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We analyze the loop quantization of the family of vacuum Bianchi I spacetimes, a gravitational system

of which classical solutions describe homogeneous anisotropic cosmologies. We rigorously construct the

operator that represents the Hamiltonian constraint, showing that the states of zero volume completely

decouple from the rest of quantum states. This fact ensures that the classical cosmological singularity is

resolved in the quantum theory. In addition, this allows us to adopt an equivalent quantum description in

terms of a well-defined densitized Hamiltonian constraint. This latter constraint can be regarded in a

certain sense as a difference evolution equation in an internal time provided by one of the triad

components, which is polymerically quantized. Generically, this evolution equation is a relation between

the projection of the quantum states in three different sections of constant internal time. Nevertheless,

around the initial singularity the equation involves only the two closest sections with the same orientation

of the triad. This has a double effect: on the one hand, physical states are determined just by the data on

one section, on the other hand, the evolution defined in this way never crosses the singularity, without the

need of any special boundary condition. Finally, we determine the inner product and the physical Hilbert

space employing group averaging techniques, and we specify a complete algebra of Dirac observables.

This completes the quantization program.
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I. INTRODUCTION

Loop quantum cosmology (LQC) [1] is nowadays an
active field of research, devoted to the application of the
ideas and mathematical methods of the full theory of loop
quantum gravity (LQG) [2–4] to symmetry reduced cos-
mological models. This application is useful at least in two
respects. On the one hand, it allows us to learn and gain
experience about issues that are still open in full LQG. On
the other hand, in many cases the symmetry reduced
models already give us information about physical ques-
tions of interest. The first attempts to apply the techniques
of LQG to symmetry reduced models can be found in
Ref. [5]. More recently, some homogeneous and isotropic
models have been quantized to completion in the LQC
framework [6–13] along the revisited lines presented in
Ref. [14]. In particular, these studies provide new results
about the fate of the classical singularities. Namely, the
cosmological singularities are resolved dynamically in
these models, as they are replaced with quantum bounces.

In this paper we will discuss the loop quantization of a
homogeneous but anisotropic model: the Bianchi I space-
times in vacuo. Some preliminary analyses on the quanti-
zation of the Bianchi I model using Ashtekar variables
were already developed in Refs. [15,16]. The merit for
the first systematic attempts to construct the kinematical
Hilbert space and introduce a Hamiltonian constraint for
the model in a loop quantization framework must be

granted to Bojowald [17]. However, apart from technical
issues concerning the definition of the quantum operators
(and the prescription adopted to incorporate the presence
of a gap in the area spectrum of LQG), the analysis of
Ref. [17] was not complete inasmuch as it did not provide
the physical Hilbert space, nor an algebra of Dirac observ-
ables. The first work that attempted to complete the Dirac
quantization program, adapting the techniques presented in
Ref. [14] to quantize polymerically the gravitational de-
grees of freedom of the Bianchi I spacetimes, was done by
Chiou [18]. In that case, nonetheless, the considered ho-
mogeneous model was not in a vacuum, because it in-
cluded a massless scalar field. Here we will employ the
same kind of techniques although we will use a slightly
different quantization prescription [19], which seems more
suitable to make manifest some relevant aspects of the
LQC approach, keep under rigorous control the definition
of the quantum Hamiltonian constraint, and complete the
analysis of the physical states. In particular, an important
feature of the quantization proposed here is that it imme-
diately leads to the decoupling of the quantum states with
zero volume [20], so that they can be removed from the
theory. Employing this fact, we will show that physical
states can be described equivalently as solutions to a
densitized Hamiltonian constraint. We will prove that the
operator that represents this constraint is a well-defined
self-adjoint operator. Furthermore, we will explicitly con-
struct the solutions to the constraint, find the physical inner
product, and determine a complete set of observables.
Most of the homogenous models analyzed so far in LQC

[6–13], and, in particular, the mentioned work of Ref. [18],
contain matter in the form of a homogeneous massless

*merce.martin@iem.cfmac.csic.es
+mena@iem.cfmac.csic.es
‡tomasz@iem.cfmac.csic.es

PHYSICAL REVIEW D 78, 064008 (2008)

1550-7998=2008=78(6)=064008(11) 064008-1 � 2008 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36024298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevD.78.064008


scalar field. This field, quantized in a standard
(Schrödinger-like) way serves as an internal time, provid-
ing a well-defined notion of evolution. Here, in the vacuum
case, such a useful object is no longer available. Hence we
will explore the problem of quantizing the variable that
plays the role of internal time in a polymeric way, a fact
that may affect the conventional concept of evolution. In
our case, we will choose as internal time one of the triad
components. This choice will provide us with a certain
notion of evolution, as we will discuss in Sec. VII.

The classical vacuum Bianchi I spacetimes generically
possess an initial cosmological singularity, to which we
will allocate the origin of time. One of the main motiva-
tions of our analysis is to discuss what happens with this
singularity in the loop quantum theory. We will see that,
since the zero-volume states are totally decoupled, non-
trivial physical states contain no contribution from them. In
this sense the initial classical singularity is resolved and
disappears from the quantum theory. Furthermore, in the
presented quantization there exists no correlation between
the sectors of opposite orientations of the triads. Therefore,
the defined evolution does not connect sectors correspond-
ing to different orientations of the variable identified as the
internal time. As a consequence, the singularity is not
crossed and no additional branch of the universe emerges
on the opposite side of it. The provided notion of evolution
is well defined without the need to impose any special
boundary condition to deal with the two orientations of
the triads.

The polymeric quantization of the system leads to a
densitized Hamiltonian constraint that can be viewed as a
discrete evolution equation on quantum states. This equa-
tion is a recurrence relation, which generically relates the
projection of the state in three consecutive sections of
constant internal time. However, when one reaches the
origin in the quantization presented in this paper, it reduces
to a relation on the two sections with the smallest possible
values of the discrete time, in the sector of triad orienta-
tions under study. As a result, the physical states are in fact
determined by their data on a single section. The vector
space of these data can be provided with an inner product
and one attains in this way the physical Hilbert space.

An additional, important motivation for the analysis of
the loop quantization of Bianchi I in vacuo comes from the
consideration of a (much richer) family of cosmological
spacetimes that contain inhomogeneities, namely, the lin-
early polarized Gowdy model with T3 topology [21]. This
is an infinite dimensional model that provides a most
suitable arena for the attempt to extend the analysis of
homogenous LQC to inhomogeneous situations. The sub-
family of homogeneous solutions within this model is just
the classical vacuum Bianchi I spacetimes with T3 topol-
ogy. From this perspective, the loop quantization of
Bianchi I in vacuo is a preliminary step in order to face
the quantization of the Gowdy cosmologies.

Let us also comment that, during the writing of this
manuscript, another work on the loop quantization of
Bianchi I has appeared [22] which presents some similar-
ities with our treatment. That work, carried out indepen-
dently to ours, considers a simplified version of the
quantization, where the corrections owing to the regulari-
zation of the inverse triad operator are not incorporated,
and describes the time evolution using a massless scalar
field, like in Ref. [18].
The main body of this paper is organized as follows. In

Sec. II we construct the kinematical Hilbert space on which
we define the elementary operators of the theory. The
Hamiltonian constraint of the model is represented as a
symmetric operator in Sec. III, where we also show the
decoupling of the zero-volume states. Employing this de-
coupling, we densitize the Hamiltonian constraint in
Sec. IV, arriving to an equivalent quantum description of
the system. The form of the densitized constraint allows us
to decompose it in terms of one-dimensional operators,
which are then analyzed in detail in Sec. V. The solutions to
the constraint and the corresponding physical Hilbert space
is determined in Sec. VI. Finally, in Sec. VII we discuss the
results of our quantization and conclude.

II. KINEMATICS

As a first step towards the loop quantization of the
vacuum Bianchi I spacetimes, we describe the model in
terms of Ashtekar variables [18,23]. In principle, the defi-
nition of these variables makes use of a finite sized cell and
a fiducial triad. Adopting a diagonal gauge, it was shown in
Ref. [23] that there is no physical dependence on the choice
of fiducial triad if one defines the homogenous canonical
variables for the model in a suitable way. For the sake of
simplicity, we will then particularize the discussion to the
choice of a diagonal Euclidean triad. The issue of the
dependence on the coordinate cell of integration is more
subtle [23]. Nonetheless, when the spatial sections of the
Bianchi I cosmologies have a compact topology, there is a
natural choice of coordinate cell. In fact, as we mentioned
in the introduction, one of the motivations for our study is
the potential application to the quantization of the homo-
geneous sector of the linearly polarized T3-Gowdy model
[21]. Consequently, we will specialize our analysis to a
compact three-torus topology, adopting the corresponding
natural cell for our treatment, namely, the T3-cell with
sides of coordinate length equal to 2�. In this way, one
arrives at the following nontrivial components of the SUð2Þ
gravitational connection Aai and of the densitized triad Eia
[24],

Aai ¼
ci

2�
�ai ; Eia ¼ pi

4�2
�ia; (1)

so that fci; pjg ¼ 8�G��ij. Here i, j ¼ 1, 2, or 3 are spatial

indices, a is an internal SUð2Þ index, G is the Newton
constant, and � is the Barbero-Immirzi parameter.
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The spacetime metric written in terms of the variables pi
takes the form

ds2 ¼ �N2dt2 þ jp1p2p3j
4�2

�X3
i¼1

ðdxiÞ2
p2
i

�
; (2)

where fdxig is the fiducial co-triad, with xi 2 S1, and N is
the lapse function.

In LQC, one adapts the techniques of LQG to symmetry
reduced systems in order to construct the kinematical
Hilbert space [14,17,18]. The configuration variables are
provided by holonomies along edges oriented in the fidu-
cial directions, and the momentum variables by triad fluxes
through fiducial rectangles orthogonal to those directions.
The holonomy along an edge of oriented coordinate length
2��i in the direction i is

h
�i

i ðciÞ ¼ e�ic
i�i ; (3)

where �i are the SUð2Þ generators proportional to the Pauli
matrices, such that ½�i; �j� ¼ �ijk�

k. The flux through the

rectangle of coordinate area Si orthogonal to the direction i
turns out to be

E½Si� ¼ pi
4�2

Si: (4)

The configuration algebra is obtained from the sums of
products of matrix elements of the irreducible representa-
tions of the holonomies and is just the algebra of almost
periodic functions of ci [14,18]. This algebra is generated
by the exponentials

N �i
ðciÞ ¼ ei�ic

i=2; (5)

which, using the Dirac ket notation, will be represented by
the states j�ii. The finite linear combinations of products
of these functions provide the analog of the space of
cylindrical functions in LQG, and we will call it CylS.
Thus, denoting j�1; �2; �3i ¼ �ij�ii, we have

Cyl S ¼ spanfj�1; �2; �3ig: (6)

The kinematical Hilbert space H Kin ¼ �iH i
Kin is the

completion of the space CylS with respect to the discrete
inner product h�ij�0

ii ¼ ��i�
0
i
for each direction [14,18].

The states j�ii provide an orthonormal basis for H i
Kin.

They are eigenstates of the operator p̂i associated with

fluxes, while N̂ �0
i
simply shifts their label �i:

p̂ ij�ii ¼ 4��l2Pl�ij�ii; (7)

N̂ �0
i
j�ii ¼ j�i þ�0

ii: (8)

Here, lPl ¼
ffiffiffiffiffiffiffi
G@

p
is the Planck length.

In LQG, the operator that represents the physical area
has a discrete spectrum, with a minimum nonzero eigen-

value equal to � ¼ 2
ffiffiffi
3

p
��l2Pl. It has been argued that,

when one takes into account this fact, a minimum coor-

dinate length for the edge of the holonomies is introduced
in LQC [8]. The exact form in which such a minimum
coordinate length must be incorporated is still under dis-
cussion. At present, two prescriptions are considered in the
literature [23,25]. Here we will adopt the prescription
introduced in Ref. [18], usually called the �� scheme.
One of the advantages of this prescription is that (as we
will see) the quantum analysis of the system can be carried
out to completion, and not just in an effective, nonfunda-
mental way. Besides, this will allow us to revisit some parts
of the analysis presented in Ref. [18] which, to date, is the
most complete discussion of the loop quantization of the
Bianchi I model. In doing so, we will see that one can also
learn some lessons about the quantization of other homo-
geneous systems like the isotropic ones. On the other hand,
although the justification of this prescription from the
viewpoint of the full theory of LQG is currently under
investigation [26], it is important to note that there are no
inconsistencies or nonphysical effects associated with it in
cases with compact spatial topology like the one consid-
ered here, cases when a privileged coordinate cell exists
[27].
According to this �� scheme, the minimum coordinate

length for each direction i is determined by the condition
��2
i jpij ¼ �, from which we arrive at the operator relation

1

c��i ¼
dffiffiffiffiffiffijpij
p ffiffiffi

�
p :

(9)

Operators like
dffiffiffiffiffiffiffiffijpij
p

are defined in terms of p̂i by means of
the associated spectral decomposition. Acting on a state
j�ii, we then get

1

c��ij�ii ¼ 1
��ið�iÞ j�ii; ��ið�iÞ ¼

ffiffiffiffiffiffiffiffiffiffi
3

p
2j�ij

q
:

(10)

Since the value ��i is state-dependent, the associated op-

erator N̂ ��i
generates a state-dependent minimum shift. To

write down its action, it is convenient to relabel the states
by reparametrizing �i so that the minimum shift becomes
uniform. This is achieved by introducing, for each direc-
tion, a label við�iÞ which satisfies the equation

�� ið�iÞ @

@�i

¼ @

@vi
; (11)

whose solution is

við�iÞ ¼
ffiffiffiffiffiffiffiffiffi
23

35=2

s
sgnð�iÞj�ij3=2: (12)

With this relabeling, the basic operators have the following
action in the domain CylS:

p̂ ijvii ¼ 31=3�sgnðviÞjvij2=3jvii; (13)
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N̂ ��i
jvii ¼ jvi þ 1i: (14)

III. HAMILTONIAN CONSTRAINT

In the considered model, only one constraint remains to
be imposed once the diagonal gauge has been chosen: the
Hamiltonian constraint. In order to represent it as an op-
erator, one first needs to express this constraint as a phase
space function in terms of triads and holonomies, since
there do not exist well-defined operators corresponding to
the connection components ci. This is done by the standard
procedures of LQC, explained in detail in Ref. [18]. In
brief, one defines the curvature components employing
holonomies along edges of coordinate length 2� ��i and
regularizes the inverse of the determinant of the metric
following Thiemann’s procedure [2], i.e., expressing it via
the Poisson bracket of holonomies with the volume func-
tion. Applying these procedures and setting the lapse
N ¼ 1, we arrive at the following form for the
Hamiltonian constraint [18] (integrated over the chosen
T3-cell and still viewed as a classical function on phase
space)

CBI ¼ � 2

�2

�
�1�2

�
1ffiffiffiffiffiffiffiffiffijp3j

p �
reg

þ�1�3

�
1ffiffiffiffiffiffiffiffiffijp2j

p �
reg

þ�2�3

�
1ffiffiffiffiffiffiffiffiffijp1j

p �
reg

�
; (15)

where

�i ¼
ffiffiffiffiffiffiffiffijpij

p
��i

sgnðpiÞ sinð ��ic
iÞ; (16)

and ð1= ffiffiffiffiffiffiffiffijpij
p Þreg is the regularized expression for 1=

ffiffiffiffiffiffiffiffijpij
p

obtained via Thiemann’s method.
By the mentioned standard LQC procedures, this regu-

larized phase space function is represented by the operator

d�
1ffiffiffiffiffiffiffiffijpij

p �

¼ 1

4��l2Pl

� 1

c��i
dsgnðpiÞðN̂ � ��i

dffiffiffiffiffiffiffiffijpij
p

N̂ ��i
� N̂ ��i

dffiffiffiffiffiffiffiffijpij
p

N̂ � ��i
Þ;

(17)

where, for the �� scheme that we have adopted, 1b��i

and N̂ ��i

are the operators defined in Eqs. (9) and (14), respectively.
Note that there is no factor ordering ambiguity in the above
formula, inasmuch as the operator in parenthesis com-
mutes with all the others on the right-hand side of
Eq. (17). Besides, it is easy to check that the states jvii
are eigenstates of the introduced operator. Explicitly,

d�
1ffiffiffiffiffiffiffiffijpij

p �
jvii ¼ bðviÞjvii;

bðviÞ ¼ 35=6

2
ffiffiffiffi
�

p jvij1=3jjviþ 1j1=3 � jvi� 1j1=3j: (18)

In order to construct a symmetric operator ĈBI represent-
ing the Hamiltonian constraint (15), let us now consider the
quantum counterpart of�i. From Eq. (9), it follows that all
the factors in �i depend only on pi except for sinð ��ic

iÞ.
This latter term can be represented by the operator

sinð d��ic
iÞ ¼ 1

2i
ðN̂ 2 ��i

� N̂ �2 ��i
Þ; (19)

which does not commute with p̂i. To obtain a symmetric
operator for �i, we then proceed as follows. Since the
operator

dffiffiffiffiffiffiffiffijpij
q 1

c��i ¼ 1ffiffiffi
�

p djpij (20)

is non-negative, we can take its square root and adopt the
symmetric factor ordering

�̂i ¼ 1

2
ffiffiffiffi
�

p dffiffiffiffiffiffiffiffijpij
q

½sinð d��ic
iÞ dsgnðpiÞ

þ dsgnðpiÞ sinð d��ic
iÞ� dffiffiffiffiffiffiffiffijpij
q

: (21)

Several comments are in order at this point. First, it is
important to realize the presence of the factor sgnðpiÞ in the
expression of �i, which was not properly taken into ac-
count in Ref. [18]. As a function on phase space, it does not
commute with sinð ��ic

iÞ under Poisson brackets, and hence
their product as operators is not symmetric. Probably, its
appearance had not been pointed out so far because, in the
passage to the best studied case of (homogeneous and)
isotropic LQC, a simplification occurs that makes its role
less important. Up to a constant factor, the purely gravita-
tional part of the Hamiltonian constraint for isotropic
models can be obtained from Eq. (15) by identifying the
three spatial directions [8,18]. In doing so, this gravita-
tional part gets a factor of a squared sign that can be
considered equal to the unity and ignored, instead of deal-
ing with it as we have discussed for the anisotropic case.
These two alternatives for the isotropic models can be
understood as different choices of factor ordering. We
have checked that a factor ordering like the one suggested
here does not alter significantly the numerical results of
Refs. [7,8] (in fact, for situations of physical interest, the
difference is below the numerical errors). Nonetheless,
even for the isotropic case our factor ordering may be
more convenient in order to clarify certain conceptual
and technical issues, like e.g. the decoupling of the zero-
volume states or the properties of the solutions to the
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constraint near the cosmological singularity, as we will see
later on.

In addition, it is important to notice that the operator �̂i

annihilates the state jvi ¼ 0i, which belongs to the kernel

of p̂i. Furthermore, the range of �̂i does not contain the
alluded state, so that its orthogonal complement inH i

Kin is

invariant under the action of �̂i. In particular, this ensures

that the action of the operator dsgnðpiÞ present in �̂i is well
defined [28].

The factor ordering adopted in the quantum Hamiltonian
constraint has some important advantages with respect to
that proposed in Ref. [18]. First, the constraint is now a
sum of products of symmetric operators, each defined on
one of the Hilbert spaces H i

Kin associated with each
direction. As we will see, this facilitates the determination
of observables and makes the construction of physical
solutions straightforward, thus allowing one to complete
the quantization. Second, it is easy to check that the
Hamiltonian constraint annihilates the proper subspace
H 0

Kin of states in the kernel of any of the operators p̂i.
Such subspace is the completion of the subset of CylS
given by Cyl0S ¼ spanfjv1; v2; v3i;v1v2v3 ¼ 0g. Since

V̂ ¼ �i
dffiffiffiffiffiffiffiffijpij
p

is the volume operator, we will call H 0
Kin

the subspace of zero-volume states. Furthermore, the prop-

erties of the operator �̂i commented above imply that the
orthogonal complement of H 0

Kin is invariant under the

action of the constraint ĈBI. Thus, the subspace of zero-
volume states decouples from its complement and we can
ignore it in the following, restricting our considerations
exclusively to the subspace of nonzero-volume states. We

will call this subspace ~H Kin, whereas gCylS will denote the
corresponding linear span of tensor products of states jvii
such that none of the vi’s vanishes.

As we will discuss in the next section, the decoupling of
the zero-volume states allows one to describe the quantum
system in a completely equivalent way in terms of a
densitized version of the Hamiltonian constraint.
Moreover, since nontrivial physical states get no contribu-
tion from zero-volume states, the classical initial singular-
ity disappears from the quantum theory, already at the
kinematical level. At least in this sense, the singularity is
resolved quantum mechanically, in a way similar to that
originally suggested by Bojowald [17] (see nonetheless
[29]). We will consider this issue in more detail in the
last section.

IV. DENSITIZED HAMILTONIAN CONSTRAINT

In order to solve the quantum constraint, it proves con-
venient to recast it in a densitized form which is easier to
analyze. One should remember that physical states are

states annihilated by the Hamiltonian constraint ĈBI and,
in principle, they do not have to be normalizable in the

kinematical Hilbert space ~H Kin. More precisely, we ex-

pect these states to live in a larger space, namely, the

algebraic dual gCyl�S of the dense set gCylS. We will denote
one such state by ð j.
In order to densitize the quantum Hamiltonian constraint

in a rigorous manner, we have to invert the action of the
operator

d�1
V

�
¼ �i

d�
1ffiffiffiffiffiffiffiffijpij

p �
(22)

which (via Thiemann’s procedure) entered in the definition
of our constraint. At this point, the observation that the
zero-volume states decouple is essential, because the ker-
nel of the operator (22) coincides precisely with that sub-

space. Thus, the inverse operator d½1=V��1
is well defined

once we have restricted ourselves to ~H Kin. Note also that
this densitization can be carried out exactly, without the
need to simplify the theory by ignoring the quantum cor-
rections coming from the regularized inverse volume op-

erator (i.e., without replacing d½1=V��1
by V̂).

To reformulate the constraint in its densitized version,

we introduce the following bijection in the dual gCyl�S
ð j ! ð j

d�1
V

�1=2
: (23)

The transformed physical states are now annihilated by the
(adjoint of the) symmetric densitized Hamiltonian con-

straint ĈBI, defined as

Ĉ BI ¼
d�1
V

��1=2

ĈBI

d�1
V

��1=2

: (24)

Its explicit form is

Ĉ BI ¼ � 2

�2
½�̂1�̂2 þ �̂1�̂3 þ �̂2�̂3�; (25)

where �̂i is the symmetric operator

�̂ i ¼
d�
1ffiffiffiffiffiffiffiffijpij

p ��1=2

�̂i

d�
1ffiffiffiffiffiffiffiffijpij

p ��1=2

: (26)

This operator has the following action on the basis states
jvii:

�̂ ijvii ¼ �i �

2
ffiffiffi
3

p ½fþðviÞjvi þ 2i � f�ðviÞjvi � 2i�;
(27)

where

f�ðviÞ ¼ gðvi � 2Þs�ðviÞgðviÞ; (28)

s�ðviÞ ¼ sgnðvi � 2Þ þ sgnðviÞ; (29)

and
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gðviÞ ¼
� jj1þ 1

vi
j1=3 � j1� 1

vi
j1=3j�1=2 if vi � 0;

0 if vi ¼ 0:

(30)

V. ANALYSIS OF THE CONSTRAINT OPERATOR

One of the advantages of our quantization procedure is
that, in order to study the properties of the constraint

operator ĈBI, we only need to analyze the operator �̂i on
~H i

Kin. We carry out that analysis in this section.

A. Superselection

As we see in Eq. (27), �̂i is a difference operator with a
step of two units in the label vi. Given the definitions (28)–
(30), the function fþðviÞ vanishes in the whole interval
vi 2 ½�2; 0�, while f�ðviÞ is equal to zero for vi 2 ½0; 2�.
Owing to this remarkable property, which can be traced
back to our treatment of the factor sgnðpiÞ in the constraint,
the operator �̂i does not relate states jvii with vi > 0 to

those with vi < 0. Therefore, �̂i connects only states with
labels vi belonging to one of the semilattices

L�
"i ¼ f�ð"i þ 2kÞ; k 2 Ng; (31)

where

N ¼ Nþ [ f0g; "i 2 ð0; 2�: (32)

Semilattices corresponding to different values of "i or to

different signs are not connected by the action of �̂i. In
other words, the Hilbert spaceH�

"i , defined as the Cauchy

completion of the set

Cyl�"i ¼ spanfjvii;vi 2 L�
"ig (33)

with respect to the discrete inner product, is invariant under

the action of �̂i. Note that the kinematical Hilbert space for
each direction, which is not separable, can be decomposed
into these separable Hilbert spaces:

~H i
Kin ¼ �"iðHþ

"i �H�
"iÞ: (34)

Because of the absence of physically relevant operators
that connect the different semilattices, the physical Hilbert
space is then divided into superselection sectors. We can
therefore restrict our study to any specific Hilbert space
Hþ

~" ¼ �iHþ
"i , with ~" ¼ ð"1; "2; "3Þ. Equivalently, we

could construct the theory using e.g. the Hilbert space
H�

~" ¼ �iH�
"i , since the constraint is symmetric under a

flip of sign in the label vi, owing to the identity

f�ð�viÞ ¼ �f�ðviÞ: (35)

Finally, wewould like to emphasize that the state jvi¼0i
is not included in any of the superselection sectors, since it
had been removed from the kinematical Hilbert space. The
semilattices which one might expect to be connected with

this state under the action of the constraint are those
corresponding to "i ¼ 2, but one can explicitly check

that �̂i is indeed a completely well-defined operator on
H�

"i with domain Cyl�"i . Nothing special occurs in the case
"i ¼ 2 in comparison with the other possible superselec-
tion sectors.

B. Spectral analysis

In order to determine the spectral properties of the

operator �̂i it is helpful to first analyze its square. This
squared operator is also important by itself as it represents
(up to a multiplicative constant) the gravitational part of
the densitized constraint in the isotropic case, where the
elementary variables corresponding to the three different
spatial directions are identified.

One can easily check that �̂2
i is a difference operator of

constant step equal to four in the label vi. Its action couples
only those points vi which lay on one of the semilattices

ð4ÞL�
~"i
¼ f�ð~"i þ 4kÞ; k 2 Ng; ~"i 2 ð0; 4�: (36)

Thus, �̂2
i leaves invariant each of the Hilbert spaces

ð4ÞH�
~"i

obtained by the completion of

ð4ÞCyl�~"i ¼ spanfjvii;vi 2 ð4ÞL�
~"i
g: (37)

If one now defines �̂2
i in

ð4ÞHþ
~"i
� ð4ÞH�

4�~"i
[with do-

main ð4ÞCylþ~"i [ ð4ÞCyl�4�~"i
], it is not difficult to check that

its difference with respect to the operator H0
APS�

2=ð�GÞ
defined in Ref. [9] [see Eq. (37) in that reference] is just a
symmetric, trace class operator. For the particular case
~"i ¼ 4, we can establish the same kind of comparison

with H0
APS by starting with the Hilbert space ð4ÞHþ

4 �
ð4ÞH�

4 and then including the state jvi ¼ 0i, defining

e.g. a vanishing action of �̂2
i on it.

Using the results obtained in Ref. [9] about the operator
H0

APS and Kato’s perturbation theory [30], it is straightfor-

ward to prove that �̂2
i is a positive, essentially self-adjoint

operator whose essential spectrum and absolutely continu-
ous spectrum are ½0;1Þ [31,32].
On the other hand, since �̂2

i leaves invariant
ð4ÞH�

~"i
, its

restriction to ð4ÞHþ
~"i
� ð4ÞH�

4�~"i
(which has been analyzed

above) commutes e.g. with the projection onto the sub-

space ð4ÞHþ
~"i
. As a consequence, we conclude that �̂2

i on

the Hilbert space ð4ÞHþ
~"i
[with domain ð4ÞCylþ~"i] is essen-

tially self-adjoint. Otherwise its deficiency index equation
would have nontrivial solutions that would provide also
valid solutions for the case in which the operator is defined

on the larger Hilbert space ð4ÞHþ
~"i
� ð4ÞH�

4�~"i
, reaching a

contradiction because we have already established that the
operator is essentially self-adjoint in this latter case.

Besides, for ð4ÞHþ
~"i
, the essential spectrum and the abso-

lutely continuous spectrum must still be ½0;1Þ. One can
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show it taking into account the symmetry of �̂2
i under a flip

of sign in the label vi [see Eq. (35)] and accepting the
independence of the spectrum on the value of ~"i. Moreover,
numerical studies [33] indicate that the whole spectrum is

just absolutely continuous. Indeed, the spectrum of �̂2
i

[with domain ð4ÞCylþ~"i] is nondegenerate and each of its

eigenfunctions converges for large vi to a nonvanishing
eigenfunction of the geometrodynamical (Wheeler-
DeWitt) counterpart of the operator. This, together with
the continuity of the spectrum in geometrodynamics, suf-
fices to conclude that the discrete and singular spectra are
empty [34].

In a manner similar to that explained above, one can also
relate the solutions to the deficiency index equation of the

operators �̂2
i and �̂i on Hþ

"i ¼ ð4ÞHþ
"i � ð4ÞHþ

2þ"i (both
with domain Cylþ"i). In this way, one can deduce that the

specified operator �̂i is essentially self-adjoint. Therefore,

we conclude that the constraint operator ĈBI, given in
Eq. (25) and defined in the domain Cylþ~" ¼ �iCyl

þ
"i
, is in

fact essentially self-adjoint.

C. Generalized eigenstates

Taking into account the results of the previous subsec-
tion, we can obtain the spectral resolution of the identity

associated with the operator �̂i, e.g. onHþ
"i , starting with

those for the squared operator �̂2
i on

ð4ÞHþ
"i and

ð4ÞHþ
2þ"i .

Remember that the spectrum of �̂2
i on any of these two

Hilbert spaces is absolutely continuous and equal to the
positive real line. For all �i in the spectrum, we will call

jð4Þe~"i�iÞ the corresponding generalized eigenstates normal-
ized to the Dirac delta [35], where ~"i ¼ "i or 2þ "i. Thus,

on ð4ÞHþ
~"i
we have

I ¼
Z
Rþ
d�ijð4Þe~"i�iÞðð4Þe~"i�i j: (38)

In addition, we fix the global phase of these generalized

eigenstates by choosing ðð4Þe~"i�i jvii to be a positive number
for vi¼ ~"i. In particular, this choice and the positivity of

the operator �̂2
i ensure that ðð4Þe~"i�i jvii is real for all

vi 2 ð4ÞLþ
~"i
.

Renaming �i ¼ !2
i and combining the above resolu-

tions of the identity for the Hilbert spaces ð4ÞHþ
"i and

ð4ÞHþ
2þ"i , we obtain that, on their direct sum Hþ

"i ,

I ¼
Z
R
d!ije"i!i

Þðe"i!i
j; (39)

where, for !i � 0,

je"iþj!ijÞ ¼
ffiffiffiffiffiffiffiffiffi
j!ij

q
½jð4Þe"i

!2
i

Þ � ijð4Þe2þ"i
!2
i

Þ�;

je"i�j!ijÞ ¼
ffiffiffiffiffiffiffiffiffi
j!ij

q
½jð4Þe"i

!2
i

Þ þ ijð4Þe2þ"i
!2
i

Þ�:
(40)

For !i ¼ 0, we define

je"i0 Þ ¼ jð4Þe"i0 Þ: (41)

Recalling Eq. (27), one can check that the states je"i!i
Þ

defined above are generalized eigenstates of �̂i on Hþ
"i ,

with !i being the corresponding eigenvalue. Whence we
find a real, absolutely continuous spectrum. Note also that

the projections of je"i!i
Þ on the Hilbert subspaces ð4ÞHþ

"i

and ð4ÞHþ
2þ"i (which are generalized eigenstates of the

squared operator �̂2
i except for !i ¼ 0, when one of the

projection vanishes) have a relative phase of ��=2. As a
consequence, the phase of

e"i!i
ðviÞ ¼ hvije"i!i

Þ (42)

oscillates rapidly when vi varies in the semilattice Lþ
"i .

Furthermore, using Eq. (27), the eigenvalue equation

associated with the operator �̂i on Hþ
"i leads to the

recurrence equation

e"i!i
ð2nþ 2þ "iÞ ¼ gð2n� 2þ "iÞ

gð2nþ 2þ "iÞ e
"i
!i
ð2n� 2þ "iÞ

� i

ffiffiffi
3

p
!i

�

e"i!i
ð2nþ "iÞ

gð2nþ 2þ "iÞgð2nþ "iÞ
(43)

8 n 2 Nþ, which involves three distinct values of vi, as it
corresponds to a second-order difference equation.
However, for n ¼ 0 we get a relation between the two first
coefficients of the generalized eigenstates,

e"i!i
ð2þ "iÞ ¼ �i

ffiffiffi
3

p
!i

�

e"i!i
ð"iÞ

gð2þ "iÞgð"iÞ : (44)

Therefore the solutions to the eigenvalue problem are
totally determined by a simple piece of initial data, namely,
the projection of the generalized eigenstate for the mini-
mum allowed value of vi, e

i
!i
ð"iÞ. Actually, a careful

calculation shows that, 8 n 2 Nþ,

e"i!i
ð2nþ "iÞ ¼

X
OðnÞ

�Y
frpg

gð2rp þ "iÞ
gð2rp þ 4þ "iÞ

�

�
�Y
fsqg

�i ffiffiffi
3

p
!i

�gð2sq þ 2þ "iÞgð2sq þ "iÞ
�

� e"i!i
ð"iÞ: (45)

Here, OðnÞ denotes the set of all possible ways to move
from 0 to n by jumps of one or two steps. For each element
inOðnÞ, frpg is the subset of integers followed by a jump of

two steps, whereas fsqg is the subset of integers followed by
a jump of only one step.
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VI. THE PHYSICAL HILBERT SPACE

Once we have a good knowledge of the properties of the
constraint operator, we turn to the issue of determining the
physical Hilbert space in order to complete the quantiza-
tion. Let U be the domain of the self-adjoint extension of

the constraint operator ĈBI on the superselection sector
Hþ

~" . Starting from the dense subset U, we can obtain

the physical Hilbert space, H Phy
~" , by applying the group

averaging procedure [36,37]. Namely, given an element
j�i inU [with corresponding wave function �ð ~vÞ in the ~v
representation, where ~v ¼ ðv1; v2; v3Þ], one can ‘‘project’’
it onto H Phy

~" via an average over the group generated by

the constraint ĈBI:

�ð ~vÞ ¼ ½P��ð ~vÞ ¼
Z
R
dt eitð�2=2ÞĈBI�ð ~vÞ: (46)

Employing the spectral decomposition associated with

the operators �̂i for the three spatial directions, we can
express the wave function �ð ~vÞ in terms of the eigenfunc-
tions e"i!i

ðviÞ introduced in Eq. (42)

�ð ~vÞ ¼
Z
R3
d ~! ��ð ~!Þe"1!1

ðv1Þe"2!2
ðv2Þe"3!3

ðv3Þ; (47)

where ~! ¼ ð!1; !2; !3Þ, �� 2 L2ðR3; d ~!Þ, and vi 2 Lþ
"i .

Substituting this decomposition into Eq. (46), we then get

�ð ~vÞ ¼
Z
R3
d ~!�ð!1!2 þ!1!3 þ!2!3Þ

� ��ð ~!Þe"1!1
ðv1Þe"2!2

ðv2Þe"3!3
ðv3Þ: (48)

We immediately conclude from this expression that only
products of eigenstates je"i!i

Þ with P
ið1=!iÞ ¼ 0 will con-

tribute toH Phy
~" . It is then useful to consider one of the!i’s

as a function of the others. Owing to the symmetry of the
system under the interchange of the three directions, the
particular choice of !i that one makes is just a matter of
convention. Here we select !1. From now on, we define it
as follows:

!1ð!2; !3Þ ¼ � !2!3

!2 þ!3

: (49)

With this choice, the wave function that represents the
‘‘projection’’ of the kinematical state j�i onto the physical
Hilbert space takes the form

�ð ~vÞ ¼
Z
R2

d!2d!3

j!2 þ!3j�ð!2; !3Þe"1!1ð!2;!3Þðv1Þ
� e"2!2

ðv2Þe"3!3
ðv3Þ; (50)

where �ð!2; !3Þ ¼ ��½!1ð!2; !3Þ; !2; !3�. We remem-
ber that the eigenfunctions e"i!i

ðviÞ that appear in the above
expression are given (up to a normalization factor) by
Eq. (45).

Employing this result and the delta-normalization of the

generalized eigenstates of �̂i, one can compute the physi-
cal inner product between two states j�1i and j�2i
h�1j�2iPhy ¼ hP�1j�2iKin

¼
Z
R2

d!2d!3

j!2 þ!3j�
�
1ð!2; !3Þ�2ð!2; !3Þ:

(51)

We have introduced the subindices ‘‘Phy’’ and ‘‘Kin’’ to
distinguish between the inner products of the physical and
the kinematical Hilbert spaces, and the symbol � denotes
complex conjugation. Therefore, the physical Hilbert
space of the considered system is the space

H Phy
~" ¼ L2

�
R2;

d!2d!3

j!2 þ!3j
�

(52)

of square integrable functions on R2 with integration mea-
sure d!2d!3=j!2 þ!3j.
An alternative way to arrive at the physical Hilbert space

is to find the space of solutions to the constraint and a
complete set of (real) observables, imposing then the con-
dition that these observables be self-adjoint in order to
determine a Hilbert structure on the space of solutions.
Once we know the spectral resolution of the identity asso-

ciated with the operators �̂i, it is straightforward to solve
the constraint by adopting a formal expansion of the states

in terms of the generalized eigenstates je"i!i
Þ, since ĈBI has a

diagonal action with this decomposition. Indeed, if we
represent the candidate state by a wave function

�0ð!1; !2; !3Þ, ĈBI becomes just a polynomial constraint
on!i. The physical solutions are described by functions of
the form �0ð!2; !3Þ ¼ �0½!1ð!2; !3Þ; !2; !3�, where
!1ð!2; !3Þ is given by Eq. (49). A complete set of observ-

ables is provided e.g. by the operators �̂2 and �̂3, that
multiply the wave function �0ð!2; !3Þ by !2 and !3,
respectively, and by the derivative operators �i@!2

and

�i@!3
. Demanding that they be self-adjoint, we arrive at

the physical Hilbert space L2ðR2; d!2d!3Þ. Under multi-

plication of the wave function by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij!2 þ!3j

p
,

one obtains in fact a unitarily equivalent representation of
the algebra of observables on the Hilbert space given in
Eq. (52).

VII. CONCLUSIONS AND DISCUSSION

In this work, we have presented a complete loop quan-
tization of the family of homogeneous Bianchi I cosmol-
ogies in vacuo. We have described the quantum system in
terms of a well-defined densitized Hamiltonian constraint,
represented it by a(n essentially) self-adjoint operator,
found the general form of its solutions, and determined
the corresponding Hilbert space of physical states.
A nice property of the quantization that we have put

forward, including the chosen factor ordering, is that the
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quantum Hamiltonian constraint adopts the form of a sum
of products of symmetric operators for each of the spatial
directions. Under the densitization of the constraint, this
allows one to reduce the analysis of self-adjointness and
the spectral analysis just to the consideration of operators
for one-dimensional systems (those describing indepen-
dently each of the spatial directions).

Furthermore, our quantum Hamiltonian constraint anni-
hilates the kernel of the volume operator and leaves invari-
ant its orthogonal complement. As a consequence, the
subspace of zero-volume states gets decoupled and one
can ignore it in the study of the nontrivial physical states.
This fact is essential to attain an equivalent formulation of
the quantum system in terms of a densitized Hamiltonian
constraint. This densitized constraint retains all the infor-
mation about the quantum behavior of the model; in par-
ticular, it is not necessary to introduce simplifications that
disregard the regularization of the inverse triad operators in
LQC.

As it is common in polymeric quantizations, the physical
Hilbert space is superselected. Physical states have support
in semilattices that have a basic step of two units in the
labels vi. This differs from other previous analysis in LQC
where the constructed superselection sectors correspond to
entire lattices, with points distributed over the whole real
line instead of over a semiaxis [6–14,17,18,22]. As we
have seen in Sec. V, this facilitates the spectral analysis
of the relevant difference operators and removes remnant
global symmetries of the system, namely, those under
reversal of the triad orientations (which now simply relate
different superselection sectors). In addition, and related
with these issues, all superselection sectors have essen-
tially the same treatment in our quantization. Nothing
special happens for the semilattices formed by even inte-
gers, which are those that the difference operators would
connect with the origin had the zero-volume states not been
decoupled.

As we have commented, the factor ordering that we have
adopted reduces the functional analysis of the densitized

constraint operator to that of the simple operator �̂i. In
addition, for the three possible directions i, these operators
are immediately identified as Dirac observables. It is worth
commenting on some of their properties in more detail. We

have seen that �̂i behaves as a second-order difference
operator in many aspects. Nonetheless, we know that it
represents the classical variable cipi, which would become
a first-order differential operator in a standard canonical
quantization of the Wheeler-DeWitt type. Therefore, one
would expect that, if the results of the Wheeler-DeWitt
approach are to be recovered in a certain regime from the
loop quantization, the generalized eigenstates have to be
determined from data on a single section of constant vi.
Remarkably, this is indeed the case.

This issue had not been pinpointed until now because in
the homogeneous and isotropic models a subtle coinci-

dence occurs. In that case, the gravitational part of the

constraint is given by an operator like �̂2
i . Such an opera-

tor, which represents the classical variable ðcipiÞ2, behaves
in fact as a second-order one in the Wheeler-DeWitt
quantization.
Another difference with respect to previous analyses in

LQC like those presented in Refs. [6–14,18,22] is that we
have not introduced any matter content (and specifically no
scalar field) as internal time. The variable identified with
the internal time in our model is one of the triad compo-
nents, which are quantized polymerically. Actually, the
three diagonal triad components have an equivalent role
because the model is symmetric under the interchange of
spatial directions. We have selected the direction i ¼ 1 to
make the discussion explicit, but the choice is just a ques-

tion of convention. Since the eigenstates of �̂1 are deter-
mined by their initial data at v1 ¼ "1, the physical states
get also fixed by data on this initial slice. Furthermore, the

nondegeneracy of the spectrum of �̂1 implies that the wave
function at any v1-constant slice determines the entire
solution up to corrections of vanishing physical norm.
Also the physical inner product can be rewritten in terms
of data on that single section [38]. One can then admit the
viewpoint that physical states evolve from this initial slice
to any other slice, in such a way that they solve the
densitized Hamiltonian constraint. As a consequence of
the loop quantization adopted for the internal time, this
concept of evolution differs from the usual one and, in
particular, does not allow one to reach unitarity in a
straightforward, standard way [33]. One should be aware
that the notion of evolution used here refers only to the fact
that there is a deterministic relation between data on two
slices of constant internal time, and thus its meaning is
certainly limited. Also, a preliminary analysis of the ei-
genfuctions shows that the evolution parameter (internal
time) is not monotonic in the cosmic time, which makes
the extraction of relevant physical data nontrivial.
On the other hand, the decoupling of the zero-volume

states ensures that nontrivial physical states have no con-
tribution from the slice where the curvature singularity is
located in the classical theory. Physical states are well
defined everywhere and, in this respect, the singularity is
resolved quantum mechanically. This conclusion reinfor-
ces previous results about singularity resolution in LQC. It
is worth emphasizing that this conclusion is independent of
our choice of internal time. Furthermore, since the wave
functions of the physical states (in the v1 representation)
have support just in semilattices, the evolution does not
connect them with other branches of the universe, corre-
sponding to a different orientation of the triads. The sin-
gularity is never crossed in the evolution. Let us also notice
that this result is achieved without appealing to any kind of
boundary conditions that might restrict the initial data for
the physical states. As far as one understands the statement
in this sense, one can say that physical states ‘‘arise from
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nothing’’ in the initial slice v1 ¼ "1, attaining a no-
boundary description.

Apart from the points addressed in this work about the
loop quantization of the vacuum Bianchi I model, there are
other interesting issues that we plan to explore in a future
research [33]. This includes a detailed comparison with the
Wheeler-DeWitt theory, the discussion of the concept of
evolution, and the fate of unitarity in the model. We also
want to carry out a numerical study of the physical states,
analyzing, in particular, the occurrence of quantum
bounces.
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