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Quantum time uncertainty in a gravity’s rainbow formalism
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The existence of a minimum time uncertainty is usually argued to be a consequence of the
combination of quantum mechanics and general relativity. Most of the studies that point to this result
are nonetheless based on perturbative quantization approaches, in which the effect of matter on the
geometry is regarded as a correction to a classical background. In this paper, we consider rainbow
spacetimes constructed from doubly special relativity by using a modification of the proposals of
Magueijo and Smolin. In these models, gravitational effects are incorporated (at least to a certain
extent) in the definition of the energy-momentum of particles without adhering to a perturbative
treatment of the backreaction. In this context, we derive and compare the expressions of the time
uncertainty in quantizations that use as evolution parameter either the background or the rainbow time
coordinates. These two possibilities can be regarded as corresponding to perturbative and nonpertur-
bative quantization schemes, respectively. We show that, while a nonvanishing time uncertainty is
generically unavoidable in a perturbative framework, an infinite time resolution can in fact be achieved
in a nonperturbative quantization for the whole family of doubly special relativity theories with
unbounded physical energy.
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I. INTRODUCTION

In quantum mechanics, the passage of time can be
tracked by studying the evolution of the probability den-
sities of observables in a given quantum state [1].
Nevertheless, every observable Â of the system has a
characteristic time �At that limits the ability to detect
its evolution, and that can be estimated as the lapse
needed by its expectation value hÂi to change an amount
equal to its root-mean-square (rms) deviation �A,
namely �At � �A=jdthÂij. On the other hand, the quan-
tum evolution of any explicitly time-independent observ-
able is given by the Heisenberg equation i �hdtÂ � �Â; Ĥ�,
where Ĥ is the Hamiltonian. Taking into account these
expressions, together with the uncertainty principle ap-
plied to the pair of observables Â and Ĥ, and allowing the
choice of any observable Â of the system, one easily
concludes that any measurement of time made with our
quantum state will have an uncertainty �t (at least equal
to the minimum of all characteristic times �At) that
satisfies the inequality �t�H � �h=2 [1]. This is usually
called the fourth Heisenberg relation.

Therefore, to improve the time sensitivity, states with a
larger and larger energy uncertainty must be allowed.
However, in general relativity, an uncertainty in the en-
ergy of the system implies an uncertainty in the geome-
try. The latter introduces in turn an uncertainty in the
physical (or proper) time, if this corresponds to a unit
(asymptotic) timelike Killing vector of the metric [2,3].
In this way, the time uncertainty gets contributions both
from a purely quantum mechanical and from a gravita-
tional origin [3]. As a consequence, an infinite time
resolution seems impossible, unless both types of contri-
butions are related in a very specific manner. Moreover,
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since the energy of the system is generally defined in
terms of the (assumed) unit timelike Killing vector, the
backreaction leads also to a redefinition of the physical
energy, thus giving rise to new energy uncertainties. This
nontrivial intertwining between time and energy uncer-
tainties in the presence of gravity complicates the analysis
of quantum measurements.

A way to face this problem is by adopting perturbative
approaches, in which one starts with a flat background and
introduces in it the matter content of the system, deform-
ing hence the spacetime geometry. This deformation sub-
sequently results in a change of the physical matter
energy, leading to successive corrections in a feedback
mechanism. Several arguments strongly support the idea
that this type of perturbative quantization always leads to
a minimum time uncertainty (at least in the next-to-
leading-order approximation) [3–5]. However, it is not
clear at all whether a minimum time structure would
emerge if one performed the quantization of the gravita-
tional system by adopting nonperturbative schemes.
These kind of schemes, for instance, could allow one to
encode in the theory, from the very beginning, the modi-
fication of the physical energy-momentum of the matter
content owing to the process of backreaction.

In a recent paper [2], the quantum limits for time
resolution have been studied from both (perturbative
and nonperturbative) points of view in a family of gravi-
tational models that include the Einstein-Rosen (ER)
cylindrical waves [6–9]. It has been shown that, in these
models, a minimum time uncertainty always exists if the
physical energy is bounded from above, as it happens to
be the case at least for ER waves [8,10]. Nonetheless, the
possibility was open that there could exist gravitational
systems with similar properties as those analyzed in that
-1  2004 The American Physical Society
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work but with an unbounded physical energy. In these
circumstances, it was argued that an infinite time resolu-
tion could be reached in a nonperturbative quantum
description.

Moreover, for the systems considered in Ref. [2], the
behavior of the time uncertainty is radically different
depending on whether the quantization employs as evo-
lution parameter either a fixed time coordinate T associ-
ated with a classical (Minkowski) background or,
alternatively, the physical time t, which (for ER waves)
coincides with the proper time in the asymptotic region at
spatial infinity. In the following, we will understand by
perturbative and nonperturbative quantizations those
quantum theories whose evolution is described, respec-
tively, in terms of these two types of time parameters, T
and t. The motivation for this terminology is clear, since
the time T is linked to a background solution, while t is
the physical time whose definition includes the effects of
the energy content on the geometry. For the models
considered in Ref. [2], the relation between these two
times is given by a scaling that depends only on the
energy of the solution (the energy of the gravitational
waves in the case of the ER spacetimes [8,9]).

It has also been proven recently [11] that, from the
perspective of an equivalent formulation of the ER ge-
ometries as a massless scalar field coupled to gravity in
2� 1 dimensions [7], these cylindrical waves can be
viewed as an example of the so-called doubly special
relativity (DSR) theories [12]. Such theories incorporate
modifications to the expressions of the energy and mo-
mentum of relativistic particles owing to (possibly quan-
tum) gravitational effects in such a way that Lorentz
symmetry is maintained but its implementation becomes
nonlinear, so that it may be compatible with the presence
of an invariant scale in energy and/or momentum, ulti-
mately related to the Planck scale [12–15]. Because of
these properties and the commented connection with ER
waves, DSR theories are natural candidates when trying
to extend the discussion presented in Ref. [2] about the
emergence of a minimum time uncertainty in the pres-
ence of gravity.

In order to carry out this extension, an extra piece of
information must be added to the usual formulation of
DSR theories in momentum space, namely, the dual
realization of these relativity theories in position space.
We will introduce a modification of the gravity’s rainbow
proposal put forward by Magueijo and Smolin [16]. This
modification will ensure the invariance of the symplectic
structure defined in standard special relativity, which can
then be interpreted as corresponding to a Minkowski
background before switching on any gravitational inter-
action. In this way, we will arrive at flat spacetime coor-
dinates that are related to those of the background by
means of a linear transformation which depends on the
matter energy-momentum. As a result, the metric asso-
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ciated with them can be regarded as energy and momen-
tum dependent. It is in this sense that the so-constructed
DSR theories can be considered a kind of gravity’s rain-
bow [16].

We will show that, for this gravity’s rainbow formal-
ism, the uncertainty in the physical time (conjugate to the
physical energy) is always strictly positive in perturbative
quantization schemes that employ as evolution parameter
the time coordinate of the auxiliary, flat background.
However, an infinite time resolution can actually be
reached in a nonperturbative quantization if the DSR
theory involves an invariant momentum scale, but not
an energy scale. This example should clarify that the
emergence of a minimum time uncertainty in gravity is
not ineluctable in principle if one adopts a nonperturba-
tive quantization.

The rest of the paper is organized as follows. In Sec. II
we briefly review some results about DSR theories, for-
mulated in momentum space. We describe the relation
between the physical energy-momentum and the pseudo
energy-momentum, on which the Lorentz transforma-
tions act linearly. This relation is provided by a nonlinear
map U whose properties we discuss. Sec. III deals with
the dual realization of the DSR theories in position space.
We derive the expressions for the spacetime coordinates
that are conjugate to the physical energy-momentum.
Assuming an underlying Hamiltonian framework, we
then analyze the quantization of this gravity’s rainbow
formalism. In Sec. IV we obtain the uncertainty in the
physical time for a perturbative quantization, proving
that it cannot vanish under very mild hypotheses. In
Sec. V we demonstrate that, on the contrary, the uncer-
tainty in the physical time can be as small as desired in a
nonperturbative quantization, provided that the DSR the-
ory has no invariant energy scale corresponding to a
maximum of the physical energy. Finally, Sec. VI con-
tains the conclusions and some further discussion. In the
following, all dimensionful quantities will be expressed
in Planck units. In particular, we set �h � c � 1.
II. DSR IN MOMENTUM SPACE

DSR theories are characterized by a nonlinear action of
the Lorentz transformations in momentum space that
preserves an energy or momentum scale (besides respect-
ing the role of the speed of light as a fundamental scale)
[12–15]. A way to understand this nonlinear action is by
mapping the physical energy-momentum Pa � 	E;pi

into a standard Lorentz 4-vector �a � 	�; �i
, which
transforms in a linear way [17]. The involved nonlinear
map is generally denoted by U, and the 4-vector �a is
called the pseudo energy-momentum. Lowercase Latin
indices from the beginning and the middle of the alphabet
denote, respectively, Lorentz and (flat) spatial indices.
The map U must be invertible; then the transformation
of the physical energy-momentum is given by [17,18]
-2
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L	P
 � 	U�1 �L �U
	P
; (1)

where L is the standard linear action of the Lorentz
transformation.

In the sector of small energies and momenta compared
to the DSR scale, the physical and pseudo variables must
coincide and, therefore, the map U must reduce to the
identity, a property that will be used in the following. In
addition, it is usually assumed that the standard action of
rotations is not modified in DSR theories [18,19]. As a
consequence, the most general functional form of U (and
of its inverse) is [19]

� � U	P
 )
� � � ~g	E; p
;

�i � ~f	E; p
 p
i

p ;

P � U�1	�
 )

�E � g	�; �
;

pi � f	�; �
 �
i

�

;

(2)

where p :� j ~pj and � :� j ~�j. So the map U is totally
determined by two scalar functions ~g and ~f (or g and f).

Since standard Lorentz boosts run over the whole range
�0;1
 for both energy and (the norm of the) momentum,
the image of U must equal this range, so that the inverse
of L �U can always exist in Eq. (1). Furthermore, in
order to have a finite energy scale E� (and/or momentum
p�) invariant under the Lorentz transformations (1), it is
necessary that the map U sends it to infinity in the space
of pseudo energy-momentum vectors, since this is the
only invariant scale in standard special relativity.
Therefore, the map U must be singular at E� (and/or p�)
and the domain of definition of U (assumed to contain the
sector of low energies) is bounded by that scale [18]. We
then have three possible types of DSR theories, depend-
ing on whether one has only a bounded physical momen-
tum (DSR1 type), a bounded physical energy (DSR3
type), or bounds in both physical quantities (DSR2 type).

More explicitly, if we consider a particle with pseudo
mass � � 0 (namely, the Casimir invariant of the pseudo
momentum space �2 � �2 � �2, related to the rest mass
m0 by � � ~g	m0; 0
 [17]), then, in the limit of infinite
momentum on the mass shell (denoted by �j� ! 1), the
existence of an invariant scale, where the map U is
singular, implies one (or both) of the following possibil-
ities:

	a
 lim
�j�!1

g � E� <1; 	b
 lim
�j�!1

f � p� <1: (3)

Possibility (a) is realized for DSR2 and DSR3 types of
theories, but not for DSR1. On the other hand, the behav-
ior (b) is found only in the DSR1 and DSR2 classes. In
general, the invariant scale is assumed to be of the Planck
order, but this supposition, motivated by quantum con-
siderations, can be relaxed.
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III. A GRAVITY’S RAINBOW PROPOSAL

The recent interest in deformed dispersion relations,
justified by their potential observational consequences in
fields like astrophysics [20], explains why DSR theories
are usually formulated in momentum space. Within this
formulation, the transformation laws in position space are
not determined. There exist different proposals for con-
structing a modified spacetime geometry consistent with
DSR [19,21]. One of them, suggested by several hypoth-
eses concerning quantum gravity, consists of introducing
a noncommutative geometry, namely, admitting that
spacetime coordinates no longer commute [15,19]. An
example of this is the �-deformed Minkowski spacetime.
However, noncommuting spacetime coordinates are not a
necessary consequence of DSR theories: the realization
in position space can be achieved in the framework of
commutative geometries [19,21,22].

For instance, a way to specify this realization was
recently proposed by Magueijo and Smolin [16]. By de-
manding that the contraction between the energy-
momentum and an infinitesimal spacetime displacement
be a linear invariant, they derived modified expressions
for the spacetime coordinates that are linear in the origi-
nal (Minkowski) background coordinates qa, but depend
nontrivially on the energy-momentum. Owing to this
dependence, a rainbow of metrics emerged in the formal-
ism, each particle being associated with a different metric
according to its energy-momentum.

Here, we will adopt a related kind of proposal, but,
instead of the above contraction, we will demand the
invariance of the symplectic form dqa ^ d�a [where
�a � 	��; �i
 and the wedge denotes the exterior prod-
uct for differential forms]. The modified position varia-
bles xa obtained in this way are then conjugate to the
physical energy-momentum Pa, i.e., the map from
	qa;�a
 to 	xa; Pa
 is just a canonical transformation.
The physical energy-momentum can then be assigned
the role of generator of spacetime translations in the
coordinates xa. In fact, the same requirement of covari-
ance, ensuring that the space of coordinates can be iden-
tified with the cotangent space for the physical energy-
momentum, was already put forward by Mignemi [22]
(though introduced in a different manner).

An additional reason supporting the suggested change
with respect to Ref. [16] is that it leads to the correct
expression for the physical time (and spatial coordinates)
in the case of ER waves (formulated in 2� 1 dimensions)
[2,9], as we will in part discuss later. Since this and other
physical implications of our proposal significantly differ
from those of the formalism presented in Ref. [16], one
can view our construction as a distinct realization of DSR
theories in position space, rather than simply as a modi-
fication. Nevertheless, it is worth commenting that the
essential feature employed in the rest of our analysis is
that the relation between the background and the physical
-3
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(rainbow) spacetime coordinates is a linear transforma-
tion that depends only on the energy-momentum. This
property persists even if one adheres exactly to the
Magueijo and Smolin proposal, the only difference being
the detailed form of the transformation.

It is straightforward to complete the map U in momen-
tum space into a contact canonical transformation pro-
viding position variables conjugate to Pa. Employing the
form of this map from Pa � 	�E; pi
 to

�a �

�
�~g	E; p
; ~f	E;p


pi

p

�
; (4)

it is easy to see that the desired transformation is gen-
erated by the function

F	qa; Pb
 � �~g	E; p
q0 � ~f	E; p

pjq

j

p
: (5)

Then, xa � @F=@Pa. Making use of the implicit function
theorem (and the identity pj=p � �j=�), we finally get
the expressions for the new spacetime coordinates:

x0 �
1

detJ	�; �


�
@f	�; �

@�

q0 �
@f	�; �


@�
�i

�
qi
�
;

xi �
1

detJ	�; �


�
@g	�; �

@�

�i

�
q0 �

@g	�; �

@�

�i�j

�2 qj
�

�
�

f	�; �


�
qi �

�i�j

�2 qj
�
:

(6)

Here, g and f are the two functions that fix the inverse
map U�1, and

detJ �
@g
@�

@f
@�

�
@g
@�

@f
@�

: (7)

In the following, we will call physical variables the
canonical set formed by xa and the physical energy-
momentum, whereas we will refer to qa and �a as back-
ground or auxiliary variables. In addition, to simplify in
part our index notation, we will designate q0 by T and x0

by t (this type of notation reproduces that employed in
Ref. [2]). Finally we note that, as it happens for the
energy-momentum, the physical and background coordi-
nates coincide in the limit where energies and momenta
are small compared to the DSR scale, since in this regime
g	�;�
 � � and f	�; �
 � �.
IV. PHYSICAL TIME UNCERTAINTY:
PERTURBATIVE CASE

Let us assume that our system possesses an underlying
Hamiltonian formalism such that the values of the physi-
cal and pseudo energies are determined, respectively, by a
physical Hamiltonian H and a background one H0. In
agreement with our previous discussion, in this
Hamiltonian system the physical and pseudo momenta
pi and �i are conjugate to the position variables xi and qi,
whose translations they generate. In addition, motivated
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in part by the fact that DSR theories are supposed to
provide effective descriptions of free particles, we also
assume that our system is free, so that the energy and
momentum are conserved (had one to consider composite
systems, the physical energy and momentum would not be
additive). In this way, apart from being time independent,
the Hamiltonian must indeed commute under Poisson
brackets with the momentum, both for the physical and
the background variables.

From Eq. (2), we then have that E ! H � g	H0; �

and � ! H0 � ~g	H;p
. In this section, we will analyze
the quantization of the system with evolution generated
by the background Hamiltonian H0. In such a quantiza-
tion, the evolution parameter is the corresponding time
coordinate q0 � T, namely, the background time. We
leave for Sec. V the analysis of the alternative quantiza-
tion with evolution parameter given by x0 � t.

A. Calculation of the time uncertainty

Let us admit that a quantization of the system with
evolution generated by the background Hamiltonian H0 is
feasible. In this perturbative quantization, the back-
ground time T plays the role of evolution parameter,
whereas the physical time is in fact promoted to an
operator t̂ [2]. Taking into account the expression ob-
tained in Eq. (6) for x0 � t, and replacing energies by
Hamiltonians, we can write

t̂ � Â	H0; �
T � ĈT; (8)

Ĉ T �
B̂	H0; �
Q̂T � Q̂TB̂	H0; �


2
; (9)

where

A	H0; �
 �
1

detJ	H0; �

@f	H0; �


@�
; (10)

B	H0; �
 �
1

detJ	H0; �

@f	H0; �


@H0
; (11)

QT �
�iq

i

�
: (12)

In Eq. (9) we have symmetrized the product of B̂ and Q̂T
(although our results are insensitive to the actual choice
of factor ordering for this product) and the operators Â
and B̂ can be defined, using the spectral theorem, in terms
of those for the background Hamiltonian and momentum
(H0 and �) which, according to our comments above, are
assumed to commute (so that the momentum is conserved
quantum mechanically). As for the operator representing
QT , we will analyze its form in brief. Let us simply
remark for the moment that it will generically be time
dependent since, under quantization, the auxiliary spatial
variables qi will not commute with the Hamiltonian. This
-4
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explains the subindex notation employed for the operators
Q̂T and ĈT . Note that, by contrast, our assumptions
guarantee that Â and B̂ are time independent.

Given a quantum state, we can measure the probability
densities of the operators Â and ĈT [23]. Let us call �A
and �CT their rms deviations. In order to evaluate the
operator t̂, we still need to determine the value of the
parameter T. The passage of this time parameter can be
tracked by analyzing the evolution of probability den-
sities of observables in the quantum state. This process
leads to a statistical measurement of T, with probability
density %	T
. We denote the associated mean value by �T.
Obviously, the corresponding uncertainty in T must sat-
isfy the fourth Heisenberg relation �T�H0 � 1=2. With
this measurement procedure, the physical time uncer-
tainty would be

	�t
2 �
Z
dT%	T
h	ÂT � ĈT � hÂi �T � hĈTi


2i

�
Z
dT%	T
fT2	�A
2 � hÂi2	T2 � �T2


� ThÂĈT � ĈTÂi � 2 �ThÂihĈTi � hĈ2
Ti

� hĈ �Ti
2 � 2hĈTihĈ �Tig: (13)

Here, hÔi denotes the expectation value in our quantum
state of any operator Ô. In addition, in the estimation of
the mean value of the physical time, we have substituted
the parameter T by its corresponding mean value �T (in
particular, Ĉ �T is the operator ĈT at the instant �T) [24].

This expression becomes relatively simple when the
dependence of ĈT on T is linear. In fact, this is the case
with our hypothesis that the system is free. To be more
specific let us accept, according to our hypothesis, that
the Hamiltonian H0 is a scalar function of the pseudo
momentum � (and some parameters). The assumed ca-
nonical symplectic structure for the background variables
implies that QT [given by Eq. (12)] and � are canonically
conjugate, i.e., their Poisson bracket is fQT;�g � 1. Since
H0 generates the evolution in T, one then has that, clas-
sically, dQT=dT � fQT;H0g � dH0=d�. Obviously
dQT=dT is constant (because dH0=d� depends only on
the pseudo momentum, which is a conserved quantity),
and therefore QT � Q0 � T	dH0=d�
. We can then pro-
mote QT to a linearly T-dependent observable by repre-
senting Q0 as a time-independent operator and defining
dH0=d� in terms of the pseudo momentum operator by
means of the spectral theorem. Taking into account that
B̂	H0; �
 is constant in time, Eq. (9) shows then that ĈT is
linear in T.

The above analysis allows us to write the operator t̂ in
the alternative form

t̂ � V̂	H0; �
T � Ŵ	H0; �;Q0
; (14)

V̂	H0; �
 � Â	H0; �
 � B̂	H0; �

ddH0

d�
	�
; (15)
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Ŵ	H0; �; Q0
 �
B̂	H0; �
Q̂0 � Q̂0B̂	H0; �


2
: (16)

In Eq. (15) we have employed that H0 and � commute as
operators. We emphasize that, since Q̂0 is time indepen-
dent, so are V̂ and Ŵ.

Equation (13) for the time uncertainty in the physical
time still applies, but now with Â identified with V̂, and
ĈT and Ĉ �T substituted by Ŵ. The result can be expressed
in the form

	�t
2 � ��	V �T �W
�2 � hV̂i2	�T
2 � 	�T�V
2: (17)

Since we have the sum of three positive terms in this
equation, for the physical time uncertainty to vanish it is
necessary that all of them be zero.

Let us show that this will not generically happen. From
the first term in Eq. (17), one can easily see that the
uncertainty in the physical time vanishes for T � 1 if
and only if �V becomes equal to zero at large values of T.
Since the operator V̂ is time independent, its rms devia-
tion vanishes then at any instant of time T. Assume now
that the expression of the Hamiltonian in terms of � is
invertible in the whole range of auxiliary energies, i.e.,
� � �	H0
 [25], and define V �H0� :� V�H0; �	H0
�. An
alternative possibility is that V is independent of �, in
which case we straightforwardly identify V with V. In
any of these cases, assume finally that dV =dH0 � 0 for
all the allowed values of H0, so that the correspondence
between H0 and its image under V is one-to-one (a
similar assumption was made in Ref. [2]). Making use
of the spectral theorem, the requirement that �V � �V
vanish implies then that �H0 � 0, because our assump-
tion guarantees that the eigenstates of these two operators
coincide. In these circumstances, the fourth Heisenberg
relation states that �T is unbounded.

We will now show that the product of uncertainties
�T�V � �T�V that appears in Eq. (17) cannot vanish
when �H0 approaches zero, thus concluding the proof
that �t is strictly positive. Expanding V 	H0
 around
the expectation value of H0, where it is peaked when
�H0 is small, we arrive at

	�V 
2 � hV̂
2
� hV̂ i2i �

�
dV
dH0

��������hĤ0i

�H0

�
2
: (18)

Hence, in the limit of localized energy,

lim
�H0!0

�T�V � lim
�H0!0

�V

2�H0
�

�����������
1

2

dV
dH0

��������hĤ0i

������������ 0:

(19)

In conclusion, at least under very mild assumptions, the
uncertainty in the physical time cannot be zero for an
observer that describes the quantum evolution using as
time parameter the background time T.
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As a particular example we can analyze the case of ER
waves, where the physical and pseudo momenta coincide,
and the physical energy is E � 	1� e�4�
=4 (for an ef-
fective gravitational constant in three dimensions equal
to the unity in Planck units) [2]. Introducing
Hamiltonians, we thus have g	H0; �
 � 	1� e�4H0
=4
and f	H0; �
 � �. Since f is energy independent,
Eq. (11) leads to B � 0, a fact that considerably simplifies
the expressions of the physical time and its uncertainty.
From Eqs. (10), (15), and (16), we straightforwardly get
A � 1=	dg=dH0
 � e4H0 , V̂ � e4Ĥ0 , and Ŵ � 0. Given
that the deduced function A (and hence V ) is strictly
increasing in H0, the assumptions introduced above are
satisfied, and the conclusion of a nonzero uncertainty in
the physical time holds. In this way, one recovers the
results obtained in Ref. [2].

B. First order corrections

In this subsection, we will analyze the behavior of the
uncertainty in the physical time when one approximates
this operator by keeping only up to first order corrections
in the energy. We will see that the results lend additional
support to the statement that this uncertainty is strictly
positive in the perturbative approach to the quantization.

In order to study the desired corrections, we start by
expanding the functions g	H0; �
 and f	H0; �
 around the
minimum of the pseudo energy and around vanishing
pseudo momentum. We will denote the minimum pseudo
energy by �, motivated by the standard relativity case,
where it equals (the square root of) the Casimir invariant,
�2 � �2 � �2. We assume that the functions g and f are
smooth and that � is small compared to the invariant
DSR scale(s). In particular, this last fact allows us to
employ that, to leading order, g	H0; �
 � H0 and
f	H0; �
 � � in the region of the expansion. To derive
the first order corrections to the physical time, in the
expansion of g and f it is actually necessary to keep
only up to quadratic terms in the variables � and

H 0 :� H0 ��: (20)

One can then use Eqs. (10) and (11) to obtain the expres-
sions of A	H0; �
 and B	H0; �
 up to linear terms in those
variables:

A � 1�
@2g

@H2
0

��������0
H 0 �

@2g
@H0@�

��������0
�;

B �
@2f

@H2
0

��������0
H 0 �

@2f
@H0@�

��������0
�;

(21)

where the symbol j0 stands for evaluation at H0 � � and
� � 0.

Next, from Eqs. (15) and (16) one can easily calculate
the first order corrections to the leading behavior of V̂ and
Ŵ. In this step, one needs to introduce the expression of
the Hamiltonian in terms of the momentum, H0	�
 [see
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Eq. (15)]. On the one hand, it is natural to assume that the
minimum of the pseudo energy is reached for vanishing
pseudo momentum, H0	0
 � �. On the other hand, mo-

tivated by the standard relativity case [� �
																			
�2 � �2

p
!

H0	�
], two cases are worth considering. (1) ‘‘Massive’’
case: � � 0, with 	dH0=d�
j��0 � 0.

We get H0	�
���b�2, where 2b�	d2H0=d�
2
j��0.

Assuming that b > 0, it follows that � �
														
H 0=b

q
. For

instance, in standard special relativity one would have
b � 1=	2�
. Corrections linear in H 0 are hence negli-
gible compared to those proportional to �. In addition,
dH0=d� � 2b�, which can be neglected compared to the
unity. As a consequence, we arrive at the following
approximations at next-to-leading order:

V̂ � Â � 1�
@2g

@H0@�

��������0

Ĥ
1=2
0			
b

p ; (22)

Ŵ �
@2f

@H0@�

��������0

Ĥ
1=2
0 Q̂0 � Q̂0Ĥ

1=2
0

2
			
b

p : (23)

The physical time uncertainty in this approximation can
be obtained from Eq. (17).

Note that the resulting leading term (zeroth order in the
energy) is the uncertainty of the background time in
standard quantum mechanics. We also point out that the
function V , introduced in the previous subsection, is
given in the studied approximation just by (the classical
counterpart of) Eq. (22). Such a function is clearly mono-
tonic in H0 (or H 0), provided that the second partial
derivative �@2g=	@H0@�
�j0 does not vanish, so that we
have really kept the first order energy corrections to V .
Then, the assumptions made at the end of Sec. IVA hold,
leading to the conclusion that the physical time uncer-
tainty cannot be made zero.

(2) ‘‘Massless’’ case: � � 0, 	dH0=d�
j��0 � k � 0.
In this case H0 � k� and H 0 � H0. In standard special
relativity, for instance, one would have k � 1.
Corrections linear in H0 and in � are then of the same
order, and dH0=d� is of order unity. Therefore, one
obtains in the linear order approximation:

V̂�1�
�
�
@2g

@H2
0

��������0
�
1

k
@2g

@H0@�

��������0
�k

@2f

@H2
0

��������0

�
@2f

@H0@�

��������0

�
Ĥ0; (24)

Ŵ �

�
@2f

@H2
0

��������0
�

1

k
@2f

@H0@�

��������0

�
Ĥ0Q̂0 � Q̂0Ĥ0

2
: (25)

At this order, the function V is approximated by (the
classical analog of) Eq. (24). Accepting that the coeffi-
cient in front of H0 in that expression is nonzero, so that
we have actually included the next-to-leading-order cor-
-6
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rection, we arrive again to a monotonic function of H0.
Hence, the line of reasoning discussed in Sec. IVA ap-
plies, and we conclude that it is impossible to reach the
limit of infinite resolution in the physical time.
V. PHYSICAL TIME UNCERTAINTY:
NONPERTURBATIVE CASE

We turn now to the discussion of the physical time
uncertainty when one adopts the point of view that the
quantum evolution of the system is generated by the
physical Hamiltonian H. It is worth commenting that,
if the system admits a perturbative quantization where
the background Hamiltonian H0 and momentum � are
promoted to self-adjoint operators, a nonperturbative
quantization is also possible. To see this, notice that, in
the representation employed for the perturbative quanti-
zation, the spectral theorem allows one to define as self-
adjoint operators the physical Hamiltonian H and mo-
mentum p, given by the functions g and f in terms of H0

and �. The exponentiation of this operator realization of
H provides then a unitary evolution operator, that de-
scribes the dynamics in a time parameter that can be
identified with the physical time t. Clearly, in the so-
constructed nonperturbative quantization, the uncer-
tainty of t is only limited by the fourth Heisenberg
relation, taking as Hamiltonian the physical one, namely
�t�H � 1=2.

As a consequence, for an observer in the nonperturba-
tive quantum system, the resolution for the physical time
is intrinsically bounded if and only if the same happens
for the physical energy (i.e., the physical Hamiltonian).
The conclusion does not depend on other details of the
system. The only relevant point is whether the range of
the physical energy is infinite. This range is determined
by the image of g, one of the two functions that character-
ize the DSR theory. But the image of g is bounded from
above if and only if the DSR theory possesses an invari-
ant energy scale [remember Eq. (3)]. This is not always
the case: it occurs only in the so-called DSR2 and DSR3
types of theories, but not for the DSR1 class. Therefore, a
finite time resolution is not a necessary consequence of
the quantization of the system, at least in this nonpertur-
bative framework. More specifically, for the whole family
of DSR1 theories [12,13,19], where only an invariant
scale in momentum exists, the quantum resolution in
the physical time can be made (nonpertubatively) as large
as desired.
VI. SUMMARY AND DISCUSSION

We have investigated the existence of a minimum time
uncertainty in a modified gravity’s rainbow formalism,
obtained by means of a dual realization of DSR theories
in position space. This realization leads to a set of space-
time coordinates that are canonically conjugate to the
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physical energy-momentum. Such coordinates are con-
structed from the (Minkowski) background ones by
means of a linear transformation that depends on the
energy and momentum. Assuming an underlying
Hamiltonian formulation, with energy determined by
the value of the generator of the evolution, and concen-
trating our attention on free systems, we have discussed
the differences in adopting as dynamical generator either
the physical or the background Hamiltonian, the latter
corresponding to the pseudo energy.

If the dynamics is dictated by this last Hamiltonian,
the evolution parameter of the quantum theory is the
background time T, and the physical time t is described
by a T-dependent family of operators. We have shown that
its uncertainty cannot be made to vanish, at least under
very mild assumptions about the features of the back-
ground Hamiltonian and the DSR theory. In fact, these
assumptions are only sufficient, but not necessary in order
to prove that the studied uncertainty is greater than zero.
For instance, one can show that the resolution in the
physical time is finite as well for all those cases in which
the function V is strictly positive (so that the background
and physical arrows of time coincide) and the ratio
V 	H0
=H0 has a nonzero limit when H0 tends to infinity
(so that, in the high energy sector, V grows at least like
H0 by a constant). Therefore, an infinite resolution in the
physical time cannot (generically) be reached within a
quantization framework in which the energy-momentum
modifications in the definition of time are not incorpo-
rated in the choice of evolution parameter.

By contrast, when the quantum dynamics is generated
by the physical energy, the role of evolution parameter is
directly assigned to the physical time. In this case, its
uncertainty is only limited by quantum mechanics via the
fourth Heisenberg relation. As a result, an infinite reso-
lution is possible if and only if the physical energy of the
system is unbounded from above, which in turn is equiva-
lent to the absence of an invariant energy scale in the DSR
theory. There exists a whole family of DSR theories that
possess a momentum scale but not an energy scale of this
kind, namely, the so-called DSR1 theories, whose proto-
type is a model suggested by Amelino-Camelia [12,13].
This clearly demonstrates that, in nonperturbative quan-
tum descriptions, the existence of a minimum uncertainty
in the physical time is not generally unavoidable when
gravitational effects are taken into account.

An issue for further discussion is whether, in those
nonperturbative quantum systems where an infinite
time resolution is possible, there emerges, nonetheless,
a minimum uncertainty in the spatial position, as
could be suggested by the presence of a bound for the
physical momentum in DSR1 theories, supplied by the
invariant scale. We plan to study this question in the
future, as a natural continuation of the analysis carried
out here.
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Our discussion can be regarded as a generalization of
that of Ref. [2]. Apart from the hypotheses concerning the
existence of a feasible quantization and the recovery of
the standard results in the low energy sector, the rest of
conditions assumed for the models studied in Ref. [2]
amount to accept a relation between physical and back-
ground coordinates of the form (6), but with the DSR
functions f and g satisfying the following: (i) f is inde-
pendent of the pseudo energy, and (ii) g is a convex or
concave (invertible) smooth function of only the pseudo
energy. In these cases, one can check that, with our
notation,

V 	H0
 � V	H0
 � A	H0
 �
1

dg=dH0
(26)

and

dV
dH0

�
dV
dH0

� �
d2g=dH2

0

	dg=dH0

2 � 0: (27)

Therefore, the assumptions introduced at the end of
Sec. IVA hold in these models, and thus �t cannot be
made equal to zero in the perturbative quantization.

Finally, in our analysis we have implicitly kept in mind
the case of a relativistic particle, motivated by the for-
mulation of DSR theories as alternatives to special rela-
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tivity (at least in momentum space). Since a field can be
viewed as a combination of particles, one might try to
extend the arguments presented here to a quantum field
theory context. In perturbative quantum field theories, the
background space coordinates qj should be treated as
parameters. Therefore, one would expect that the physical
time operator [see Eq. (8)] adopted an expression of the
form t̂ � ÂT � D̂jqj. Then, the resulting time uncer-
tainty would be

	�t
2 �
�
�
�X

a

Daqa
��

2
�

X
a

hD̂ai
2	�qa
2

�
X
a

	�qa
2	�Da

2; (28)

where q0 � T, qa is the mean value of qa, and D̂0 stands
for Â.
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