of researchers
in the area of complex networks �17�, where the weights
represent the intensity of the collaborative ties depending on
the number of coauthored papers and the number of authors
in each. To validate our methodology, we also generated a
maximally random network at the weighted level with a size
of 2�104 nodes and a strength distribution P�s��s−1.85,
making use of the weighted configuration model �WCM�;
see �11� and references therein. By construction and as ex-

pected, its strength-based rich-club coefficient does not de-
tect any ordering but has a value of 1 in the whole domain
�plot omitted for brevity�.

Surprisingly, very different behaviors of ��kT� and ��sT�
can be detected in networks where the degree and strength
are not trivially related. Two instances are the WTW and the
USAN, which have a neutral �meaning that the unweighted
representation is dominated by structural connectivity ef-
fects� and a mild degree-based rich-club ordering, respec-
tively, but exhibit a decreasing strength-based coefficient,
providing evidence of a clear rich-multipolarization phenom-
enon. Their oligarchies of rich nodes are on average loosely
interconnected in terms of weight as compared with the ran-
dom null model counterpart, in contrast to the rich-club situ-
ation. On the other hand, the degree-based and strength-
based spectra of networks with weights uncorrelated with
degrees are expected to be qualitatively similar. This is what
happens in the SCN case. The presence of a strong rich-club
ordering in both the unweighted and the weighted represen-
tations seems to provide support to the idea that the more
collaborative �and, by extrapolation, maybe the more influ-
ential� researchers in complex network science tend to club
following an expected tendency in social systems �as we will
discuss below, maybe excluding the very top hubs as sug-
gested by the sharp decay of ��kT� for very high degrees�.

Turning now to evaluate the goodness of fit between the
uncorrelated approximation �unc�sT� and ��sT�, these mea-
sures match almost perfectly in the USAN and the SCN
cases. The agreement is slightly worse for the WTW and in
the case of the simulated WCM the approximation is clearly
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FIG. 1. �Color online� Weighted rich-club phenomenon in the real networks WTW, USAN, and SCN. AT the top, graphs for the
strength-based rich-club coefficient. Dotted curves correspond to ��sT� normalized and averaged over 100 randomizations �rewirings� of the
original network. Weights have been discretized in all cases: rounded off to the nearest integer in the WTW, coarse grained to hundreds and
rounded off to the nearest integer in the USAN, and divided by the minimum weight and rounded off to the nearest integer in the SCN. Solid
lines in the plots represent the analytical curves for the uncorrelated approximation �unc�sT�. The insets show the degree-based rich-club ��kT�
of the unweighted representation. At the bottom, sketches showing greater detail of how the hubs interact among themselves. Darker colors
represent inner subsets in the nested hierarchy as defined by the threshold strength. Within a plot, the sizes of the nodes are proportional to
their strengths. The numerical values labeling the links represent the ratio of the actual weight of the tie to its average value in the
randomized versions.
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bad �plot omitted for brevity�. The explanation for this diver-
gence can be found in the presence of structural strength-
strength correlations. In Fig. 2, we report these functions for
the real and simulated networks. Disassortative �18� struc-
tural strength correlations measured by s̄nn�s� are important
for the WTW but much more so for the WCM, limiting the
validity of the uncorrelated approximation in these cases.

IV. ANALYSIS OF THE INNER SUBGRAPHS

We have now a methodology to detect rich-club ordering
in weighted networks which provides valuable information
about the average tendency in the interactions between hubs.
But averages can hide local regularities in contrast to the
overall behavior, and a thorough assessment of the property
requires greater detail. A direct inspection of the subgraphs
formed by the hubs, comparing the actual weight in each link
with the reference value given by the null model, is neces-
sary. If, for a given link, the ratio of the two values is above
1, the two nodes connected by that link show a tendency to
interact, while a ratio below 1 denotes the opposite tendency,
to avoid interaction. In addition, stronger polarization is
manifested when a link between two nodes is absent in the
real network but has a certain expected weight according to
the null model.

The results for the real networks under study are summa-
rized in the sketches of Fig. 1 �bottom�. The WTW shows,
for instance, a very clear and sharp rich-multipolarization
phenomenon. The function ��sT� runs at the value 1 just until
the tail end, where a group of rich nodes �the United King-
dom, China, France, Japan, Germany, and the United States,
in increasing order of strength� form subsets with ��sT��1.
Notice the overlap of five members—all except China—with
the club of the seven largest industrialized and richest coun-
tries in the world, the G7, which also includes Italy and
Canada �the next two countries in the strength hierarchy of
the WTW in 2000�. The decreasing tail indicates that these
hub countries share on average less weight among them than

expected in the random situation. So they seem to have an
aversion to connecting to each other, as anticipated between
powers in a strongly competitive economic system. How-
ever, they interact anyway, forced by structural constraints,
and form fully connected subsets. What is more interesting,
the biggest world economies seem to be polarized into two
connected blocks in direct competition: the United States and
its Asian allies Japan and China, against Europe �France,
Germany, and the United Kingdom�. Each block is tightly
connected, shown by trading volumes larger than random
predictions, and competition between the two is exposed by
the reduced exchange of merchandise as compared to the
null model.

The situation for the USAN is similar in the sense that it
presents a distinct rich-multipolarization phenomenon �al-
though the transition from ��sT�=1 to ��sT��1 is smoother�
and that the hub airports form fully connected subgraphs. In
the sketch we show the seven largest airports in numbers of
domestic passengers. Again, although the overall tendency is
a reduced interaction reflecting competition, examination of
the subsets shows tight interconnections among the big west
coast and central airports, Los Angeles, Phoenix, Las Vegas,
and Denver, and a neutral interaction with Dallas, while the
interactions with Chicago and Atlanta in the east are weak.
Chicago and Atlanta are the biggest hubs with a weak tie to
each other and to the rest. An explanation can be found in the
geographical layout. While Chicago and Atlanta are far away
and surrounded by nonoverlapping basins of attraction of
smaller airports and passengers, Los Angeles, Phoenix, and
Las Vegas are close enough to be forced to share approxima-
tively the area of influence so that they interact with each
other more than expected. Surely, other aspects such as the
provision of connections to international flights or opera-
tional constraints of the biggest air companies can also have
a role.

Finally, the SCN illustrates the opposite situation. This is
a network with a strong rich-club ordering in both the
degree-based and strength-based approaches, which seems to
suggest that researchers tend to form collaborative groups.
However, this does not necessarily mean a high degree of
cohesiveness among all the most collaborative scientists. In-
deed, the inner subgraphs of the network are actually very
sparse, even though they are expected to be fully connected
according to the random null model. This points to a certain
level of rivalry between the hubs. They form ties with just
very few other hubs, but in exchange the interactions are
very strong and enough to determine the averages.

We would like to emphasize that, in all three cases, these
results are corroborated and in good agreement with other
sources of information about the system: commercial agree-
ments in the case of the WTW, geographical layout in the
case of the airport network, and strongly competitive charac-
ter of collaborations in the field of complex networks sci-
ence.

V. CONCLUSIONS

These findings have important consequences. At the the-
oretical level, the detection of rich-club ordering is depen-
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dent on whether the intensities of the interactions among
elements are taken into account in systems where intensities
and number of interactions are related in a nontrivial form. In
addition, an exhaustive assessment of the property requires
greater detail than can be achieved by the averaging coeffi-
cient. The scanning of the subgraphs formed by the hubs as
compared to the appropriate null model is also relevant, and
can uncover the formation of local alliances in multipolariza-
tion environments or a lack of cohesion even in the presence
of rich-club ordering. Beyond structure, this analysis matters
for understanding functionalities and dynamical processes
relying on hub interconnectedness and, in a broader context,
may help explain how primary forces such as competition

and cooperation influence collective form and performance.
Note added. Recently, other researchers proposed an alter-

native null model in order to detect rich-club ordering in
weighted complex networks; see �19�.
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