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Switching rates of multi-step reactions
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We consider a switching rate of a meta-stable reaction scheme, which includes reactions with
arbitrary steps, e.g. kA → (k + r)A. Employing WKB approximation, controlled by a large system
size, we evaluate both the exponent and the pre-exponential factor for the rate. The results are
illustrated on a number of examples.
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Since the celebrated work of Kramers on reaction-rate
theory [1], much effort has been devoted to extending
and generalizing his results, see Ref. [2] for a review.
Applications of this theory can be found in fields as di-
verse as high energy physics, nucleation, chemical kinet-
ics, electric transport, diffusion in solids and population
dynamics among many others. In this work we consider a
switching rate in a generic reaction scheme, which admits
more than one (quasi)stationary state.

A particular case of single-step reactions allows for an
exact solution and is well-studied in the literature [3, 4].
We thus concentrate on generic multi-step reactions. Al-
though an exact solution is not known, a substantial
progress may be achieved by adopting an analog of the
quantum mechanical WKB approximation [5, 6, 7], con-
trolled by a large system size. With an exponential ac-
curacy it gives the switching rate as an exponentiated
action of an auxiliary mechanical problem. Evaluation
of the pre-exponential factor requires a matching of the
quasi-stationary distribution (QSD) function, found in
the WKB framework, with the constant current ”behind
the barrier” solution [1, 8]. The first consistent appli-
cation of this strategy to a model reaction scheme was
presented recently by Meerson and Sasorov [9]. Here we
generalize their approach to an arbitrary scheme with
metastable states.

Consider a generic multi-step reaction scheme, where
a state with n particles may be transformed into a state
with n + r particles with the rate Wr(n). Here r is a set
of integers not necessary equal ±1. The corresponding
Master equation for the probability distribution Pn(t) is

∂tPn(t) =
∑

r

[Wr(n − r)Pn−r(t) − Wr(n)Pn(t)]

=
∑

r

(

e−r∂n − 1
)

Wr(n)Pn(t) . (1)

We focus on reactions which admit a QSD centered at
n = n0 and an unstable equilibrium (saddle point) at n =
ns. For definiteness we assume that n0 < ns. We also
assume that both n0 and ns scale in the same way with
a large parameter N ≫ 1, hereafter referred to as the
system size, i.e. n0,s ∼ N . It is then convenient to pass

to a scaling variable q = n/N and separate the leading
and the first subleading orders in N in the corresponding
reaction rates

Wr(n) = Nwr(q) + ur(q) + O(1/N) ; q = n/N. (2)

We seek for QSD in the form Pn(t) = π(n)e−E0t, where
E0 = 1/τ is an exponentially small eigenvalue of the Mas-
ter equation. In the rescaled coordinate the correspond-
ing eigenvector may be sought in the WKB form

π(q) = exp{−NS(q)− S1(q)} . (3)

Substituting this form in the Master equation (1) and
keeping terms up to the order of O(1), one finds

0 =
∑

r

(Nwr + ur)

×

(

erS′

[

1 −
r2

2N
S′′ +

r

N
S′

1 −
r

N

w′
r

wr

]

− 1

)

, (4)

where the primes denote derivatives with respect to
rescaled reaction coordinate q. We have also took into
account that the eigenvalue E0 is expected to be expo-
nentially small in N (see below) and thus may be omitted.

In the order N this equation acquires a form of the
stationary Hamilton-Jacobi equation H(q, S′) = 0, where
the effective classical Hamiltonian takes the form [6, 8]

H(q, p) =
∑

r

wr(q) (erp − 1) , (5)

and we have denoted S′ = p. Therefore to the order N
the problem is reduced to finding zero energy trajectories
p = p(q), such that H(q, p(q)) = 0, of a corresponding
”mechanical” problem.

The phase portrait of a typical bistable reaction is plot-
ted in Fig. 1. There are at least two appropriate zero
energy trajectories: the relaxation trajectory p = 0 and
the activation trajectory p = pa(q), see Fig. 1. The
classical equation of motion along the relaxation path
q̇ = Hp(q, 0) =

∑

r rwr(q) is nothing but the mean-field
rate equation for our reaction scheme. According to our
assumptions it admits stationary states q0,s = n0,s/N ,
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FIG. 1: (Color online) Phase portrait of a typical bistable
reaction. The dashed line is the relaxation trajectory p = 0,
the solid line is the activation trajectory pa = pa(q). These
zero-energy curves intersect at the metastable points q0, q′0
and the saddle point qs. The arrows show direction of motion
according to the Hamilton equations. The matching of acti-
vation and relaxation solutions takes place in a narrow region
of the width ls ∼ N−1/2 around the saddle point.

where Hp(q0,s, 0) = 0 (other stationary states are pos-
sible, e.g. q′0 see Fig. 1). Those are the points, where
the activation trajectory pa(q) crosses the relaxation one
p = 0 and thus pa(q0,s) = 0.

To escape from a metastable state centered around q0

the system must evolve along the activation trajectory,
Fig. 1. The QSD is given by Eq. (3), where S(q) and
S1(q) are determined by the order N and order 1 terms
in Eq. (4) correspondingly. They lead to

S(q) =

∫ q

dq pa(q) ; (6)

S1(q) =

∫ q

dq
p′aHpp+2Hpq−2

∑

r ur(e
rpa − 1)

2Hp
, (7)

where derivatives of the Hamiltonian are evaluated along
the activation path, e.g. Hpq =

∑

r rerpa(q)w′
r(q), etc

and p′a = S′′. Equations (3), (6), (7) determine QSD up
to a multiplicative constant. To find the latter, one needs
to match the QSD with the constant current solution on
the other side of the saddle point qs [1, 8, 9].

At q > qs the system evolves along the relaxation tra-
jectory p = 0, Fig. 1, and therefore S ≡ 0. Solving Eq. (4)
for S1, one finds

π(q) = J/Hp(q, 0) , (8)

where J is an integration constant given by the current
out of QSD. Indeed, the Master equation (1), having the
structure of the continuity relation, in a vicinity of the
relaxation trajectory p = 0 acquires a form

∂tP (q, t) = −∂q

[

Hp(q, 0)P (q, t) + O(1/N)
]

. (9)

Therefore the relaxation limit (8) of QSD P (q, t) =
π(q)e−E0t is nothing but a constant current, J , solution
of the Master equation (where we have again neglected
the exponentially small eigenvalue E0 on the l.h.s.). On
the other hand, integrating the continuity relation (9)
throughout the region of support of QSD and assuming
that escape takes place only through the saddle point qs

[10], one finds

E0

∫

π(q)dq = J . (10)

Finally to establish relation between the activation so-
lution, Eqs. (3), (6), (7), at q < qs and the relaxation
one, Eq. (8), at q > qs, one needs to consider Master
equation in an immediate vicinity of the saddle qs [9].
Expanding the r.h.s. of Eq. (1) to the second derivative,
one finds for the current:

[

Hpq(qs, 0)
]

(q − qs)π(q) −
Hpp(qs, 0)

2N
∂qπ(q) = J , (11)

where we have used the fact that at the saddle point
Hp(qs, 0) =

∑

r rwr(qs) = 0. Solution of Eq. (11) with
a proper asymptotic behavior has the following form
π(q) = (2NJ/Hpp) e(q−qs)2/l2

s

∫ ∞
q−qs

dq e−(q−qs)2/l2
s , where

l2s = Hpp(qs, 0)/NHpq(qs, 0). Indeed, away from the sad-
dle point qs it possesses the following asymptotics:

π(q) =











J
(q−qs)Hpq

; q − qs ≫ ls ,

2NJls
√

π
Hpp

e(q−qs)2/l2
s ; qs − q ≫ ls .

(12)

The first line matches with the relaxation solution (8) at
q ≈ qs, as it should. The second line is to be matched
with the activation solution Eqs. (3), (6), (7), which in
the vicinity of q = qs takes the form

π(q) = e−NS(qs)−S1(qs) e−N(q−qs)2S′′(qs)/2. (13)

To relate the q-dependent exponential factors here and
in the second line of Eq. (12) one may differentiate the
identity H(q, pa(q)) = 0 over q to find

Hq +Hpp
′
a = 0 ; Hqq +Hpp

′′
a +(Hppp

′
a+2Hpq)p

′
a = 0 .

(14)
Employing that p′a = S′′ and H(q, 0) = Hp(q0,s, 0) = 0,
one finds

S′′(q0,s) = −
2Hpq(q0,s, 0)

Hpp(q0,s, 0)
= −

2
∑

r rw′
r(q0,s)

∑

r r2wr(q0,s)
(15)

and therefore S′′(qs) = −2/Nl2s. This establishes equal-
ity of the exponential factors in Eqs. (12) and (13). Com-
paring the pre-exponential coefficients one finds for the
escape current:

J =
Hpp(qs, 0)

2

√

|S′′(qs)|

2πN
e−NS(qs)−S1(qs) . (16)
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One can employ now the normalization condition (10)
to find the escape rate E0 = 1/τ . To this end we notice
that the bulk of the QSD is centered around q0 and ap-
proximate the integral by the Gaussian one. As a result
one finds for the escape time

τ =
4π

Hpp(qs, 0)

eS1(qs)−S1(q0)

√

|S′′(qs)|S′′(q0)
eN [S(qs)−S(q0)] , (17)

where S(qs) − S(q0) and S1(qs) − S1(q0) are fully deter-
mined by Eqs. (6) and (7). It is important to mention
that the corresponding integrals are free of singularities
and can be straightforwardly evaluated for any given re-
action scheme. Equation (17) is a main result of the
present letter.

For analytically tractable examples it is useful to notice
that, with the help of identities (14) one may partially
integrate Eq. (7) to obtain

S1(qs) − S1(q0) = ln

√

S′′(q0)

|S′′(qs)|
+ ∆ ; (18)

∆ =

qs
∫

q0

dq

[

Hqq

2Hq
−

∑

r ur(e
rpa − 1)

Hp

]

.

Employing Eq. (15), one may somewhat simplify Eq. (17)
to cast it in the following form

τ =
2π e∆

Hpq(qs, 0)
eN [S(qs)−S(q0)] . (19)

Below we illustrate usefulness of Eqs. (17) and (19) on a
few examples.

r1–r2 reactions. Consider a reaction scheme, where
the step variable r may acquire only two values r1 and
r2. The corresponding reaction rates are Wr1,2

(n) =
Nwr1,2

(q), where we have omitted possible subleading
terms ur1,2

for brevity. The Hamiltonian takes the form

H(q, p) = wr1
(q)(er1p − 1) + wr2

(q)(er2p − 1) , (20)

and the activation trajectory is given by the solution of
the following algebraic equation for epa

er1pa(q) − 1

er2pa(q) − 1
= −

wr2
(q)

wr1
(q)

. (21)

As a result, the following identity holds along the activa-
tion trajectory:

Hqq

Hq
=

w′′
r1

(q)(er1pa − 1) + w′′
r2

(q)(er2pa − 1)

w′
r1

(q)(er1pa − 1) + w′
r2

(q)(er2pa − 1)

=
wr1

w′′
r2

− w′′
r1

wr2

wr1
w′

r2
− w′

r1
wr2

=
d

dq
ln(wr1

w′
r2

− w′
r1

wr2
) .

The fixed points satisfy: r1wr1
(q0,s) = −r2wr2

(q0,s),
while Hpq(q0,s, 0) = r1w

′
r1

(q0,s)+r2w
′
r2

(q0,s). Employing
Eqs. (18) and (19), one finds for the switching time

τ = 2π

√

∣

∣

∣

∣

wr1
(qs)

wr1
(q0)

∣

∣

∣

∣

eN [S(qs)−S(q0)]

√

|Hpq(qs, 0)Hpq(q0, 0)|
, (22)

where wr1
(qs)/wr1

(q0) = wr2
(qs)/wr2

(q0) and the action
is given by Eq. (6).

In a particular case of single-step reactions, r1,2 = ±1,
Eq. (21) may be solved explicitly, epa(q) = w−(q)/w+(q).
The fixed points are given by w+(q0,s) = w−(q0,s) and
according to Eq. (15) Hpq(q0,s, 0) = −S′′(q0,s)w+(q0,s).
Employing Eq. (22), the switching rate of the single-step
reaction schemes may be written as

τ =
2π

w±(q0)

e
−

R

qs

q0
dq

“

u+

w+
− u

−

w
−

”

√

|S′′(qs)|S′′(q0)
eN [S(qs)−S(q0)] , (23)

where

S(qs) − S(q0) =

∫ qs

q0

dq ln
(

w−(q)/w+(q)
)

(24)

and we have included subleading terms in the rates u±(q),
according to Eq. (18), [11]. In a particular case of reac-
tion rates having only leading terms (u± = 0) Eq. (23)
coincides with results of Doering et al. [4], who have
shown it to be the large N asymptotic of the exact result
for the single-step reactions [3]. In general, the ur terms
can substantially modify the prefactor [9] (see below).

Demographic explosion. Consider a single-step model
[7, 9] A ⇄ ∅ with the relative rates 1 and N(1 − δ2)/2,
where 0 < δ < 1, and 2A → 3A with the relative rate
1/N . The corresponding transition rates are

W−(n) = n ; W+(n) =
N(1 − δ2)

2
+

n(n − 1)

2N
.

The rescaled rates are w− = q ; w+ = (1 − δ2 + q2)/2
while u− = 0 and u+ = −q/2 and the two rescaled fixed
points are q0,s = 1 ∓ δ. Employing Eq. (23), one finds
for the escape time from the metastable state centered
at n = N(1 − δ) towards n → ∞

τ =
2π

δ

1 + δ

1 − δ
eN [S(1+δ)−S(1−δ)] , (25)

in a perfect agreement with Meerson and Sasorov recent
result [9]. This example is specially interesting because it
shows the importance of the subleading terms ur. Disre-
garding these terms, one obtains a prefactor proportional
to (1 − δ)−1/2 instead of the correct one (1 − δ)−1. This
constitutes an arbitrarily large error in the limit δ → 1,
where the action S(2) − S(0) remains bounded.

Fokker-Planck Hamiltonian. Consider a dissipative
particle under an influence of a multiplicative Gaussian
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noise (understood in the sense of Itô [3]). The corre-
sponding Fokker-Planck equation is Ṗ = ĤP , where

Ĥ(q, p̂) = p̂2D(q) − p̂ V ′(q) , (26)

here D(q) > 0 is a coordinate-dependent diffusion coef-
ficient and p̂ = −∂q. Since this is a normally ordered
operator, cf. Eq. (1), one may employ the theory devel-
oped above. Following WKB approximation one substi-
tutes p̂ → p and employs Eq. (19). The stationary points
are defined by the condition V ′(q0,s) = 0 and the acti-
vation trajectory is given by pa(q) = V ′(q)/D(q). As a
result S(qs)−S(q0) =

∫ qs

q0
dq V ′(q)/D(q) and Hpq(qs, 0) =

−V ′′(qs) > 0. There are no subleading terms here,
ur = 0, and therefore

∆ =

∫ qs

q0

dq
Hqq

2Hq
=

1

2
ln

∣

∣

∣

∣

V ′′(qs)D(qs)

V ′′(q0)D(q0)

∣

∣

∣

∣

,

where we have made use of V ′(q0) = V ′(qs) = 0. Using
this equality again one finds S′′(q0,s) = V ′′(q0,s)/D(q0,s),
and finally, plugging all together in Eq. (19), one obtains

τ =
2π

√

V ′′(q0)|V ′′(qs)|

√

D(qs)

D(q0)
e

R

qs

q0
dq V ′(q)/D(q)

, (27)

in agreement with previous calculations [2]. Assuming
a constant diffusion coefficient D(q) = T (i.e. additive
noise), one recovers Kramers result [1]. Notice that the
role of N is played by 1/T .

Higher moments of noise. Consider now Kramers
problem of a dissipative particle subject to a white, non-
Gaussian noise. The corresponding Hamiltonian reads
as

H(q, p) = ǫkpk + Tp2 − pV ′(q) . (28)

Here k = 3, 4, · · · and ǫ3,4,... is the third, fourth, etc (i.e.
first non-vanishing beyond the second) irreducible mo-
ment of the noise correlation function. This type of noise
appears as e.g. higher order corrections in the Kramers-
Moyal expansion of the master equation [3]. Assuming
that the higher moments are much smaller than the sec-
ond one [12] and proceeding as in the last case we find

τ =
2π

√

|V ′′(qs)|V ′′(q0)
e(V (qs)−V (q0))/T ×

exp

{

−
ǫk

T k

∫ qs

q0

[V ′(q)]
k−1

dq + O(ǫ2k)

}

. (29)

As can be seen, the prefactor remains unchanged and the
whole contribution coming from the higher order noise
concentrates in an extra ”phase”. Note that ǫk is neces-
sarily positive for even k (in order to keep the noise real)
but it can be either positive or negative for odd k. For

the escape processes under consideration V (qs) > V (q0),
and so the integral term in the extra ”phase” is positive,
what implies that even moments of noises only contribute
to reduce the escape time, while the odd ones can reduce
or increase the switching time, depending on the sign of
the corresponding moment.

To conclude we have calculated the escape rate from
a metastable state whose dynamics is described by a
general multi-step master equation. We found a rela-
tively simple analytical result for switching rates between
metastable states (but not for absorbing phase transition,
as e.g. extinction) of an arbitrary single-species reac-
tion scheme. We have shown that the general formula
found here reduces to known results for single-step reac-
tions and Fokker-Planck equations, with either additive
or multiplicative noises.
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to the William I. Fine Theoretical Physics Institute for its
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the MEC (Spain) through Project No. FIS2005-01729;
A.K. was supported by NSF grants DMR-0405212 and
DMR- 0804266.
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