
A long-term flood discharge record derived from slackwater flood deposits of the 

Llobregat River, NE Spain 

 

V.R. Thorndycrafta, G. Benitoa*, M. Ricoa, A. Sopeñab, Y. Sánchez-Moyab, and A. 

Casasa 

 

aCentro de Ciencias Medioambientales – CSIC, Serrano 115-bis, 28006 Madrid, Spain. 

bInstituto de Geologia Económica, Universidad Complutense de Madrid, 28040, 

Madrid, Spain.  

 

* Corresponding author.  

Tel: +34 91 745 2500;  

Fax: +34 91 564 0800; 

 

E-mail: benito@ccma.csic.es 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36024304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Abstract 

 

Slackwater palaeoflood deposits were identified along two bedrock gorge study reaches 

of the Llobregat River, at Pont de Vilomara and Monistrol de Montserrat. The compiled 

palaeoflood record consists of two principal flood series: a) a relatively complete record 

of low to high magnitude flood events from the last ca. 100 years and b) evidence of the 

largest palaeoflood events that have occurred over the last ca. 2700 years. The longer 

term extreme palaeoflood record indicates that the discharge of the 1971 flood, the 

largest on record, was exceeded on at least 8 occasions over the last ca. 3000 years, with 

two periods of high magnitude flooding identified: a) the Late Bronze Age (2500-2700 

years ago) and b) the Little Ice Age (AD 1500-1700). At Pont de Vilomara, 

palaeodischarge estimates of ca. 3600 m3/s compare to a discharge of 2300 m3/s for the 

1971 event. Downstream at Monistrol, an estimate of 4680 m3/s for flood deposits dated 

as AD 1516-1642, and believed to be those of the AD 1617 event, compared to 2600 

m3/s for the 1971 flood. 
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Introduction 

 

Flooding is a major hazard in Mediterranean regions due to its extreme spatial and 

temporal variability. Furthermore, flood risk has been increased over recent decades as 

socio-economic factors have led to increasing urbanisation and development along the 

Mediterranean coast that has resulted in ever larger flood prone areas and societal 

vulnerability. With regards to flood risk prevention in the region, the estimation of rare, 

large magnitude floods is problematic due to short gauging station records and their 

limited spatial distribution. A further problem with systematic flood records is that of 

accurately measuring extreme flood discharges (Baker et al., 2002), which in 

Mediterranean regimes are often 100 times greater than the mean flow. During these 

large floods, gauge stations are frequently either flooded or destroyed, meaning that, in 

many cases, the reported floods from stream flow measurements are themselves 

estimated discharges using indirect methods or statistical extrapolation.  

 

To reduce risk associated with floods there is a critical need to increase the length of the 

extreme flood record beyond that of the instrumental period. The flood record can be 

extended by hundreds to thousands of years by reconstructing past flood discharges 

using geomorphological indicators (palaeofloods) and documentary evidence. 

Palaeoflood hydrology, the reconstruction of the magnitude and frequency of large 

floods using geological evidence (Baker et al., 2002), has been employed in many 

regions of the world for compiling long term flood records for improving flood risk 

estimation (House et al., 2002a). In particular palaeoflood records have been 

reconstructed in southwest USA (Kochel et al., 1982; Ely and Baker, 1985; Partridge 

and Baker, 1987; O’Connor et al., 1994), Australia (Baker and Pickup, 1987; Pickup et 



al., 1988; Wohl et al., 1994), Israel (Greenbaum et al., 2000), India (Kale et al., 2000), 

Japan (Jones et al., 2001), China (Yang et al., 2000), France (Sheffer et al., 2003) and 

central Spain (Benito et al., 1998, 2003a).  

 

This paper presents the results of a palaeoflood investigation of the Llobregat River, one 

of the study basins of the SPHERE project, a European Commission funded project that 

aims to improve flood risk estimation by incorporating past flood information and 

developing new scientific frameworks and technical tools within a European context 

(Benito et al., 2004). The main objectives are: (1) to reconstruct a catalogue of major 

flood events using the stratigraphic record of slackwater flood deposits, (2) to 

understand flood processes and timing of extreme events within Mediterranean regions; 

(3) to study the palaeoflood hydraulics associated with these flood events in order to 

estimate flood peak discharges; and (4) to provide relevant long term data regarding the 

largest magnitude floods that can be applied in flood hazard planning for the lower 

Llobregat River. This is of particular interest as a new flood protection channel, with a 

design discharge of 4000 m3/s, is currently under construction on the Llobregat delta, an 

important area of economic activity to the south of Barcelona, with numerous industrial 

estates and the city’s international airport located there. 

 

Study location 

 

The Llobregat River is located in Catalonia in northeast Spain (Fig. 1). The river flows 

north-south from the Pre-Pyrenean Cordillera to the Mediterranean Sea, immediately 

south of Barcelona, draining a catchment area of 4984 km2. The study sites at Pont de 

Vilomara and Monistrol de Montserrat are both located in the middle reach of the 



Llobregat River (Fig. 1), draining catchment areas of 1845 km2 and 3370 km2 

respectively, with the Monistrol reach located downstream of the Cardener River 

tributary. The Llobregat River has a typically Mediterranean regime with a low mean 

annual discharge (21 m3/s), extreme seasonal variations and flood peaks around 100 

times greater than the mean discharge. Mean annual rainfall in the catchment varies 

from 900-1100 mm in the headwater reaches to 500-700 mm in the middle and lower 

reaches, however, large flood events are triggered by maximum rainfall exceeding at 

least 200 mm within a 24 hour period (Llasat, 1991). The majority of the largest floods 

over the last century occurred in autumn and are associated with a synoptic pattern of 

anticyclonic conditions over Europe and warm, moist air coming from the southeast that 

causes intense orographic rainfall over the coastal and pre-Pyrenean mountains (Llasat, 

1991). 

 

At both study reaches the river is confined by bedrock walls, as the river cuts north-

south through the Eocene Conglomerates of the Prelittoral Cordillera and the Montserrat 

Massif. The river channel is predominantly bedrock, although on the wider gorge bends 

gravel bars occur (Fig. 1). Slackwater flood sediments (cf. Kochel and Baker, 1988; 

Benito et al., 2003b) have been deposited and preserved in valley side rock alcoves 

developed within the predominantly horizontal rock strata. 

 

Flood hydrology of the Llobregat River 

 

A summary of the largest floods recorded in the Llobregat catchment over the last 

hundred years is presented in Table 1. The most complete discharge record is from 

Martorell, the gauging station located furthest downstream with a drainage area of 4561 



km2 (Fig. 1). This record covers the periods 1911-1932 and 1944 onwards and records 

five flood events with discharges of at least 1500 m3/s. Table 1 lists four additional 

floods – the 1907, 1940 and 1942 events, which occurred when the Martorell station 

was unoperational, and the July 2000 event that damaged it. At the Pont de Vilomara 

study reach discharge data has been recorded since 1915, with a gap between 1923 and 

1942. The record shows three major floods over the last 60 years: 1500 m3/s (September 

1971); 950 m3/s (November 1982); and 587 m3/s (November 1962). The reference 

gauging station for the Monistrol de Montserrat study reach is located at Castellvell 

(3293 km2), 3 km upstream, where records began in 1942. At Castellvell, three floods 

with discharges greater than 1000 m3/s have been recorded in the last 60 years (the 

1971, 1982 and 2000 events). The largest flood on record is that of 20th September 

1971, with a discharge of 2300 m3/s at Castellvell (minimum discharge) and 3080 m3/s 

at Martorell. It is important to note that the largest floods at Castellvell are reported in 

the gauging station record as minimum discharges indicating the great difficulty in 

accurately recording extreme floods.  

 

Documentary flood evidence 

 

Historical archives record 35 catastrophic flood events on the Llobregat River since AD 

1315 (Codina Vila, 1971; Llasat et al., 1999). In comparison to the rest of Catalonia, 

however, documentary sources regarding the Llobregat are poor (Barriendos, personal 

communication). For NE Spain, historical archive research has highlighted a number of 

periods of increased flooding: namely, the late 16th to early 17th century; the late 18th 

century; and the mid 19th century (Barriendos, 1996-97; Llasat et al., 1999). Like recent 

floods, most historical floods occurred during autumn months (Llasat et al., 1999), 



including the November 3rd 1617 event that registered the highest observed water level 

at El Prat on the Llobregat delta and caused widespread damage, and even famine, 

throughout the region (Barriendos, 2001). 

 

Methodology 

 

During high flood stages in river gorges eddies, back-flooding and water stagnation 

occur at the gorge sides, producing low velocities and/or flow stagnation (slack water) 

that favours deposition from suspension of clay, silt and sand. These fine-grained 

deposits, known as slackwater flood deposits, are stage indicators of these floods that 

can be preserved in stratigraphic sequences (Benito et al., 2003b) providing detailed and 

complete records of flood events that extend back several thousand of years (Baker and 

Kochel, 1988). Slackwater flood deposits were found in eight rock alcoves (small caves 

or rock shelters formed in exposed bedrock on the valley sides), two at Pont de 

Vilomara and six at Monistrol de Montserrat (Fig. 1). Stratigraphic and 

sedimentological analyses of the deposits were carried out both in the field and the 

laboratory, with sediment peels of the stratigraphic profiles, measuring approximately 

80 cm x 50 cm in size, made in the field (Fig. 2). Individual flood units were identified 

through a variety of sedimentological indicators (Baker and Kochel, 1988; Benito et al, 

2003b): the identification of clay layers at the top of a unit; erosion surfaces; 

bioturbation indicating the exposure of a sedimentary surface; angular clast layers, 

where local alcove or slope materials were deposited between flood events; and changes 

in sediment colour. As well as identifying individual flood units, sedimentary flow 

structures were also described in order to elucidate any changing dynamics during a 



particular flood event and/or infer flow velocities that can improve discharge estimation 

(Benito et al, 2003b). 

 

Slackwater flood deposit chronology was determined using anthropogenic indicators, 

such as plastics, to identify recent flood events, and radiocarbon dating of charcoal 

collected from individual flood units. Necessary preparation and pre-treatment of the 

sample material for radiocarbon dating was carried out by the 14C laboratory of the 

Department of Geography at the University of Zurich (GIUZ). The dating itself was 

done by AMS (accelerator mass spectrometry) with the tandem accelerator of the 

Institute of Particle Physics at the Swiss Federal Institute of Technology, Zurich (ETH). 

Calibration of the radiocarbon dates was carried out using the CalibeETH 1.5b (1991) 

programme of the Institute for Intermediate Energy Physics ETH Zürich, Switzerland, 

using the calibration curves of Kromer and Becker (1993), Linnick et al. (1986) and 

Stuiver and Pearson (1993). A summary of the samples submitted for dating, and their 

associated results, is presented in Table 2. All radiocarbon dates are quoted in the text as 

the one-sigma calibrated age range. 

 

The estimation of discharges associated with the different flood units/features was 

accomplished by computing the water surface profiles for various hypothetical 

discharges that were routed through the study reaches. By comparing the model-

generated profiles to the palaeostage indicators (e.g. slackwater flood deposit 

elevations) palaeodischarges were specified. Discharge estimation by hydraulic 

modelling was carried out using the step-backwater method, the most commonly 

utilised method in palaeoflood hydrology (Webb and Jarrett, 2002). Two discharge 

values were estimated for each alcove based upon the modelled water surface profile 



matching (1) the base of the alcove; and (2) the highest end-point of the flood 

sediments. Computations were run using the HEC-RAS one-dimensional model 

(Hydrologic Engineering Center, 1995) run within a GIS environment. 

 

The assigned Manning’s n values used in the HEC-RAS modelling are indicated in 

Table 3. A sensitivity test performed on the model indicated that for a 25% variation in 

roughness values, an error of 5-10% was introduced into the discharge results. 

Uncertainties in Manning’s n values and energy loss coefficients had much less impact 

than uncertainties in cross-sectional data on discharge values estimated from hydraulic 

modelling (O´Connor and Webb, 1988). Model calibration is critical for the modelled 

discharge results. Field evidence of the June 2000 Llobregat flood at the Monistrol 

study reach was used in “tuning up” the model. This flood was recorded at Castellvell 

as 1100 m3/s whereas in the study area the surveyed high-water marks match with a 

discharge estimate of 1240 m3/s for the selected Manning’s n and energy loss 

coefficients. 

 

Cross-sections (see Fig. 1 for locations) and flood deposit elevations, the input data for 

the hydraulic models, were surveyed along both study reaches using a Trimble 4700 

kinematic differential GPS, with additional data using a Sokkia total station where 

satellite visibility was poor. The GPS comprised two GPS receivers (a fixed base station 

with known co-ordinates and a rover to measure the cross-sections) with a radio link 

between them both to allow real time data processing. A study of morphological change 

in a Scottish gravel bed river allowed the accuracy of this type of GPS to be tested, with 

a vertical accuracy of 5 cm at the 95% confidence interval stated (Brasington et al., 

2000). The river channel bottom was surveyed using an echosound device mounted in a 



small boat and connected to the rover GPS, the data collected using a navigation 

software. 

 

At the Monistrol reach, 15 cross-sections were surveyed along a 2 km reach (Fig. 1). 

The geometry was completed with an additional 27 cross-sections obtained from a 

1:5000 scale map and surveyed channel geometry along a 2.5 km reach downstream to 

the Cairat Gap. Critical flow was selected as the boundary condition at Cairat Gap, 

whilst it was assumed for the calculations that flow was subcritical along the rest of the 

modelled reach. At the Vilomara reach, 12 surveyed cross-sections and 29 additional 

cross-sections from a 1:5000 scale map were used in the hydraulic model. Boundary 

conditions were set to critical as the canyon is narrower and steeper at the lower part of 

the study reach. In the upper part of the reach, a Medieval bridge introduces an added 

complexity to the hydraulics of flood events that occurred after its construction. The 

first documentary reference to the bridge was in AD 1012 (Asarta et al. 1991).  

 

Palaeoflood Stratigraphy 

 

The stratigraphic columns described along the study reaches are presented in Figs. 3-5. 

Specific flood units discussed in the text are referred to by the alcove letter (see Fig. 1 

for alcove locations) and the flood unit number presented in stratigraphic columns (Figs. 

3-5). Table 4 presents summary information regarding each alcove, namely the 

elevation of the alcove above the present river channel bottom; the number of flood 

events preserved in each alcove; mean flood unit thickness; and mean particle size data. 

 

Slackwater flood deposits at Monistrol de Montserrat 



 

The palaeoflood stratigraphy for Alcoves C-E is shown in Fig. 3, alongside the valley 

cross-section that indicates the relative elevations of each of the alcoves. The highest 

elevation palaeoflood deposits, of the Monistrol reach, are located at Alcove C, 15.5 m 

above the channel bed. Only one flood unit is preserved here, this being a 14 cm thick, 

bioturbated sandy silt, composed of 59.2 % silt and 12.5 % clay. Radiocarbon dating of 

the unit provided an age of cal. AD 1516-1642. Alcove D records 4 flood events, 

separated by undifferentiated fine grained deposits (with occasional clast layers), 

reddish in colour, probably composing a mix of alcove and slope wash sediments and 

reaching up to 90 cm in thickness between units D2 and D3. The flood units can be 

distinguished by their greyish colour and coarser texture, containing a greater 

percentage of medium sand (mean 18.6%) and less clay (mean 9.4%). Charcoal from 

unit D2 was dated as modern, indicating an age of deposition during the last ca. 100-

150 years for the upper three flood sediments. On the opposite bank of the river, Site E, 

at 5.4 m above the channel bed (Fig. 3), is the lowest elevation alcove of the study 

reach. Three modern radiocarbon ages from flood units E2 and E6, and a charcoal layer 

separating units E11 and E12, indicate that the whole sequence records 18 flood events, 

probably deposited over the last ca. 100 years. The textures of the flood units are fine 

sands with low silt and clay contents (8.5% and 5.6% respectively), reflecting the 

proximity of the alcove to the channel. The profile records both low and high magnitude 

flood events, the latter represented by units, E11, E13 and E16 that reach 26 cm, 33 cm 

and 20 cm in thickness, respectively. 

 

The stratigraphy of the remaining three alcoves of the Monistrol reach is illustrated in 

Fig. 4. Profile F shows the most complex stratigraphy of the reach due to its position on 



the outside of a river bend creating a higher energy environment, and the proximity of 

slope deposits immediately upstream providing a local supply of coarse material. The 

stratigraphy, therefore, is dominated by distinct units of greyish sands, similar to the 

slackwater deposits found within the other profiles, and reddish silt-clays and clast 

layers, at times these clasts being incorporated within the grey sands. The ‘normal’ 

slackwater flood deposits, those without clasts, within profile F, have mean particle size 

characteristics similar to those from the other sites at Monistrol de Montserrat, with a 

medium sand content of 12.2%, 11.4% silt and 7.7% clay. Units F1 and F5 were 

radiocarbon dated to cal. AD 1686-1913 and cal. AD 1712-1904, respectively, whilst a 

modern age result was given for unit F11. 

 

Alcove G contains 4 flood units that represent at least 2 distinct flood events. This is 

because the two highest elevation flood units (G3 and G4) are located at the back of the 

alcove, separated from units G1 and G2, and, therefore, may be repeated in the profile. 

Unit G1 was radiocarbon dated as modern. The G1 and G2 flood units are separated by 

layers of locally derived angular clasts, granules and clay layers. Site H is located 

downstream of Site G and on the inside of a river bend (Fig. 1). The alcove is at a lower 

elevation than Alcove G, being 7.9 m above the channel bottom. A total of 7 flood units 

are preserved, with 62.1 % fine sand and low mean silt and clay contents (6.8 % and 4.9 

%, respectively). No radiocarbon dates were obtained, however, the deposits are likely 

to be modern in age, like those of Alcove G. 

 

Sedimentary records of the 1971, 1982 and 2000 flood events 

 



Along the Monistrol study reach, high elevation slackwater flood deposits containing 

plastic materials provide geomorphological evidence for the largest recent floods. At 

Alcove H, the uppermost two units (H6 and H7) contain plastics (Fig. 4) indicating that 

this alcove was inundated by both the 1971 and 1982 flood events. Fluid escape 

structures in these units indicate that the water surface elevation was significantly higher 

than the alcove, as they indicate high pressure exerted on the deposits. At Alcoves D 

and G, only the uppermost flood unit at each site contain plastics (D4 and G2), these 

deposits belonging to the 1971 event, the 1982 event not reaching these alcoves.  

 

The June 2000 flood, the third largest in the Castellvell gauging station record, occurred 

during the fieldwork campaign. This flood event, with a recorded discharge of 1100 

m3/s, only covered Alcoves E and H. The flood deposited unit E18, the uppermost unit 

at site E. At Alcove H, evidence such as silt lines on the rock wall and plant debris 

within rock fissures above the alcove indicated that this alcove was covered by the 

floodwaters. The sediments from this flood, however, were embanked against the older 

deposits, with the uppermost sediments pinching out at the level of the fluid escape 

structures in unit H6 (Fig. 4), illustrating that the sediments in this case were deposited 

at least 1 m below the flood water surface. 

 

Slackwater flood deposits at Pont de Vilomara 

 

The highest elevation deposits at the Pont de Vilomara study reach are located at Alcove 

A, 15.9 m above the river channel bottom. The profile contains eight individual flood 

units, characterised by sandy silt textures with high clay contents (Figs. 5 and 6). The 

sedimentary structures, predominantly parallel laminations, and the fine grained 



sediments indicate a low flow velocity at the alcove. The chronology of the profile was 

determined by radiocarbon dates of 853-776 cal. BC and 794-554 cal. BC from units A4 

and A5, respectively, indicating that the first 5 flood events recorded in the profile 

occurred around or prior to, ca. 2650 yrs BP. There is, however, no radiometric dating 

control for the uppermost three flood units. 

 

The slackwater flood deposits of the Pont de Vilomara reach are completed by the two 

flood units of Alcove B, a small alcove located ca. 20 m upstream of, and 

approximately 3.5 m lower than, Alcove A. These sediments are characterised by a 

greater thickness (25 cm), an increase in sand content, with over 50% fine sand, and 

lower silt and clay contents. The lower unit is undated, however, the presence of plastic 

material in the upper flood unit dates this as modern, most probably related to the 1971 

event. 

 

Hydraulic Modelling 

 

Discharge estimation at Monistrol de Montserrat 

 

Fig. 6 illustrates the calculated water surface profiles of various discharges related to the 

slackwater flood deposits along the study reach. The step-backwater results indicate that 

a discharge of approximately 6200 m3/s matches the known palaeostage evidence 

corresponding to the Alcove C flood deposits, the highest found along the study reach. 

At this cross-section (Fig. 3), channel flow velocity was over 6 ms-1 with subcritical 

flow conditions (Froude Number about 0.5). This indicates a sharp velocity transition 

from the channel to the canyon side where sedimentation was associated with stagnant 



water conditions. A lower bound discharge of 4680 m3/s was obtained assuming that the 

sedimentation at the alcove (where the velocity head equals zero) was close to the 

maximum flow stage and related to the total energy head for the cross-section. In other 

words, this conservative discharge was obtained by matching the energy line, instead of 

the calculated water surface profile, to the palaeostage evidence. These two discharge 

estimates are illustrated in the rating curve for the Alcove C sediments (Fig. 7). 

 

The next highest discharge estimates are for alcoves G, D and F with minimum 

discharge ranges of 1800-2500 m3/s, 1250-2500 m3/s, and 860-2200 m3/s, respectively 

(Figs. 4 and 7). The uppermost flood units at both alcoves G and D, that were found to 

contain plastic materials, indicate that the largest recent flood, the 1971 event, reached a 

minimum discharge of 2500 m3/s at this study reach. This discharge can be compared to 

that of 2300 m3/s, the minimum discharge estimate from the Castellvell gauging station 

data. The water surface of the June 2000 event, estimated at 1240 m3/s, covered and 

deposited sediments at alcoves E and H. A discharge range of 200-440 m3/s was 

estimated for the low elevation Alcove E and 750-1000 m3/s for Alcove H. 

 

Discharge estimation at Pont de Vilomara 

 

A peak discharge of 1650 m3/s was estimated at the Vilomara gauging station for the 

1971 flood event. About 200 m downstream of the bridge, at Alcove B, slackwater 

flood deposits containing plastic material are believed to have been deposited by this 

flood event. The step-back water calculations provide a discharge estimate associated 

with these deposits as between 2300 and 2630 m3/s. A photo of the Vilomara Medieval 

bridge taken during the flood by a local resident also allowed calibration of the model as 



the water ‘ponded’ behind the bridge reached a distinct agricultural terrace identified 

within fields on the left bank of the river. 

 

As indicated earlier, Alcove A contains a record of at least 8 high magnitude flood 

events (Fig. 5). Discharge estimation resulted in a minimum discharge of 4400 m3/s at 

the base of the alcove and 5100 m3/s related to flood unit A8. The water surface 

elevation of the A8 discharge is plotted relative to the Medieval bridge and the 1971 

flood in Fig. 5. The channel velocity at this discharge is about 4 ms-1, whereas the 

sedimentary structures found in the slackwater deposits filling the alcove indicate much 

lower velocities. A lower bound discharge matching the energy line to this palaeostage 

evidence, as carried out for Alcove C, resulted in a minimum discharge of 3700 m3/s for 

the base of the alcove, and 4300 m3/s for flood A8 at the uppermost part of the 

stratigraphic profile. 

 

Discussion 

 

The stratigraphic and hydraulic modelling data presented indicate that the Llobregat 

slackwater flood deposits primarily represent two flood series. The most complete 

record is that of flood events that have occurred over the last ca. 100 years with 

sediments from low, medium and high magnitude flood events all preserved. At the 

Monistrol study reach, Alcove E records 18 modern flood events with a range of 

minimum discharges from 200-440 m3/s; Alcove H, 8 flood events with a discharge 

range of 750-1000 m3/s; whilst 1250-2000 m3/s was estimated for the 3 modern flood 

events of Alcove D and 1800-2500 m3/s for the 2 events preserved at Alcove G. One 

modern flood event at Alcove B at Pont de Vilomara is associated with an estimated 



discharge of 2300-2600 m3/s. This palaeoflood record shows a progressive self-

censoring of flood stratigraphy that occurs due to the progressive elevation of the 

sediment banks caused by vertical depositional accretion (House et al., 2002b). The 

phenomenon of progressive self-censoring introduces a complexity for reconstructing a 

complete catalogue of palaeofloods, since some flood events are not represented 

throughout the studied stratigraphic profiles, depending on the elevation of the 

particular site of deposition. That the largest recent floods have not eroded the low 

elevation deposits suggest that higher magnitude events occurred that periodically 

flushed these alcoves of sediments from earlier low and medium magnitude floods. 

Evidence for such extreme flood events, with estimated discharges of 3700 m3/s at Pont 

de Vilomara and 4680 m3/s at Monistrol, comprises the second flood series, an archive 

that extends back ca. 2700 years. The Llobregat slackwater flood deposits record at 

least 8 flood events of this magnitude over this period. At this site, the evidence 

suggests that floods able to exceed this elevation are well represented within the 

stratigraphic record. 

 

The palaeoflood hydrology of the Llobregat River, therefore, provides valuable 

geomorphological evidence for: 1) testing the accuracy of extreme flood discharge 

measurement at gauging stations and 2) providing a longer-term context for high 

magnitude flood events within the catchment. The inherent difficulty associated with 

accurately recording extreme flood discharges (Baker et al, 2002) can be illustrated by 

the Llobregat gauging station record, where the discharge of the 1971 event, the largest 

on record, could only be stated as a minimum discharge estimate at Castellvell. At both 

study reaches, high elevation slackwater flood deposits of the 1971 event (units B2, D4 

and G2), identified by virtue of plastics and other anthropogenic materials within the 



deposits, provide a further means of discharge estimation. At the Pont de Vilomara 

gauging station, the recorded maximum discharge of 1650 m3/s is lower than the 2300-

2600 m3/s discharge estimated for the Alcove B deposits containing plastic material. At 

the Castellvell gauging station, a minimum discharge of 2300 m3/s was recorded. The 

minimum estimated discharge associated with high elevation modern flood deposits at 

the Monistrol study reach was 2500 m3/s at Alcove G. The geomorphological evidence, 

therefore, indicates that the gauging station records at Vilomara and Monistrol 

underestimated the discharge of the 1971 event. 

 

With respect to flood risk and planning in the Llobregat catchment, it is of particular 

interest to know how the magnitude of the 1971 flood compares with the longer term 

palaeoflood archive. It is evident from the palaeoflood field and hydraulic modelling 

evidence that the 1971 event was not the largest witnessed in the Llobregat Basin. The 

palaeoflood record indicates that at least 8 high magnitude events, with estimated 

palaeodischarges greater than that of 1971, have occurred over the last ca. 2700 years. 

In terms of palaeodischarge estimates, and assuming negligible channel bed change 

within the bedrock gorge study reaches, the Alcove A (Pont de Vilomara) palaeoflood 

events (3700 m3/s) are up to 38% greater in magnitude than the 1971 flood, the largest 

on record. Downstream of the Cardener tributary junction, the estimated discharge for 

the Alcove C palaeoflood (4680 m3/s), dated to ca. 400 yrs BP, is 46.5% larger than that 

of the 1971 event and is also greater than the design discharge of the flood protection 

channel in the delta region of the catchment (4000 m3/s). 

 

In terms of the chronology of these extreme palaeoflood events, the two units, A4 and 

A5, radiocarbon dated to 853-776 cal. BC and 794-554 cal. BC respectively, suggest a 



period of high magnitude flooding ca. 2500-2700 years ago. Climatologically, these 

flood events correlate with a short period of cold/wet conditions described during the 

Late Bronze Age (2650 14C yr BP or 800 BC; van Geel et al., 1998). In other western 

Mediterranean regions, general phases of aggradation associated with high river 

discharges (including torrential floods) and sediment loads, have been described not 

only during this period (ca 700-500 BC), but also in Post-Roman times (ca. AD 500-

1000) and at the beginning, or during, the Little Ice Age (ca. AD 1500-1700) (Vita-

Finzi, 1969; Coltorti, 1997; Provansal, 1992, 1995; Fuller et al., 1998; Benito, 2003). 

Within the Llobregat catchment there is no preserved evidence of large magnitude Post-

Roman flooding, however, the C1 flood event, dated to cal. AD 1516-1642, is evidence 

of an extreme flood that occurred during the Little Ice Age. This is a known period of 

increased flood frequency in Spain (Benito et al., 1996, 2003c; Barriendos and Martín-

Vide, 1998). Whether slackwater flood deposits from this period were also deposited in 

Alcove A at Vilomara is still open to speculation without further radiometric dating 

evidence from the upper flood units at this site. However, the severity of flooding at 

Vilomara during the Little Ice Age can be illustrated by historical evidence. The AD 

1617 flood, believed to be the largest event in the documentary record (Barriendos, 

2001), destroyed the three central arcs of the Vilomara Medieval bridge (Asarta et al., 

1991). It is of particular interest to note that the date of this flood is within the one-

sigma envelope of the C1 radiocarbon date (cal. AD 1516-1642) from the Monistrol 

reach, indicating that these deposits probably relate to this specific flood event. The 

main historical evidence for the elevation of the 1617 floodwaters comes from the 

Llobregat delta, an area too complex for accurate discharge estimation by hydraulic 

modelling. The value of the palaeoflood evidence is that it provides a robust discharge 



estimate (ca. 4680 m3/s), from a stable bedrock reach, for one of the largest known 

floods within the catchment. 

 

Conclusions 

 

The palaeoflood hydrology of the Llobregat River provides evidence for extreme flood 

events that were of a greater magnitude than the largest floods recorded in the gauging 

station record. At Pont de Vilomara at least 8 extreme palaeofloods, associated with a 

range of minimum discharges of 3700-4300 m3/s, occurred over the last 2700 years. The 

largest instrumental flood, the 1971 event, was estimated from palaeoflood evidence at 

this reach as 2300 m3/s. At Monistrol, one extreme palaeoflood dated to cal. AD 1516-

1642, and believed to be the AD 1617 event, had an estimated minimum discharge of 

4680 m3/s. This compares to a minimum discharge of 2500 m3/s, estimated from 

slackwater deposits of the 1971 flood. The results have important implications for flood 

prevention and risk assessment in the catchment. In particular, a flood protection 

channel in the delta region of the river has been designed with a maximum discharge 

capacity of 4000 m3/s, lower than the estimated discharges of the largest palaeofloods. 

The palaeoflood evidence provides discharge estimates of real floods that can be used to 

reduce reliance on statistical discharge estimations based on short instrumental flood 

series. 
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preserving slackwater flood deposits (sites A-H) and surveyed cross sections 

(numbered). 

 

Fig. 2. Sediment lacquer peel and stratigraphic column from the upper flood units of 

Alcove E (see Fig. 4 for complete stratigraphy and key). The photo of the peel shows 

the contacts between the distinct flood units and the sedimentary structures that provide 

information on sediment load and flow velocity. NB. flood unit 18 and the slope 

deposits between units 16 and 17 appear laterally in the cut trench and pinch out before 

reaching the back wall of the trench from where the peel was taken. (See Fig. 3 for the 

key to the stratigraphic column). 

 

Fig. 3. Amalgamation of cross-sections 3 and 4 of the Monistrol study reach indicating 

the relative elevations of Alcoves C-E, with the respective stratigraphic columns 

alongside. The elevation and stratigraphy of the three profiles clearly illustrates the 

magnitude-frequency relationships of the three alcoves, with Alcove E representing a 

relatively complete record of low to high magnitude flood events over the last ca. 100 

years, whilst Alcove C just preserves the deposits of one extreme high magnitude low 

frequency event that occurred in the Little Ice Age. Also indicated are the minimum 

discharge estimates for the upper flood units of each alcove and the Manning’s n values 

used in the hydraulic model (see Table 4). Below is the key to all the stratigraphic 

columns (Figs. 2-5). 



 

Fig. 4. The stratigraphies of Alcoves F-H of the Monistrol study reach. In Alcove G a 

small rock shelf at the back of the alcove separates the upper and lower profiles. The 

flood units are labelled distinctly but may be repeated in the two profiles. Also indicated 

are the minimum discharge estimates required for the flood waters to reach the base and 

roof of each alcove. (See Fig. 3 for the key to the stratigraphic columns). 

 

Fig. 5. Cross-section 9 of the Pont de Vilomara study reach illustrating the relative 

elevations of Alcoves A and B. The stratigraphy of the sedimentary profiles is also 

shown (refer to key in Fig. 3). Note that at this site, Alcove A preserves a record of 8 

extreme flood events with two flood units dated to the Late Bronze Age. The minimum 

discharge estimates associated with the upper flood units are also shown. Below: the 

water surface elevations related to the minimum discharge estimates of the 1971 flood 

and flood unit A8 are plotted at cross-section 11 at the Medieval bridge. A photograph 

of the 1971 flood passing under the bridge enabled calibration of the hydraulic model at 

this reach.  

 

Fig. 6. Calculated water surface and energy line elevations for selected discharges 

related to the mapped palaeostage indicators (slackwater flood deposits) at alcoves C-H 

along the Monistrol study reach. The elevation of debris and silt lines left above Alcove 

H by the June 2000 flood is also indicated. This data was used to calibrate the hydraulic 

model at this reach. 

 

Fig. 7. Rating curve for the C1 flood deposits, dated to cal. AD 1516-1642, at cross 

section 3 of the Monistrol reach illustrating the discharge estimates calculated from the 



water surface elevations and the total energy head. The conservative discharge 

associated with the total energy head was considered more accurate as the palaeoflood 

sediments indicated a low flow velocity (close to zero) at the canyon side, therefore the 

water surface elevation would be higher than in the central flood channel where flow 

velocity was over 6 ms-1.  

 



 

Year Date Peak Q (m3/s) at  
Martorell (4561 km2) 

Fatalities and economic 
losses 
(Llasat et al., 2001) 

1907 October 7th 1500b, 2875c - 
1913 September 29th 1540ª - 
1919 October 7th 1500a - 
1940 October 18th 2200b - 
1942 October 28th 1500b - 
1962 September 25th 1550a 441 deaths 

€15.9 m 

1971 September 20th 3080a 9 deaths 
€42.1 m 

1982 November 6th 1600a 6 deaths 
€270.5 m 

2000 June 10th 1100d 5 deaths 
€66.1 m 

 
 



 

Study reach Flood 
unit no. 

Lab code Age  
(yrs BP) 

Calibrated age One sigma 
calibrated age 
range 

A4 UZ-4523/ETH-23673 2640 ± 55 798 ± 75 BC 853 BC, 776 BC Pont de 
Vilomara A5 UZ-4524/ETH-23674 2580 ± 75 669 ± 114 BC 794 BC, 554 BC 

 
C1 
 

 
UZ-4605/ETH-24418 

 
305 ± 50 

 
AD 1585 ± 79 

 
AD 1516, AD 1642 
 

D2 UZ-4738/ETH-25509 Modern -  
D2-3 
 

UZ-4515/ETH-23665 Modern -  

E2 UZ-4520/ETH-23670 Modern -  
E6 UZ-4521/ETH-23671 Modern -  
E11-12 
 

UZ-4522/ETH-23672 Modern -  

F1 UZ-4517/ETH-23667 185 ± 55 AD 1790 ± 92 AD 1686, AD 1913 
F5 UZ-4518/ETH-23668 120 ± 50 AD 1813 ± 81 AD 1712, AD 1904 
F11 
 

UZ-4519/ETH-23669 Modern -  

 
Monistrol de 
Montserrat 

G1 UZ-4516/ETH-23666 Modern -  

 



 

Surface description Minimum 
Manning’s n value 

Maximum 
Manning’s n value 

Channel 0.028 0.030 
Exposed bedrock (rough) 0.040 0.045 
Soil surface without vegetation 0.035 0.040 
Vegetated surface (dense tree) 0.060 - 
Vegetated surface (disperse) 0.050 - 
Agricultural land 0.040 - 
Gravel bars (unvegetated) 0.030 0.035 

 



 
 

Mean particle size data Alcove Elevation 
above 
channel 
bottom (m) 

No. of 
flood 
events 

Mean unit 
thickness 
(cm) 

Medium 
sand 

Fine sand V. fine 
sand 

Silt Clay 

A 15.9 8 11.9 3.9 14.7 17.0 42.4 20.8 
B 12.3 2 27.5 10.4 53.9 11.8 12.0 10.3 
C 15.5 1 14.0 1.4 6.3 20.3 59.2 12.5 
D 10.9 4 17.0 18.6 45.1 12.6 12.6 9.4 
E 5.4 18 11.5 15.8 56.1 13.2 8.5 5.6 
F 7.5 12 16.3 12.2 32.9 16.6 11.4 7.7 
G 10.8 4 13.3 7.0 54.1 23.10 12.9 5.3 
H 7.9 7 17.3 11.9 62.1 13.7 6.8 4.9 

 















 


