L

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC
PHYSICAL REVIEW E 78, 016209 (2008)

Structure of characteristic Lyapunov vectors in spatiotemporal chaos
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We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spa-
tiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via
successive Gram-Schmidt orthonormalizations. Systems of a very different nature such as coupled-map lattices
and the (continuous-time) Lorenz ‘96 model exhibit the same features in quantitative and qualitative terms.
Additionally, we propose a minimal stochastic model that reproduces the results for chaotic systems. Our work
supports the claims about universality of our earlier results [I. G. Szendro erf al., Phys. Rev. E 76, 025202(R)

(2007)] for a specific coupled-map lattice.
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I. INTRODUCTION

Nonlinear spatially extended systems often exhibit spa-
tiotemporal chaos (STC), i.e., an apparent randomness in
both space and time. Lyapunov exponents (LEs) measure the
exponential separation (or convergence) of nearby trajecto-
ries and provide an important tool to characterize chaos in
nonlinear dynamical systems [1-3]. Not only exponential
separation rates but also the associated directions in tangent
space, the so-called Lyapunov vectors (LVs), are required
when trying to tackle many important aspects of STC, such
as, for instance, the role of hydrodynamic modes [4], exten-
sivity properties [5], or predictability questions [2], among
others. Random initial errors evolve in time and asymptoti-
cally align with the main LV corresponding to the most un-
stable direction. In practice, this limit is reached exponen-
tially fast, so the memory of the initial perturbation is
quickly lost.

In extended systems, the spatial distribution and correla-
tions of LVs are crucial to deal with questions such as pre-
dictability [6]. The relevance of spatial correlations is par-
ticularly apparent in the context of weather forecasting (see,
for instance, [7]).

Localization of LVs in several distributed systems has
been noticed and discussed in some extent in the literature
[8—15]. This phenomenon has been termed dynamical local-
ization of errors [16]: The main LV rapidly tends to concen-
trate around a narrow region of space. In homogenous sys-
tems, where all degrees of freedom are equivalent, the
localization locus is not anchored to any fixed site, but keeps
moving all over the system. However, in the case of inho-
mogeneous systems LVs become strongly localized at certain
fixed pinning centers and the phenomenon can be understood
in terms of the problem of diffusion in quenched random
potentials [17].
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Recently, the evolution of infinitesimal perturbations in
spatially extended chaotic systems has been shown to be
generically described by Langevin-type equations with mul-
tiplicative noise [12,16—-19]. A remarkable observation in
many systems [16] is that, after a suitable logarithmic trans-
formation, the statistical description of the dynamics of per-
turbations is captured by the prototypical stochastic surface
growth equation of Kardar-Parisi-Zhang (KPZ) [20]. In the
surface picture, erratic fluctuations, due to the chaotic nature
of the trajectory, are treated as an effective noise. The exis-
tence of short-range correlations, coming from the determin-
istic nature of the trajectory, are irrelevant for the scaling
description of the surface statistics. It is only natural that the
existence of long-range correlations [21] or a fat tail noise
[19] may change the universality class observed. The surface
picture has also been shown to be very useful to deal with
the dynamics of finite perturbations in the presence of STC
[6,18,22].

In view of the successful description of the main LV as a
nonequilibrium rough surface, a question that naturally arises
is, to what extent can we describe LVs corresponding to
other unstable directions in terms of surface roughening pro-
cesses? This is precisely the question we recently addressed
in a Rapid Communication [23], and that we develop here
for a variety of systems.

In the existing literature, one finds that the LVs are com-
monly defined as the vectors that appear as a byproduct of
the standard Gram-Schmidt orthonormalization procedure to
obtain the LEs. This is largely due to the popularity of Ben-
ettin’s algorithm [24,25] to compute the Lyapunov spectrum
in all kinds of dynamical systems. However, these vectors do
not point in the most unstable directions, but are forced to
form an orthogonal set. This is not a minor point because
these vectors lack the intended physical meaning, which ul-
timately renders the Gram-Schmidt vectors useless for many
purposes. For example, when the nth Gram-Schmidt LV,
e, (1), is left to evolve freely, it will nor grow exponentially
with its associated LE \,, (apart from the case n=1); instead,
e,(r) will generally collapse in the direction of the first LV.
However, if the same vector e,() is integrated backwards in
time, it will shrink with exponent —\,, (neglecting numerical
round-off errors). Not less important is the fact that Gram-
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Schmidt LVs depend on the scalar product convention used
because it defines the orthogonalization condition.

These important caveats have attracted renewed interest
in the problem of finding the correct set of vectors that carry
the dynamical information in systems exhibiting STC. Re-
cent work has focused on the properties of a different set of
vectors [23,26,27], the characteristic LVs (also called cova-
riant LVs), that are invariant under time reversal and covari-
ant with the dynamics. This vector set is independent of the
scalar product used and provides an intrinsic decomposition
in tangent space, which should correspond exactly with Os-
eledec’s splitting [1]. Although the existence of the charac-
teristic LVs has long been known [1,28-30], it was not until
recently that efficient algorithms were devised to compute
them [26,27].

We have recently shown in Ref. [23] that characteristic
LVs carry important information about the real-space struc-
ture, localization properties, and space-time correlations,
which can be put in the form of a dynamical scaling of the
associated rough surfaces. These scaling properties were
demonstrated for the particular case of lattices of coupled
logistic maps, but conjectured to be valid for a wide range of
systems (at least including all those reported in Ref. [16] as
belonging to the KPZ class).

In this paper, we study the spatiotemporal structure of the
characteristic LVs in different model systems exhibiting
STC. Our aim is to analyze the spatial structure of the char-
acteristic LVs. In particular, we wish to provide further veri-
fication of the previously reported scale-invariant properties
of the LV surfaces (to be defined below) and its validity for
systems that differ significatively from the special case of
coupled-map lattices. Here we analyze systems of a very
different nature, including a coupled-map lattice (CML), the
(continuous-time) Lorenz ‘96 model, and a minimal stochas-
tic partial differential equation (PDE). We show that the lead-
ing LVs (corresponding to the largest LEs) generically ex-
hibit scale-invariant properties inherited from those of the
main vector. Our present results confirm and extend our ear-
lier claim [23] concerning the generic, model-independent
scaling properties of characteristic LVs corresponding to un-
stable intrinsic directions.

II. MODELS OF SPATIOTEMPORAL CHAOS

Three spatially extended systems are studied in this paper:
a coupled-map lattice, a continuous-time model, and a sto-
chastic equation. These models cover a range of dynamical
systems of very different nature, including discrete and con-
tinuous systems. We study models that exhibit STC for a
range of parameters. Since the scaling properties that we are
interested in are independent of microscopic details, our in-
tention here is not to be exhaustive in the exploration of
model parameters or different terms in a particular model,
which have no effect on the scaling properties whatsoever.
On the contrary, our aim is to address much more generic
types of models, such as those that are discrete or continuous
in space or time.

A. Coupled-map lattices

Coupled-map lattices are simple prototypes of STC at low
computational cost [2]. This ultimately explains their wide-
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FIG. 1. Lyapunov spectra for the three models studied in this
paper. We follow the standard convention and sort LEs in decreas-
ing order Ny=N\,=---=\;. (The LEs were obtained for L=128;
larger systems yield Lyapunov spectra that overlap these ones.)

spread use to study different aspects of STC, which would be
prohibitively demanding in computation time should PDEs
be used, for instance. Here, we consider a ring of L maps
with diffusive coupling,

ui(t+1) = flu ()] + eflu; (D] + (1 = 2€)flu(n)], (1)

where € is the coupling parameter and f is a map with cha-
otic dynamics. Infinitesimal random perturbations evolve in
tangent space following the linear equation

Oul(t+1) = ef[upy1()10u;41(t) + €f [, ()] S,y (2)
+ (1 =26)f"[u1)]ou,r), (2)

where f'(0) is just the derivative of the map f(@) with re-
spect to its argument 0. We have recently reported in Ref.
[23] about our study of the space-time structure of LVs in the
case of the lattice of coupled logistic maps f(0)=4¢(1-0).
Here, as a further example we include the study of a different
type of map. The results we report on in this paper (see
below) are analogous to those obtained for logistic maps, and
thus we may conclude that no important differences should
arise among one-dimensional CMLs composed of continu-
ous chaotic maps in one variable. Throughout this paper, we
consider the skew tent map with the same parameters as
those in Ref. [27],

ag (e <1/a)
fle)= {a(g -1)/(1-a) (g>1/a)

with a=2.3. The Lyapunov spectrum of the CML in Eq. (1)
for a coupling strength €=0.2 is shown in Fig. 1(a).

3)
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B. Lorenz ‘96 model

The second model we consider in this paper is an example
of a chaotic continuous-time system. This model is in many
aspects very different from a CML model due to the continu-
ous character of the time variable. We study the model pro-
posed by Lorenz in 1996 [31] as a toy model in the context
of weather dynamics. We consider the variables y; defined in
aring, i=1,...,L, and the evolution equations

diyi=_yi_y[—l(y[—2_y[+l)+F' 4)
t
The variables y; may be looked at as the values of some
unspecified scalar meteorological observable, like a vorticity
or temperature, at equally spaced sites extending around a
latitude circle [32]. The model contains quadratic, linear, and
constant terms mimicking advection, dissipation, and exter-
nal forcing, respectively.

An infinitesimal perturbation Jy,(f) evolves in tangent
space according to the linearized dynamics,

d
55)’1' === (Vica = Yir 1) i1 = Vi1 i + Vi1 i1 »
(5)

which also governs the dynamics of any characteristic LV, as
they are freely evolving covariant perturbations.

Regardless of how well or poor Eq. (4) represents the
atmosphere, the model is nowadays an essential tool in stud-
ies of weather dynamics as a testbed for forecasting tech-
niques like breeding or singular vectors [31-33]. For F=8,
the model exhibits STC, as demonstrated by computing the
Lyapunov spectrum shown in Fig. 1(b). A Runge-Kutta
scheme is usually recommended for the numerical integra-
tion of Eq. (4) to avoid numerical instabilities. We have used
a fourth-order Runge-Kutta integration algorithm with time
step Ar=1072, while to achieve the same precision with the
Euler method a much smaller time step, Ar=1.5X 1074, was
needed.

C. Multiplicative stochastic equation

The third model we study is a multiplicative stochastic
equation, which mimics the linear evolution of infinitesimal
perturbations in tangent space for spatio-temporal chaotic
systems. Pikovsky and Politi proposed [16] this stochastic
PDE as the proper candidate for modeling the statistical fea-
tures of the dynamics of freely evolving perturbations.
Therefore, the analysis of this model will show to what ex-
tent the observed scaling of characteristic LV surfaces is ge-
neric and model-independent in the context of STC.

We consider a perturbation ¢(x,), initially homogeneous
and random, whose time evolution can be described, in a
statistical sense, by the multiplicative Langevin equation

at(b: g(x’t)(b-'- axxd)’ (6)

where { is a noise term that accounts for the chaotic fluctua-
tions and one can simply assume it to be Gaussian and un-
correlated: ({(x,t){(x",t'))=208(x—x")S8(t—t"). It is worth
stressing here that the presence of short-range correlations in

PHYSICAL REVIEW E 78, 016209 (2008)

the noise term ¢ (due to the purely deterministic nature of the
fluctuations) is actually irrelevant for the statistical descrip-
tion in the long-wavelength limit, as already shown in the
original work of Pikovsky and Politi [16].

We have numerically integrated Eq. (6) by a stochastic
Euler scheme (the noise term up to order Af) with a space
and time step Ax=1 and Ar=1072. The Lyapunov spectrum
was computed and averaged over different noise realizations
(equivalent to different trajectories). In Fig. 1(c), we plot the
LEs for a noise amplitude 0=0.5.

The multiplicative Langevin equation (6) can be seen as a
stochastic field theory for the evolution of random errors in
extended homogeneous systems. This stochastic model has
been found to describe the statistical properties of perturba-
tions in many dynamical systems ranging from lattices of
logistic, tent, or symplectic maps to the complex Ginzburg-
Landau equation [12,16,21]. It has also been extended to
construct a stochastic field theory of chaotic synchronization
of extended systems [34,35]. Very recently, it has also been
shown that a version of Eq. (6), which includes quenched
disorder terms, describes the propagation of perturbations in
inhomogeneous chaotic systems [17].

Interestingly, the application of the Hopf-Cole transforma-
tion, i=In|¢|, immediately maps the problem into the KPZ
equation for surface growth,

dh=1C+(.h)?+d.h, (7)

which ultimately justifies why the log-transformed (main)
Lyapunov vector of many spatiotemporal chaotic systems is
found to belong to the KPZ universality class [12,16].

There is an interesting caveat concerning this mapping,
which has not been noticed before in the context of STC.
One can see that Eq. (6) is invariant under the sign change of
the field ¢p— —¢. However, the solutions of Eq. (6) actually
exhibit a spontaneous breaking of this essential symmetry. In
our numerical integration, we observe that for any random
initial condition, no matter the spatial distribution of signs
for the initial field ¢(x,7=0), with probability 1, the solu-
tions of Eq. (6) asymptotically become either strictly positive
or negative [i.e., for long enough times ¢(x,) # 0 for all x].
The reason for this symmetry breaking can be traced back to
the mathematical properties of Eq. (6). The key observation
is that the dynamics governed by Eq. (6) cannot produce new
zeros of the field ¢. Therefore, sites where ¢ changes sign
can only diffuse in the x axis and, in the event two ¢-zeros
collide, disappear. As we will see later on, the annihilation of
zeros is crucial to understand the spatial structure of charac-
teristic LVs.

III. LYAPUNOV VECTORS

In short, LVs are defined as the vectors in tangent space
that point toward the directions such that a given perturba-
tion expands (shrinks) with the corresponding LE. Their
physical significance arises from Oseledec’s theorem [36].
Let us now discuss the definition and physical meaning of
backward, forward, and characteristic LVs.
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Consider a nonlinear dynamical system governed by
a (1) =Y[u] (8)
—u(t)=Y[u],
dt

where u(t) e RE is the position of the system in phase space
and Y:RY—RF is the nonlinear evolution operator. Infini-
tesimal perturbations u(z) follow the linear dynamics given
by the tangent space equations,

d dY[u]

ou(t) =

P P ou(r), &)

which implies that the perturbation can be computed at time
t from the perturbation at an earlier time 7, as

ou(r) = M(1,1,) ou(ty), (10)
where M(t,,1)=M(t,t,)~" is some linear operator.

A. Backward (and forward) Lyapunov vectors

According to Oseledec’s theorem [36] (details can also be
found in Ref. [1]), there exists the remote past limit symmet-
ric  operator @, (1)= limtoﬁ_w[M(t, 1o)M*(1,15) ] 2001
where M* is the adjoint operator. All L eigenvalues of ®y(r)
are positive time-independent numbers that can be written as
exp(\,), where \,, are the LEs, and the corresponding eigen-
vectors form an orthonormal basis {e,(¢)}, n=1,...,L. These
eigenvectors are called backward LVs [28] and represent the
directions in tangent space that, at the present time ¢, are seen
to have grown at exponential rates A, since the remote past.
The set of backward LVs is precisely the orthonormal set
obtained using the standard Gram-Schmidt orthogonalization
method to compute the LEs [37].

Conversely, forward LVs form a different orthonormal
set of vectors analogous to backward LVs, but with the tem-
poral properties inverted. In this case, they are obtained as
the eigenvectors of the far future limit operator
lim, _..[M*(1,))M(z9,1)]"20™], which obviously has the
same eigenvalues as (7). When left to evolve freely from
the present time 7, the nth forward LV grows exponentially in
the far future at a rate given by the corresponding LE \,,.
However, under reverse (time backwards) integration, all for-
ward LVs collapse into the last forward LV.

The popularity of the algorithm of Benettin er al. [24,25]
for computing the first n Lyapunov exponents, via successive
Gram-Schmidt orthonormalization of a set of n vectors that
evolve according to the linear equations in tangent space, has
caused many authors to consider using the resulting ortho-
normal set {e ()}, n=1,...,L as the Lyapunov vectors. As
mentioned in the Introduction, the use of this set of vectors
poses serious problems in certain applications. Any of the L
backward LV tends to align exponentially fast with the first
LV. This has to be avoided by the externally imposed or-
thogonalization, which “resets” the vector set every few time
steps. Moreover, different scalar products produce different
sets of backward and forward LVs.

B. Characteristic Lyapunov vectors

In order to construct a complete set of L characteristic (or
covariant) vectors, {g,(r)}, n=1,...,L, independent of the
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scalar product and having the wanted topological properties,
one has to intersect the subspaces spanned by the backward
and forward LV in a precise manner as discussed by Eck-
mann and Ruelle [1].

At variance with backward and forward LVs, characteris-
tic vectors have the desired topological and dynamical prop-
erties: (i) They are independent of the scalar product; (ii)
they reduce to the Floquet eigenvectors for a periodic orbit
[30]; (iii) any given g,(z) grows at an exponential rate given
by the associated LE \,, in the far future, and with rate —\,,
backward-integrating to the remote past (under the linearized
equations in tangent space, with no orthogonalization or any
other external constraint). For instance, in chaotic
continuous-time systems, and in contrast with backward LV,
there is a characteristic LV tangent to the trajectory that cor-
responds to the zero LE associated with time-shift invari-
ance.

Contrary to the (artificial) orthogonal disposition of back-
ward LVs, characteristic LVs generally do not form an or-
thogonal set. We note that the first backward and character-
istic LVs are tangent, g,(r)ce,(r). For n>1, the nth
characteristic LV is a linear combination of backward LVs
from 1 to n.

Although Eckmann and Ruelle [1] already discussed these
ideas in 1985, they had received little attention in the litera-
ture until very recently. This is partially due to the fact that
implementing such a theoretical construction is by no means
a simple task from a computational point of view. Only very
recently, Wolfe and Samelson [26] proposed a computation-
ally efficient algorithm to obtain the set of characteristic LVs.
We have used this algorithm in all our calculations, and tech-
nical details can be found in the Appendix. Also, Ginelli et
al. proposed a similar algorithm [27].

In the rest of this paper, we study the spatial structure of
LVs, focusing on universal features that are shared among
different models of STC.

IV. SURFACE GROWTH PICTURE

In systems with spatiotemporal chaos, the first LV local-
izes in space, so that its magnitude spans several orders of
magnitude between the top and the valleys. In homogeneous
systems, translational invariance implies that the localization
site is not static.

It was recognized some time ago [12,16] that the spa-
tiotemporal dynamics of the first LV is much more under-
standable as a surface to be obtained after Hopf-Cole trans-
forming the vector. Until recently, very little was known
about the spatial correlations of characteristic (or backward)
vectors for n>1. We have reported [23] on the existence of
intrinsic length scales and have determined the form of the
spatiotemporal correlations of LVs corresponding to the lead-
ing unstable directions by translating the problem to the lan-
guage of scale-invariant growing surfaces. We found that
characteristic LVs corresponding to the most unstable direc-
tions also exhibit spatial localization, strong -clustering
around given spatiotemporal loci, and remarkable dynamic
scaling properties of the corresponding surfaces. In contrast,
any two backward LVs localize in different sites since they
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FIG. 2. (Color online) The first and the second characteristic
Lyapunov vectors for (a) coupled-map lattice (1), (c) Lorenz ‘96
model, and (e) Stochastic equation (6). Note that we take the abso-
lute values and a logarithmic scale for the y axis. Panels (b), (d),
and (f) show the fields 7,=h,—h, for the three models.

are mutually orthogonal. Also, they do not exhibit dynamic
scaling due to artifacts in the dynamical correlations by con-
struction [23]. Our results were based on numerical studies
of lattices of coupled maps, but conjectured to be generically
valid for a wide range of systems. Our aim here is to extend
our previous analysis and put it in a wider context. For this
purpose, the analysis of the stochastic model Eq. (6) has a
particular significance.

Figures 2(a), 2(c), and 2(e) show typical snapshots of the
first and second characteristic LVs in logarithmic scale for
the three models introduced in Sec. II. One can see that both
vectors may localize in the same site (which is not possible
for backward LVs due to their mutual orthogonality). For
every characteristic LV, g,(1)=[g,(x,1) j:f, we define a sur-
face via the Hopf-Cole transformation, h,(x,t)=1In|g,(x,?)|.
For the sake of comparison, we will also consider the sur-
faces associated with backward LVs: h,,(x,t)=In|e,(x,1)|. Af-
ter the mapping, the nth LE corresponds to the average ve-
locity of the corresponding nth surface, ((1/ L)E;:fhn(x,t»
=(In T g, (x, )| By =\, 1.

The surface growth formalism has allowed us to identify
different universality classes in spatiotemporal chaotic sys-
tems [12,16,19,21]. In particular, the universality class of
KPZ has been widely observed in non-Hamiltonian systems
with no special conservation laws, discontinuities, or broken
symmetries. This includes, among others, lattices of coupled
logistic maps, and the Ginzburg-Landau and Kuramoto-
Sivashinsky PDEs. The three model systems studied in this
paper (see Sec. II) also belong to KPZ universality class.
This can be confirmed by calculating the so-called dynamic
and roughness exponents.

Interestingly, we have found that the nth LV (either char-
acteristic or backward) is a piecewise copy of the main LV.
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This behavior is conveniently captured by the difference-
field 7,=h,—h,. For instance, in Figs. 2(b), 2(d), and 2(f)
we plot the difference-field 7,=h,—h;, which reveals the
existence of flat regions indicating that the first and the sec-
ond LV surfaces are strongly correlated. The second LV sur-
face is loosely speaking “piecewise KPZ,” since it is made of
pieces that differ from the main vector at only a few sites.
Actually, the nth LV also exhibits the same structure for in-
creasing n, namely, the difference-field 7, is also formed by
flat regions separated by fluctuating edges. The typical pla-
teau length of the field #», naturally defines a characteristic
length scale €,, below which the nth surface is identical to
the first surface. This characteristic plateau size decreases
with increasing n. So that, beyond some n,,,,, the number of
fluctuating edges is so large (€,— 1 for n>n,,,) that the
“piecewise KPZ” picture is not useful any longer.

It is remarkable that, for systems whose first LV belongs
to the KPZ class, there is a finite part of the Lyapunov spec-
trum (A, with n<<n,,,) that can be understood in terms of
piecewise copies of the first vector. Note that this peculiar
spatial structure can only be easily identified after the loga-
rithmic transform. Last but not least, this spatial structure is
also consistent with the fact that any characteristic LV is
governed by the same tangent dynamics for a given system,
Egs. (2), (5), and (6), and a given trajectory.

V. SPATIAL STRUCTURE

In this section, we carry out a quantitative descrip-
tion of the spatial correlations of the LV surfaces
h,(x,t). We compute the stationary structure factor S, (k)
=lim, .(h,(k,0)h,(~=k,1)),  where  h,(k,1)=2, exp(ikx)
Xh,(x,1), and the brackets indicate an average over different
system trajectories (or noise realizations in the case of the
purely stochastic model). As expected, the first LV surface
correlations decay as k= (Fig. 3), in agreement with the KPZ
universality class [16,20]. Interestingly, the nth LV surface
for n>>1 also shows scale-invariant correlations ~k~2, with a
crossover to a different scaling regime at a wave number k,
that depends on 7. It is natural to link this crossover length
scale to the plateaus discussed in the preceding section. In-
deed, we have shown in Ref. [23] that this crossover wave-
length is related to the typical size of plateaus k, ~ €;1.

At long wavelengths, correlations of LV surfaces associ-
ated with backward and characteristic LVs decay approxi-
mately as k™! and k™2, respectively (Fig. 3). This 1/k diver-
gence indicates extremely weak long-range spatial
correlations for both classes of LVs. However, backward and
characteristic vectors exhibit markedly different dynamical
properties. To be precise, the imposition of orthogonality
causes the mapping of a backward LV at ¢ into itself at ¢
+ At to convey 1/k long-range correlations. On the contrary,
characteristic LVs show increasing correlation lengths as
time evolves, as one would expect for a surface evolving
with local equations. In this case (and in contrast with back-
ward LVs), surface correlations are found to satisfy dynamic
scaling akin to growing surfaces (cf. Fig. 4 in [23]).

Deterministic equations (1) and (4) yield LVs whose spa-
tial structure is analogous to the structure of LVs obtained
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backward LVs characteristic LVs

FIG. 3. Structure factors for LVs of the three models considered
in this paper: (a,b) Coupled-map lattice (1) with L=1024, from top
to bottom n=1,4,8,16,32,64,128; (c,d) Lorenz 96 model (4)
with L=256, n=1,4,8,12; and (e,f) stochastic equation (6) with
L=1024, n=1,4,8,16,32,64. In all cases, backward LVs (a,c,e)
beyond the first one decay at small wavelengths as k~!. Character-
istic LVs (b,d,f) display stronger correlations with k™7 (y
~1.15-1.2). We averaged over 200 realizations for the CML and
1000 for the other two models.

with the stochastic equation (6) with white noise. This indi-
cates that in spatiotemporal chaotic systems of the KPZ uni-
versality class, the role of spatio-temporal correlations is in-
significant in what concerns the statistical (long-time and
large-scale) structure of LVs.

Finally, we recall that when n becomes large (n>n,,),
specific features of each model will show up. For instance, in
the case of the multiplicative stochastic equation, the nth LV
appears as a noisy sinusoidal function because diffusion pre-
vails over the stochastic term. Accordingly a peak appears at
intermediate wave numbers in the structure factor [see the
curve for n=64 in Fig. 3(f)].

VI. MULTIPLICATIVE STOCHASTIC EQUATION

The multiplicative Langevin model discussed in Sec. II C
constitutes a minimal model for describing the dynamics of
free perturbations in a (wide) family of systems exhibiting
spatiotemporal chaos [16]. In particular, since random free
perturbations rapidly tend to be tangent to the main LV, Eq.
(6) also describes the scaling behavior of the first LV. As we
have discussed in the preceding section, characteristic LVs
are freely propagating perturbations, covariant with the dy-
namics as well as with the time inverted dynamics. There-
fore, we conjecture here that the multiplicative stochastic
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model should also describe the statistics and scaling behavior
of the nth characteristic LV, at least for n<n,,,. In this re-
gard, the scaling properties of the nth characteristic LV in
systems with STC should be generically linked to those of
the solutions supported by the multiplicative Langevin
model. In this section, we study in more detail the structure
of the solutions and LVs in the multiplicative stochastic
model.

We have computed the characteristic LVs for the stochas-
tic model. Figure 4 demonstrates the existence of plateaus
for the differences 7,(x,f)=h,—h,, whose size decreases
with n. The plateaus are bounded by kinks, which are promi-
nently placed at the sites where g,(x,r) crosses zero [i.e.,
where h,,(x,t) — —].

The asymptotic attracting solution of Eq. (6) is the first
LV, ¢(x,1)=g,(x,1). As discussed in Sec. I C, the asymptotic
solution g;(x,) has the same sign everywhere. This solution
is univocally determined for a given trajectory (noise realiza-
tion), apart from an arbitrary nonzero constant factor. The
solution ¢(x,r)=g,(x,r) has the statistical properties of a
KPZ surface because the Hopf-Cole transformation from Eq.
(6) to Eq. (7) is exact for n=1. In contrast, characteristic LVs
for n>1 are saddle solutions of Eq. (6), which are forced to
have regions with opposite signs. This, in turn, naturally
leads to smaller growth rates (A, <\,).

We find that the number of zeros of the nth LV is Ny(n)
=2[n/2], where [¢q] stands for the integer part of ¢. Note that
Eq. (6) is not able to create new zero crossings, which im-
plies that Ny(n) cannot fluctuate and is a conserved quantity.
We also remark that A(n) corresponds to the number of
zeros of the nth normal mode of the (noise-free) diffusion
equation d,¢p=0,,¢, assuming they are ordered according to
their stability.

It would be very interesting to be able to write down the
stochastic PDE describing the dynamics of the surface asso-
ciated with the nth characteristic LV. However, this turns out
to be a very difficult task. A more qualitative description can
nonetheless be very useful. The first LV (rn=1) has no zeros
and, as mentioned above, this allows us to exactly transform
Eq. (6) into the KPZ equation (7). However for n>1, each
g.(x,1) has Ny(n) zeros, which cannot be neglected when
applying the Hopf-Cole transform. Indeed, one can observe
that N, =(d,h,) # ((d.h,)?), which indicates that there must be
other terms contributing to the velocity of the nth Lyapunov
surface. As expected, the equality N\;=(d,1;)=((d.h,)?) ex-
actly holds in the singularity-free case n=1.

A detailed analysis using the discrete version of Eq. (6)
reveals that the stochastic PDE governing %, is a KPZ equa-
tion with singular (and difficult-to-treat) terms at the points
where h,—— (g,—0). Formally, one can expect to have

Ny(n)

Gy =L+ (9,h,)* + dh,+ 2 Elx(D], (11)
i=1

where the function Z[x;(f)] accounts for singular &-like con-
tributions at the zeros x;(¢), whose positions move erratically
around the system.

We first note that the erratic motions of the zeros [Figs.
4(b) and 4(d)] seem not to be the source of the long-ranged
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FIG. 4. Spatiotemporal plot of the fields (a) |d,7,| and (c) |9, 74| for the stochastic PDE (6) with L=256; the plateaus appear as the clear
regions. The darkest regions correspond to zeros of vectors g, and g, indicated in panels (b) and (d), respectively. Other light gray regions

in (a) and (c) correspond to kinks discussed in the text.

correlations. At long times, the erratic motion of zeros is
subdiffusive: the position of the ith zero satisfies ([x,(r)
—x;(0)]*) ~ 17, and we find y=~0.87 for the second LV and
v=0.62 for the fourth LV from numerical simulations in a
system of size L=256. We have already shown [23] that at
long wavelengths [in the S(k) ~ k= region], surface corre-
lations of characteristic LVs exhibit dynamic scaling. The
analysis of coupled-map lattices shows a fast propagation of
correlations at large scales with a dynamic exponent z=1
corresponding to a ballistic process (y=2/z=2). Since zeros
do not propagate ballistically, but subdiffusively, we con-
clude that information propagation at long wavelengths is
mediated by a different process. The best candidates are
small kinks [see, for instance, a typical kink at x= 100 in
Fig. 2(f)] that can be identified (light gray traces in the plots)
as traveling objects in Figs. 4(a) and 4(c). Interestingly, the
dynamics of the kinks is governed by the equation of the
field #,, which can be written exactly inside a plateau region,

97, = (3,1,)% + I + 2(0,11) (9, m,). (12)

The drift term, proportional to d,7,, would lead to the bal-
listic dynamics of the kinks with z=1. This provides the
mechanism for the ballistic propagation of correlations ob-
served at long wavelengths.

VII. DISCUSSION

Our numerical results with the stochastic model (6) are
particularly revealing since they explicitly show to what ex-
tent equations for growing surfaces can be used to describe
STC. Specifically, Eq. (6) is invariant under multiplication
by a constant, ¢— c¢, which leads to the symmetry h—h
+1n ¢ for the corresponding surface. This symmetry property
leads to scale invariance of & [38]. As equations for infini-
tesimal perturbations are always of linear type, Eq. (9), the
symmetry ¢— c¢ is always fulfilled and, in turn, systems
with STC will exhibit scale invariance of the associated
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Lyapunov vector surfaces. Different universality classes, de-
pending on the existence of correlations or conserved quan-
tities, may be obtained.

A final remark is in order. The conservation of the number
of zero crossings, observed for Eq. (6), is not fulfilled in
general. In a generic setting, the dynamics of perturbations
would be governed by linear equations that might contain
higher-order derivatives multiplied by possibly fluctuating
coefficients &;: d,0u=¢§, du+&,9,0u+ &9, 0u+---. Contrary to
the perhaps oversimplified stochastic model (6), zeros can be
created in this general situation, for instance if a drift term
exists (& #0), or if & can take negative values. Neverthe-
less, the scaling behavior of such a system is expected to be
correctly described by Eq. (6), because those model-specific
terms are actually irrelevant in the sense of the renormaliza-
tion group. In conclusion, the role of zeros is very important
to understand the dynamics of Eq. (6), but how they are
linked to structural properties of generic systems with spa-
tiotemporal chaos remains an issue for future work.

In summary, in this paper we have studied spatiotemporal
chaos in three qualitatively different (non-Hamiltonian) sys-
tems. In all cases, characteristic (and backward) Lyapunov
vectors exhibit very similar spatial structure. The nth Hopf-
Cole transformed LV is a piecewise copy of the first LV, with
a typical plateau length that decreases with n. One of the
three systems studied is a stochastic equation that serves as a
minimal model for the leading LVs in systems whose first LV
belongs to the universality class of KPZ.
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APPENDIX: COMPUTATION OF CHARACTERISTIC
LYAPUNOV VECTORS

In this appendix, we outline the procedure we have fol-
lowed to obtain the characteristic Lyapunov vectors. It is
based on the work by Wolfe and Samelson [26]. It assumes
that that there is no degeneracy in the Lyapunov spectrum;
i.e., \;>N\,>--->\;. For the sake of concreteness, we re-
strict the following discussion to the CML model (1), but it is
not difficult to extend it to continuous-time systems.

Given the initial state of the system u(z,=0)
=[u;(ty),us(ty), -+ ,u;(tp)], infinitesimally small perturba-
tions éu(z) in the initial condition evolve up to linear order
(i.e., in tangent space) according to

Sui(t+1) = €f'[ujp) (1) 10Uy (2) + €f [, ()] Sy (1)
L
+ (1 =2 [u ()] du(t) = X T;[u(®)16u)(1),
J=1

with f’ being the derivative of f(y) with respect to y and
T[u(r)] the L X L Jacobian matrix evaluated at u(z). The evo-
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lution of an infinitesimal perturbation éu(z;) is governed by
the linear equation: éu(7,)=M(zy,t,) ou(t;). The linear opera-
tor M is just the product of the Jacobian matrices evaluated
along the system trajectory from #; to f, i.e.,

M(tg.11) = Tlu(to— D)]T[u(to=2)] - Tlu(s, + D]T{u(t)].

According to Oseledec’s theorem [36] (details can be found
in Ref. [1]), there exists the limit operator

®,(1)) = lim [M(fo,l‘l)M*(fo,fl)]l/[z(to_tl)]

t——®

such that the logarithms of the eigenvalues are the LEs A,
and the eigenvectors form an orthonormal basis {e,(z,)}. This
set of eigenvectors, so-called backward 1LVs [28], indicates
the directions of growth of perturbations grown since the
remote past with exponents \,. The backward LVs are pre-
cisely the orthonormal vectors obtained using the standard
Gram-Schmidt orthogonalization method to compute the LEs
[37].

Conversely the directions that will grow with exponents
\, are indicated by the so-called forward Lyapunov vectors
{f.(to)}. They constitute an orthogonal basis formed by the
eigenvectors of the operator,

@ (1) = lim [M*(t2, 1) M (£, 1) ] 120271001,

ty—

As with the backward LVs, the Gram-Schmidt procedure can
be used to obtain forward LVs, but now going backwards in
time and using the transposed Jacobian matrices because of
the identity M(t,,10)* = T*[u(1) |T*[u(ty+1)]- - - T*[u(z,)].
As noted by Legras and Vautard [28], the use of the trans-
posed Jacobian (in contrast with the inverse ones) causes the
forward LVs to come up with the standard ordering. This
means that to obtain the first n forward LVs, we need to
integrate only n perturbations (instead of L—n+1). Finally,
note that computing forward LVs requires us to store a tra-
jectory u(ty),u(to+1), ... ,u(t,).

Each backward (forward) LV grows with its exponent —\;
(\;) when it is left to evolve in the limit t— - (r— ).
However both sets, backward and forward, do not follow
their associated exponents when the time limit is reversed.
For this reason, it is much more interesting to consider an-
other set of vectors {g,(7)}, the so-called characteristic LVs,
that grow with exponent \,, (—\,,) when integrating to the far
future (past),

lim (7 = 1)~ In[|M(z,10)g,,(10)[| = N,

[l%oo

The nth characteristic Lyapunov vector is a linear combi-
nation of the first n backward Lyapunov vectors [39],

n n
g.= 2 ergei= 2 yMe,.
i=1 i=1

g, does not project on the subspace spanned by the n—1 first
forward LVs. This allows, by means of some algebraic
transformation [26], to express the coefficient vector
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y=(" Y ,yﬁl")) as the one-parametric family of non-

trivial solutions of
D(n)y(n) =0,

where the nXn matrix D is calculated using the first n
—1 forward LVs,
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n—1

DY = ;1 (erfNfne)).

y™ is then completely determined (up to a global sign) im-
posing normalization of g,,.
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