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Abstract 

This study examines the effects of a large dam on hydrological droughts in the transboundary 

Tagus River, central Spain and Portugal. The magnitude and duration of droughts are analyzed 

by comparing a monthly drought index calculated for the flow series upstream and 

downstream of the Alcántara Reservoir. The dam was built in 1969, and the reservoir is the 

second-largest in Europe (3,162 hm3). Water management in the area is complex because of 

large seasonal and interannual variability in the flow regime, which is characteristic of 

Mediterranean environments. This paper demonstrates that as a result of exploitation of the 

Alcántara reservoir: (i) during periods of water scarcity, the releases in winter and spring are 

reduced dramatically and the magnitude and duration of summer low-flow show a slight 

increase; and (ii) the nature of droughts along the Tagus River basin downstream of the dam 

has shown severe changes since construction of the dam. In fact, during the pre-dam period 

(1943–1969), droughts were longer and more intense in the Spanish part of the basin than in 

the Portuguese. Since the construction of the Alcántara dam, however, the Portuguese part of 

the basin has experienced more severe droughts than the upstream part, in terms of both 

magnitude and duration. 

 

Key-words: Droughts, dams, transboundary basin, SPI climatic index, River Tagus  
. 

 

1. Introduction 

Reservoirs are key infrastructures for various water supplies and hydropower generation. The 

role of reservoirs is particularly relevant in regions that experience seasonal water scarcity, 

such as those under a Mediterranean climate, where flow regimes are characterized by marked 

seasonality, high interannual variability, and periodic floods and droughts. Moreover, 

reservoirs may also be used to control the river flow during extreme periods such as floods 

and droughts. During droughts, some of the stored water is released to maintain ecological 

flow, as well as meet basic water requirements; however, there commonly exists an 

operational conflict between the main purpose of the reservoir (irrigation, water supply, or 
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hydropower production) and its function in hazard mitigation or environmental regulation. 

The main purpose of the reservoir is commonly given priority over other considerations, and 

the nature of the downstream effects of reservoir operation is often debatable from an 

integrated water management viewpoint (McCully, 2001; López-Moreno et al. 2004).  

Recent decades have seen the emergence of a clear scientific interest in reservoir 

management practices and their impacts. Other issues have received little attention, including 

the role of reservoir management during periods of drought. Drought is a major hydroclimatic 

hazard that leads to numerous economic, environmental, social, and even political problems. 

Hence, drought management should be a key issue in risk-based decision processes as part of 

reservoir operation (Huang and Chou, 2008). Droughts are a highly complex phenomena that 

commonly start with long periods of low precipitation, resulting in water scarcity that 

progressively propagates throughout the hydrological system, affecting the soil moisture 

content, groundwater storage, river discharge, and reservoir storage (Changnon and 

Easterling, 1989). Among the different components of droughts (climatic, environmental, 

agricultural, etc.), the hydrological component is the most important given the high 

dependence of many activities (e.g., agriculture, industry, hydropower generation, and urban 

supply) on surface water resources. In the case of regulated rivers within transboundary 

basins, water management during drought events becomes a complex issue in which national 

legislation and international conventions must be observed.  

The present study considers the case of the Tagus, a transboundary river shared by 

Spain and Portugal. More specifically, the study focuses on the influence of the Alcántara 

reservoir on the downstream hydrological droughts. Hydrological droughts are referred here to 

those events affecting flow discharge, so they are not strictly climatic droughts but river 

droughts. The magnitude and duration of droughts are analyzed by comparing a monthly 

drought index calculated for the flow series upstream and downstream of the dam. The 
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reservoir, built in 1969, is located about 10 km from the border between the two countries. 

Being the second-largest reservoir in Europe, it determines to a great extent the discharge of 

the Tagus River in the Portuguese sector of the basin.   

 

2. Study area 

The Tagus River, located in the centre of the Iberian Peninsula, flows from east to west 

for 1009 km, draining an area of 80,100 km2 (Figure 1). About 73% of its length and 69% of 

its catchment area are in Spain, with 27% and 31% in Portugal, respectively. The river is one 

of the main surface water bodies in the Iberian Peninsula: about 15% of the Spanish 

population and 30% of the Portuguese population live within the river basin.  

The climate of the basin varies from Mediterranean with strong continental influences 

in eastern areas to Atlantic conditions in western areas, particularly in the Portuguese part of 

the basin. The average annual precipitation varies significantly along the basin, ranging from 

450 mm in the middle reaches to 870 in the Portuguese part of the basin to 1500 in the Central 

Ranges in Spain. The upper zones of the tributaries that emerge from the northern and 

westernmost sectors of the basin (i.e., from the Central Ranges in Spain) contribute more than 

1500 mm of rainfall per year. The Portuguese tributaries contribute a significant amount of 

water to the river; they have a relatively regular seasonal regime due to the Atlantic influence, 

and tend to show noticeable peak flows in winter. Some of these tributaries are regulated by 

dams constructed for hydropower generation. 

The Tagus River provides water for urban supply (e.g., Madrid and Lisbon), the 

irrigation of large agricultural areas (230.000 ha), and industrial uses (e.g., cooling of nuclear 

and thermal plants). There is also a large fishery in the Tagus estuary and adjacent coastal 

sectors, and this industry is dependent on the level of freshwater flow. Inter-basin water 
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transfer between the Tagus and Segura rivers in the upper reaches of the Tagus is undertaken 

to solve the problem of the near-chronic water deficit experienced in coastal areas of the 

Spanish Mediterranean. Since construction of the inter-basin channel in 1979, the annual 

discharge of the Tagus has been generally below the historical average, and water transfer has 

only been able to supply about 40% of the planned volume of 600 hm3 yr–1 (Morales et al., 

2005). The process of determining the amount of water available for transfer during dry years 

causes severe social and political conflicts in Spain. The transboundary nature of the Tagus 

Basin also leads to difficulties in management of the flow, mainly during large floods and 

drought periods (Azevedo et al. 2004). 

The Alcántara reservoir, located close to the border between Spain and Portugal, has a 

gross storage capacity of 3,162 hm3, being the second-largest reservoir in Europe. The long-

term average runoff (1943-2003) is 6850 hm3. The temporal series shows a downtrend 

evolution, mainly associated to afforestation in headwater areas, and aggravated by the Tagus 

Segura Water transfer (Gallart and Llorens, 2002). Thus, the mean runoff has decreased from 

7,515 hm3yr-1 during the pre-dam period (1943-1969) to 6208 hm3yr-1 for the post-dam period 

(1970-2003). Tagus River in Alcántara shows a marked Atlantic regime, with a clear winter 

peak (November-February and low flows in summer (see inflows to the reservoir, Figure 4A). 

The dam, which is 135 m high, was built in 1969 for hydropower generation. Due to its large 

capacity (representing about 46% of the mean annual flow), the reservoir the reservoir has a 

large potential to modify the river regime downstream in Portugal, where the water is mostly 

used for agricultural purposes and industrial and domestic supply.  

 

3. Methods  

3.1 Database preparation 
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We analyzed various hydrological series obtained from the Spanish Tagus Water 

Authorities (Confederación Hidrográfica del Tajo) and the Portuguese Water Institute 

(Instituto da Água). The Spanish record consisted of monthly series recorded at the Alcántara 

gauging station (see Figure 1), which began to operate in 1915. Gaps in the series, which 

affect less than 5% of the data since 1940, were filled by regression analysis using a regional 

series created from available gauging stations in the upstream sector of the Tagus River. The 

regional series was developed in three steps (Beguería et al. 2003): 1) normalization of the 

original monthly series by subtracting the long-term mean and dividing by the long-term 

standard deviation; 2) calculation of the regional monthly averages; 3) normalization of the 

averaged time series.  

 The record from the Alcántara gauging station was used until 1969, when the 

Alcántara reservoir was first exploited. Given that the Alcántara gauging station is located 1 

km downstream of the Alcántara dam, it no longer reflects the natural hydrological regime of 

the Tagus River. For the period after 1969, the natural monthly inflow series was derived from 

the mass balance between the measured discharge from the dam and the amount of water 

stored in the reservoir. This approach has been used to reconstruct reservoir inflow data in 

other studies conducted in the Iberian Peninsula, yielding high-quality monthly data (López-

Moreno et al. 2004). This approach is the most suitable for the Alcántara reservoir because the 

nearest present-day gauging station is located 150 km upstream (Valdecañas) along a section 

of river with much lower discharge than that at Alcántara (the section of the Tagus River at 

Valdecañas has two important tributaries, the Alagón (from the north) and the Almonte (from 

the south), which since 1969 have flowed directly into the Alcántara reservoir. 

For the Portuguese sector, we used the longest time series available (1943–1992): that 

recorded at the Santarém gauging station (see Figure 1). To extend the monthly flow records 

until 2003, we used data from the gauging station at Almourol, located 25 km downstream 
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from Santarém. The ratio between annual discharge in Santarem and Almourol is 0.96. The 

flow series recorded at Almourol consists of a continuous record from 1973 until the present. 

The two gauging stations have a common recording period of 19 years, thus enabling the 

calculation of a relationship based on linear regression between monthly flows. This 

relationship proved to be extremely strong for all months of the year, with values of the 

correlation coefficient (Pearson’s r) always higher than 0.96. Based on this relationship, we 

reconstructed the series of monthly discharge at Santarém gauging station until 2003 based on 

the record from Almourol gauging station.  

Tributaries located between the Alcántara dam and the Santarém gauging station 

contribute an average of ≈3000 hm3 yr–1 to the discharge of the Tagus River. This contribution 

results in an increase in the total annual flow volume from 6850 hm3 at Alcántara to 9755 hm3 

at Santarém. To understand the possible contribution of the tributaries and (in the absence of 

reliable discharge data) to discriminate the influence of the Alcántara reservoir on the Tagus 

discharge at Santarém from that of the tributaries, we generated a synthetic time series of the 

contribution of the tributaries based on the difference between the discharge series recorded in 

Santarem minus the discharge recorded at the foot of the Alcántara dam. 

 

3.2 Calculation of drought index 

There are several approaches available in studying hydrological droughts based on 

daily hydrological records (Fleig et al., 2006). A common procedure is to identify drought 

periods via a constant discharge threshold (Tallaksen et al., 1997; Fleig et al., 2006). This 

enables the identification of low-discharge periods, when water scarcity presents a threat to 

water needs. This criterion does not take into account the seasonality of the discharge, a fact 
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that usually leads to classify naturally low summer flows as low-flow periods. This is 

especially a problem under highly seasonal regimes, as with Mediterranean rivers. 

In the present paper, drought periods were identified according to the monthly 

discharge anomalies with respect to average conditions (Dracup et al., 1980). A drought index 

commonly used to analyze climatic droughts, the Standardized Precipitation Index (SPI), was 

used to quantify the discharge anomalies. The advantages of the SPI are its theoretical basis, 

robustness, and versatility in drought analysis. SPI values are comparable in both time and 

space, and is not affected by geographical or topographical differences. The SPI allows 

determining the duration, magnitude and intensity of droughts. This index was developed by 

McKee et al. (1993) to identify non-normal dry and humid periods based on precipitation 

records. Although the SPI has been widely applied to precipitation records in different regions 

(e.g., Bordi et al., 2004; López-Moreno and Vicente-Serrano, 2008), it has yet to be applied to 

river discharge data. 

For a given observation, the SPI is the number of standard deviations with respect to 

the long term average of the whole series. Since hydrological series commonly do not follow a 

normal distribution, being highly biased, it is necessary to adjust the records to a different 

probability distribution. In considering discharge data, few studies have investigated the 

optimal probability distribution to ensure the correct standardization of the series. For data 

from Northwest Europe, Zaidman et al. (2001) showed a relatively good adjustment of the 

discharge series to the log-normal distribution. For the present study, a comparison among 

several skewed probability distributions, based on the L-moments ratios diagram (Greenwood 

et al., 1979; Sankarasubramanian and Srinivasan, 1999) was performed. This plot enables a 

graphical comparison of the L-coefficients of skewness and kurtosis of the data with that of a 

set of candidate probability distributions (Hosking, 1990, 1991). Figure 2 shows the L-

moment ratios diagrams corresponding to the monthly discharge series upstream and 
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downstream of the Alcántara reservoir. In general, the statistical values of the discharge series 

oscillate around the theoretical curve of the Pearson III distribution, which was therefore 

selected to calculate the hydrological drought index. 

The probability density function of a Pearson III distributed variable is written as 
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Once F(x) has been calculated, it is normalized such that the mean is zero and the 

standard deviation is 1. This normalized variable is interchangeable with the SPI and is 

comparable with other SPI values over time and space. An SPI of zero indicates that the 

discharge corresponds to 50% of the accumulated probability according to the Pearson III 

distribution, which corresponds to the mean value.  

To transform F(x) and obtain the SPI, the approach formulated by Abramowitz and 

Stegun (1965) is used: 
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P is the probability of exceeding a determined D value, P=1-F(x) 

If P>0.5, P is replaced by 1-P and the sign of the resultant SPI is switched.  
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The constants are: C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 

0.189269, d3 = 0.001308. 

A most complete review about the SPI and detailed formulation of the SPI calculation 

according to the Pearson III distribution and the L-moment method can be found in Vicente-

Serrano (2006b) and López-Moreno and Vicente-Serrano (2008). 

SPI series were calculated for the upstream and downstream discharge series, and also 

for the series for Portuguese tributaries and release from the Alcántara reservoir (1970–2003). 

In addition, a precipitation-based drought index (SPI) at a time scale of 12 months was 

calculated from a regional series of precipitation using 13 precipitation stations (8 in Spain 

and 5 in Portugal), with the purpose of comparing the occurrence of hydrological and climatic 

droughts. SPI at 12 months is an appropriate time scale for analyzing hydrological 

implications of regulated river basin, as it usually shows the highest correlation values 

(Vicente-Serrano and López-Moreno, 2005).    

 

3.3. Drought event analysis 

Drought events can be directly identified based on discharge series (Tallaksen and van 

Lanen, 2004) or drought indices (Vicente-Serrano et al., 2004). Although a standard criterion 

is lacking in identifying drought events, they are commonly defined as a sustained and 

regionally extensive occurrence of below-average water availability (Tallaksen and van 

Lanen, 2004). Using hydrological and climatic time series, droughts are identified as periods 

during which the precipitation/discharge drought indices are below a certain threshold, 

following the theory of runs (see Yevjevich, 1967). Several criteria are used in selecting a 

threshold. Although it would be optimum to fix a threshold with an economic, physical and/or 

ecological significance, in practice this is usually difficult because natural and social demands 
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differ and vary in time and space. For this reason, statistical criteria based on percentiles 

(Tarhule and Wo, 1997; Fleig et al., 2006), percentages of the mean (Tallaksen et al., 1997), 

and probabilities (Agnew, 2000; Vicente-Serrano et al., 2004) are commonly employed. 

Given the objective of the present study, an SPI value of zero was selected as a threshold to 

ensure a sufficient sample of events. Other commonly used criteria (5%, 10%, or 20% of 

accumulated probability) would reduce the sample size to such a degree to preclude reliable 

comparisons. 

In addition to threshold selection, two other problems must be solved to successfully 

identify drought events: the occurrence of minor droughts and mutually dependent droughts 

(Fleig et al., 2006): a) minor droughts are events characterized by both: short duration and, at 

the same time, low magnitude; these are of little hydrological importance and may disturb the 

analysis; b) mutually dependent drought events can occur when short periods with discharge 

above the threshold level divide a long period of low discharge into several drought events.. 

These smaller events cannot be considered mutually independent, and it is advisable to 

combine them into a single large event to capture the true severity of the drought. Various 

procedures have been proposed to combine mutually dependent droughts (Tallaksen et al., 

1997); we chose the moving average procedure in which a low-pass filter of 5 months is 

applied to smooth the original drought index series. This procedure combines mutually 

dependent droughts into a single drought event; it also filters out the minor droughts, 

providing better results than other methods (Fleig et al., 2006). Obviously, the analysis of 

hydrological or ecological processes sensitive to short and frequent droughts cannot be 

conducted using filtered series.   

Figure 3 shows the smoothing procedure and the identification of drought events. It 

illustrates that a 5-month smoothing permits identifying all main drought spells, grouping 

dependent periods of negative anomalies interrupted by very short and low positive anomalies 
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(see years 1994 and 1995). Drought events were defined according to the zero SPI threshold 

from the filtered SPI series (upstream and downstream of the reservoir, Portuguese tributaries, 

and release from the Alcántara reservoir). Two main components from each drought event 

were chosen for further analysis (Tarhule and Wo, 1997): i) drought magnitude (accumulated 

deficit below a certain threshold, which is the sum of negative SPI anomalies belonging to the 

same drought event); ii) and drought duration (number of months or years below a certain 

threshold). 

  

4. Results 

4.1. Management pattern at the Alcántara reservoir 

Figure 4A shows the average monthly water storage in the Alcántara, as well as inflow 

and outflow since the dam began operating in 1970. Figure 4B shows the same information 

for the 5 years with the lowest annual inflow to the reservoir. 

Under average conditions, the inflow curve exceeds the outflow curve from October to 

May, in particular from October until February. Filling of the reservoir is accomplished by 

storing the maximum annual flows of early winter, which also enables the maintenance of 

significant outflows downstream of the dam, as electricity demand results in high rates of 

release. From March onward, the differences between inflows and outflows are minimal, but 

enable the continued accumulation of water up to the maximum annual storage level (around 

2100 hm3) by the end of May. Outflow exceeds inflow during summer due to the release of 

water for the maintenance of the established ecological discharge, industrial and irrigation use, 

and urban supply in the Portuguese part of the basin. The minimum storage level (1662 hm3) 

occurs in September. As a result of exploitation of the reservoir, the Portuguese section of the 

Tagus River still exhibits a seasonal pattern that resembles the natural pattern, although 
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noticeably more smoothed, as a component of the winter peak flows is stored in the reservoir 

and summer low-flows are enhanced downstream of the dam. This pattern may change 

markedly when hydrological conditions are far from average. Thus, during dry years (i.e. very 

low inflow and a complete lack of high flows during winter, Figure 4B), the water release 

during winter and early spring is reduced dramatically. This procedure enables the attainment 

of a maximum storage of close to 1700 hm3 in May. This volume is maintained during 

summer by releasing water from the reservoir in similar volumes to that of inflow 

 

4.2. Downstream effects on magnitude and duration of hydrological droughts 

Figure 5 shows the time series of the hydrological drought index (SPI) upstream and 

downstream of the dam, and the SPI of the regional precipitation series for the entire Tagus 

basin. Comparison of the hydrological series suggests that they are generally similar (r= 0.71) 

despite the runoff contribution of several important Portuguese tributaries. For both Spain and 

Portugal, the most severe droughts were recorded in the 1940s, 1980s, and 1990s; while the 

wettest were the 1960s and 1970s, with the 1950s showing an average behaviour. There is 

generally a high correspondence between periods with anomalous precipitation and those with 

anomalous runoff. This finding indicates the modest role, in the middle and lower sectors of 

the Tagus River basin, of upstream regulation in the hydrological response to the climatic 

signal. Thus, both runoff series show a rather linear response to precipitation across the entire 

basin (correlation coefficients r=0.58 and r=0.60 for upstream and downstream series, 

respectively). Similarities in the anomalies apparent in the two hydrological series are 

especially clear when we focus on drought occurrence i.e. periods of negative anomalies at the 

Spanish and Portuguese sites show a clear match. Despite these similarities, differences are 

apparent in the length and magnitude of comparable drought periods. 
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Moreover, Figure 5 shows that drought occurrence in the Tagus, as well as in the 

regional precipitation, does not show clear trends during the analyzed period. Thus, the same 

number of drought events (13) has occurred during the pre-dam and post-dam periods. 

Highest drought duration and magnitude where found at the beginning and the end of the time 

series (1940-50s and 1980-90s decades). 

 

4.3. Drought duration and magnitude before and after construction of the Alcántara dam 

Figure 6 shows the duration of drought events recorded in the Tagus River upstream of 

Alcántara reservoir (“Tagus upstream”), downstream at the Santarém gauging station (“Tagus 

downstream”), the Portuguese tributaries (“Portuguese tributaries”), and immediately 

downstream of Alcántara dam (“foot of the dam”). When the period (1943-2003) is 

considered, the distribution, the distribution of drought duration upstream of the dam is similar 

to that observed downstream. In both cases the mean drought duration is close to 7 months 

and the 90th percentile is around 25 months. Droughts in the Portuguese tributaries have a 

lower duration than those in the main river. The two right-hand figures in Figure 6 show clear 

differences in drought duration between the pre-dam (1943–1969) and post-dam (1970–2003) 

periods. The pre-dam period is characterized by a longer duration of droughts upstream (mean 

duration, 8 months) than downstream (mean duration, 5.5 months), probably due to the shorter 

duration of droughts in the Portuguese tributaries (these tributaries have different flow 

regimes from those in Spain because of their strongest Atlantic influences, a fact that mitigates 

the climatic influence on the flow regime). The opposite trend is observed for the period since 

the reservoir came into operation: droughts are noticeably longer downstream of the dam 

(mean duration in Santarem, 11.5 months) than upstream (mean duration at the inflow into the 

Alcántara reservoir, 6 months). In recent decades, droughts in the Portuguese tributaries have 

shortened in duration (mean duration, 6 months), probably due to river regulation, and they 
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are clearly shorter than those recorded downstream (in Santarem). Since 1970 the duration of 

droughts has been markedly longer at the foot of the dam than upstream the reservoir, 

indicating that management of the Alcántara reservoir has led to an increase in the duration of 

droughts downstream. The effects of the dam are not compensated downstream by the 

evolution of the behavior of incoming Portuguese tributaries. 

Figure 7 shows similar data to that in Figure 6, although for the magnitude of drought 

events. As for the data on duration, the magnitudes of droughts for the entire period are 

similar in Spain (upstream) and in Portugal (downstream). Drought events within the 

Portuguese tributaries are generally of lower magnitude than those either upstream or 

downstream of the dam. During the pre-dam period, the magnitude of upstream droughts 

clearly exceeds that of downstream droughts because of the smoothing role of the Portuguese 

tributaries. Nevertheless, the opposite trend is observed for the period after construction of the 

dam, with higher-magnitude droughts in downstream areas. The magnitude of droughts in the 

Portuguese tributaries has slightly decreased following construction of the dam. Exploitation 

of the reservoir emerges as the only possible explanation of the observed change in the pattern 

of upstream vs. downstream drought magnitude. The fact that the magnitude of droughts is 

markedly higher at the foot of the dam than upstream of the dam (average values of 5.4 and 

2.3, respectively) suggests that operation of the dam has served to accentuate the magnitude of 

droughts. 

Table 1 confirms that the Alcántara reservoir strongly influences the occurrence of 

drought in the lower section of the Tagus River. During the pre-dam period, the downstream 

sector recorded a similar number of months with slight negative (0.5<SPI<-1) SPI values to 

the upstream sector (44/40 upstream/downstream, respectively), a higher occurrence of 

months with anomalies in the range –0.5 < SPI < –1, and a lower occurrence of months with 

large negative anomalies (SPI < –1.5). However, since the reservoir has come into operation, 
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the number of months with large negative anomalies (3/14 for -1.5< SPI < –2 and 6/11 for SPI 

< 2) is noticeably higher than in the Portuguese stretch of the Tagus.  

The above results are confirmed by the data in Table 2, which lists the statistics 

(duration, total magnitude, mean monthly magnitude, and maximum magnitude) of drought 

events upstream and downstream of the Alcántara dam, as well as the sign of change in 

upstream–downstream drought characteristics. The data show a marked shift in the upstream–

downstream drought characteristics since the Alcántara reservoir was first exploited. During 

the pre-dam period, droughts in the Portuguese sector of the Tagus River were shorter and less 

intense, whereas since 1970 they have become longer and more intense. 

Finally, figure 8 shows examples (for four different periods) of how exploitation of the 

Alcántara reservoir can explain observed differences in the duration and magnitude of 

droughts upstream and downstream of the dam. Figures 8A and 8B show long periods with 

negative SPI values for the Tagus River; during both periods, the drought in the downstream 

stretch was more intense and longer than that in the upstream stretch. During these months, 

outflow from Alcántara was reduced to increase water storage in the reservoir. This strategy 

was applied even during months with pronounced negative SPI anomalies in the upstream 

sector of the river. Figure 8C shows a different situation, in which the magnitude of 

downstream droughts was controlled by increasing the outflow from the Alcántara reservoir, 

hence reducing the amount of water stored. During 1998–1999, under conditions of severe 

water scarcity in upstream areas, the exploitation practices of the Alcántara reservoir led to 

increased water storage, causing several peaks of high drought intensity in downstream areas 

(Figure 8D). 

 

5. Discussion and conclusions 
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The main objective of the study was to characterize the role of dam operations on the 

magnitude and duration of hydrological droughts in the downstream sector of the Tagus River 

basin. The main conclusions are summarized as follows. 

-The Standardized Precipitation Index, which has not been previously used for runoff 

series, appears as a promising tool for analyzing duration and magnitude of hydrological 

droughts. 

- Despite an apparent similar evolution of the hydrological series for areas upstream 

(Spain) and downstream (Portugal) of the Alcántara reservoir, noticeable differences emerged 

as a consequence of the management of the Alcántara reservoir. 

- Under normal conditions, the Alcántara reservoir diminishes the natural seasonal 

variability of the Tagus River regime, reducing the winter high flows and leading to increased 

discharge during the dry summer season. As a result of reservoir exploitation, releases during 

winter and spring are severely reduced under periods of water scarcity, while summer low-

flows may exhibit a slight increase. 

- Characteristics of downstream droughts along the Tagus River have changed since 

the Alcántara dam was built in 1969. During the 1943–1969 period, droughts were longer and 

more intense in the upstream (Spanish) sector of the Tagus River than in the downstream 

sector (Santarem, Portugal). In contrast, from 1970 onward the Portuguese sector has 

experienced more severe droughts than the Spain sector, in terms of both drought duration and 

magnitude. These results demonstrate that the observed changes can be attributed to the 

management practices of the Alcántara reservoir as the evolution of Portuguese tributaries has 

reduced the length and magnitude of their droughts. 

The Standardized Precipitation Index (SPI) had shown to be a useful indicator of 

climatic droughts (McKee et al., 1993). In this study, the application of SPI to hydrological 
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analysis has demonstrated that it offers several advantages to more traditional techniques such 

as constant thresholds or percentage of cumulated probability. Main advantages of SPI are: i) 

the possibility to compare river flow series of different magnitude; ii) the non influence of 

natural seasonal oscillations; iii) and the possibility to minimize the impact of minor and 

mutually dependent events (Fleig et al. 2006) in analysis of drought magnitude and duration. 

Pearson III appears as the most suitable probability distribution function for the analyzed 

series. However, this finding cannot be generalized for all runoff series since it may change in 

basins subjected to different hydroclimatic conditions. 

The results achieved in this work highlight the capacity of dams to modify the 

hydrologic regime of highly regulated rivers. When water is abundant, the Alcántara reservoir 

is filled completely, with an accompanying release of water for hydropower generation or 

other uses in the Portuguese part of the basin. During such wet periods the water release from 

Alcántara may also contribute to an increase in downstream summer flows. A similar pattern 

of management has been reported at others reservoirs located in the Iberian Peninsula or 

Mediterranean climatic conditions (In Pyrenees, López-Moreno et al. 2004; the whole Ebro 

basin, Batalla et al. 2004; Sacramento River, Bliss-Singer 2007). Under drought conditions, 

the Alcántara reservoir is maintained at a minimum level, with a reduction in or even 

elimination of winter and spring high outflows, thereby amplifying the drought conditions 

downstream. Before construction of the dam, the Atlantic regime of the Portuguese tributaries 

appeared to reduce the duration and magnitude of downstream droughts compared with those 

in the Spanish part of the basin; however, management of the reservoir has led to a general 

increase in drought severity in the downstream sector. 

The present results indicate that exploitation of the Alcántara reservoir is responsible 

for the increase in drought severity. In fact, similarities in drought characteristics upstream of 

the dam during pre-dam and post-dam periods suggest that few of the observed changes when 
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upstream-downstream series are compared can be ascribed to changing climatic conditions 

within the basin or upstream regulation.  The role of the Alcántara reservoir in accentuating 

droughts is somehow compensated by the inflow of tributaries to the Tagus River between the 

Alcántara reservoir and the gauging station at Santarém, as the severity of droughts in these 

tributaries is noticeably lower than that in the Tagus River, especially in recent years. 

Probably, the reduction in drought severity may be related to increasing regulation of some 

tributaries (i.e. in the Zezere river, Portugal), as recent climatic evolution, included droughts, 

has not shown noticeable changes in this sector of the Iberian Peninsula (Vicente-Serrano, 

2006). Droughts measured at the foot of the dam are markedly amplified compared with those 

resulting from incoming flows to the reservoir. In fact, the arrival of new tributaries to the 

main channel contributed to alleviating the pronounced changes induced by operation of the 

reservoir. It explains the slight reduction in drought severity observed in Santarem compared 

to the duration and magnitude of droughts recorded at the foot of the dam. 

The reduction in river flows that occurs during periods of water scarcity might affect 

several ecological and economical aspects of the lowest sector of the Tagus River. Previous 

studies have reported a deterioration in the composition and integrity of riparian vegetation in 

Portugal over the period since the Tagus River became strongly regulated (e.g., Aguiar and 

Ferreira, 2005). Moreover, a previous study found that river discharge has a strong impact on 

estuarine and coastal fisheries (Loneragan and Bunn, 1999). Costa et al. (2007) found that the 

relationship between fish species abundance and river flow in the Tagus River differs among 

species, but that in general fish density shows marked differences between dry and wet years. 

Problems arising from management of the Alcántara reservoir are critical because of 

their transboundary context, and management of the reservoir, in particular during flood 

crises, has already received criticism (Azevedo et al. 2004). Since February 2000, the 

management of international waters shared by Portugal and Spain has been regulated by a new 
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bi-lateral agreement termed the “Albufeira Convention.” For the Tagus River and others 

shared between the two nations, the convention establishes minimum flows and the necessity 

of communication during exceptional floods or drought conditions. Despite this positive 

outlook, questions remain concerning the effectiveness of the convention. In fact, during the 

most recent water shortage, difficulties arose to implement the protocol defined to meet 

increasing demands with the available water resources by the drought management plans 

(Garrote et al. 2007).  
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FIGURE CAPTIONS 

Figure 1. Location map of the Tagus River and Alcántara reservoir. The grey area shows the 

extent of the Tagus River basin. 

Figure 2. L-moment ratios diagram, showing the empirical distribution of monthly discharge 

upstream (circles) and downstream (triangles) of the Alcántara reservoir. Also shown are 

candidate probability distributions (log-normal, solid line and long-dashed line; Pearson III, 

short-dashed line). 

Figure 3. Example of the smoothing procedure employed for Standardized Precipitation Index 

(SPI) series and calculation of drought magnitude and duration. 

Figure 4. Mean inflow, outflow, and stored volume in the Alcántara Reservoir. A: all years; 

B: average of the 5 years with lowest inflows. 

Figure 5. Time series of Standardized Precipitation Index (SPI) for the Tagus River upstream 

of the Alcántara reservoir (A), at Santarém (B), and regional precipitation SPI for the entire 

Tagus basin (C). Solid lines are the series after applying a low-pass filter of 5 months to 

smooth the original drought index series. 

Figure 6. Boxplots of the duration of drought events upon the Tagus River at Alcántara 

reservoir (upstream), at Santarém gauging station (downstream), in the Portuguese tributaries, 

and at the foot of the Alcántara dam. The upper and lower parts of the boxes are the 75th and 

25th percentiles, the whiskers indicate the 90th and 10th percentiles, and the lines within the 

boxes are the median values.  

Figure 7. Boxplots of the magnitude of drought events (accumulated negative anomalies per 

event) recorded along the Tagus River, at Alcántara reservoir (upstream), Santarem gauging 

station (downstream), in the Portuguese tributaries, and at the foot of the Alcántara dam. The 

upper and lower parts of the boxes are the 75th and 25th percentiles, the whiskers indicate the 

90th and 10th percentiles, and the lines within the boxes are the median values.  

Figure 8. Evolution of the standardized upstream and downstream river flows (SPI) in 

relation to water storage levels in Alcántara reservoir for four selected drought events. 
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Table 1. Number of months with SPI anomalies within different ranges of intensity upstream 
and downstream the dam and change (in percentage) for the pre-dam (1943-1969) and the 
post-dam (1970-2003) periods. 

 

SPI magnitude Upstream Downstream Change (%) Upstream Downstream Change (%)

 -0.5 <SPI< -1 44 40 -9.1 76 65 -14.5

-1 < SPI < -1.5 12 22 83.3 36 35 -2.8

-1.5 <SPI< -2 12 7 -41.7 3 14 366.7

SPI < -2 17 11 -35.3 6 11 83.3

Pre-dam period (1943-1969) Post-dam period (1970-2003)
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Table 2. Statistics of drought events upstream and downstream of the Alcántara reservoir, and 
the relationship* between upstream and downstream events. 

 

Event number
Duration 

(days) Magnitude Mean mag. Max. Mag.
Duration 

(days) Magnitude Mean mag. Max. Mag. Duration Magnitude Mean mag. Max. Mag.
1 26 22 0.85 1.93 25 2.9 0.12 2.3 x - - +
2 27 37 1.37 2.17 31 31 1.00 1.89 + - - -
3 11 4.14 0.38 0.68 14 4.98 0.36 0.8 + + x +
4 13 5.7 0.44 1.07 1 0.05 0.05 0.05 - - - -
5 7 3.6 0.51 0.81 3 0.25 0.08 0.03 - - - -
6 13 6.4 0.49 1.02 9 1.92 0.21 0.4 - - - -
7 9 9.4 1.04 1.99 5 2.2 0.44 0.65 - - - -
8 5 2.27 0.45 0.63 0 - - - -
9 0 9 3.68 0.41 0.53 + + + +
10 6 2.46 0.41 0.66 3 0.1 0.03 0.064 - - - -
11 6 3.08 0.51 0.83 0 - - - -
12 0 6 2.3 0.38 0.69 + + + +
13 11 9.8 0.89 1.49 6 2.6 0.43 0.77 - - - -
Average 10.3 9.6 0.7 1.2 8.6 4.7 0.3 0.7 1x , 4+, 8- 0x , 3+, 10- 1x , 2+, 10- 0x , 4+, 9-
14 6 1.37 0.23 0.37 11 2.83 0.26 0.44 + + + +
15 9 3.54 0.39 0.67 16 12.41 0.78 1.67 + + + +
16 1 0.1 0.10 0.1 5 1.52 0.30 0.38 + + + +
17 37 19.39 0.52 1.02 41 30.55 0.75 1.56 + + + +
18 22 7.65 0.35 0.84 22 4.68 0.21 0.51 x - - -
19 6 2.37 0.40 0.6 9 5.87 0.65 1.05 + + + +
20 11 4.57 0.42 0.87 12 1.87 0.16 0.34 x - - -
21 21 12.6 0.60 1.04 24 32.7 1.36 2.12 + + + +
22 24 21.15 0.88 1.4 17 11.17 0.66 1.17 - - - -
23 6 1.22 0.20 0.42 0 - - - -
24 5 1.38 0.28 0.49 5 1.36 0.27 0.38 x x x -
25 25 15 0.60 1.31 21 18.4 0.88 1.74 - + + +
26 13 10.27 0.79 1.23 12 7.08 0.59 0.81 x - - -
Average 14.3 7.7 0.4 0.8 15.0 10.9 0.6 1.0 4x , 6+, 3- 1x , 7+, 5- 1x , 7+, 5- 0x , 7+, 6-
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* X: upstream ≈ downstream (±5%), +: downstream exceeds upstream, -: upstream exceeds downstream 

*Magnitude: Accumulated SPI anomalies, Mean mag.: Mean SPI magnitude. Max.Mag: Magnitude of SPI 
(standard deviations from long.-term mean) for the month with lowest discharge during the drought event. 

 




















