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Abstract.-  

 

 Activated carbon binderless monoliths with high consistency and large porosity, 

synthesised from a mesophase pitch, are studied as electrodes for supercapacitors. The 

electrochemical cells prepared provided high capacitance values in sulphuric acid media 

(334 F g-1) and very low electrical resistivity, which results in a very efficient energy 

storage device (12 Wh Kg-1 maximum energy density and 12,000 W Kg-1 maximum 

power density). Long-term cycling experiments showed excellent stability with a 

reduction of the initial capacitance values of 19 % after performing 23,000 galvanostatic 

cycles at ∼300 mA g-1. 
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1.- Introduction 

 

 Supercapacitors (SCs) are an important alternative or complement to other 

energy storage or generation devices such as secondary batteries and fuel cells [1], as 

they can develop longer cycle life (> 100,000 cycles) combining both high power 

density (> 1000-1500 W Kg-1) and energy density values (up to 10 Wh Kg-1) [2,3]. 

These particular properties make supercapacitors suitable for numerous applications 

such as power electronics, military field, and in the hybrid electrical vehicle (HEV) (e.g. 

stop and go function, improved acceleration, regenerative braking, etc.). 

 Among the materials that can be used as electrode in supercapacitors (e.g. 

electroactive polymers [4], transition-metal oxides [5], etc.) carbon materials have 

demonstrated to be ideal candidates as a consequence of their relatively low cost, good 

electronic conductivity, high surface area and availability [6]. In fact, several carbon-

based devices are commercially available (Epcos, Maxwell, Evans, etc.). Activated 

carbons are commonly employed as they are very attractive from the economical point 

of view [6]. In this type of materials the charge is stored by means of electrostatic 

charge separation of ions at the interface electrode/electrolyte forming the so-called 

double layer.  

 Activated carbon can be prepared from any carbonaceous precursor by physical 

or chemical activation. Chemical activation with KOH or NaOH is a good method to 

produce activated carbons [7,8], usually in the form of fine powder, thus making its 

conforming to pellets or monoliths an important area of research. The manufacture of 

electrodes for supercapacitors requires the addition of a binder (e.g. polyvynilidene 

chloride (PVDC) [9], Teflon [10], etc.), in proportions that usually vary from 5 to 

10 wt. % in order to bind the carbon particles together. However, this addition blocks 
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part of the porosity of the carbon [11,12] and additionally causes an increase in 

electrical resistivity [13,14]. Consequently, the use of binderless electrodes in 

supercapacitors would provide significant benefits: they can be handled easily compared 

to the conventional porous carbons (e.g. activated carbons or carbon nanotubes) and 

they do not require any conductive additive such as carbon black during the preparation 

of the electrode. 

 Some monolithic structures (e.g. aerogeles [15,16], templates from silica 

monoliths [17], or ceramic-carbon composites [18]) have been used in electrochemical 

applications (e.g. EDLCs, electrosorptive processes such as capacitative deionization 

[19,20], etc.) where high surface area and electrical conductivity are critical properties. 

However, only rather modest specific capacitance values have been reported. Saliger et 

al. [15] used carbon aerogels from resorcinol-formaldehyde (apparent surface area 400-

560 m2 g-1) as electrode in 30% sulphuric acid as electrolyte and they reported ∼130-

170 F g-1 typical values of this type of materials. Hierarchically mesoporous carbon 

monoliths have been developed using mesophase pitch as a precursor. Silica monoliths 

as a template for nanocasting [17] provided poor capacitance values (∼8 F g-1), which 

could be increased to 25 F g-1 by the addition of polyaniline. Higher capacitance values, 

up to 200 F g-1, were obtained by same authors using β-naphtol as precursor of 

monoliths. In addition to the modest capacitance values reported with the monolithic 

materials, their synthesis is quite expensive (e.g. supercritical drying step in aerogeles 

synthesis) and in some cases risky [16,21], so alternatives are needed. 

 Studies using chemical activation of olive stones by H3PO4 and ZnCl2 as 

impregnating agents showed that it is possible to prepare highly porous binderless 

activated carbon monoliths by just introducing the impregnated mass into a cylindrical 

mould and applying heat and pressure before heat treatment [22,23]. However, the 
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electrochemical properties of this type of monolith have not, to our knowledge, been 

reported yet, probably as a consequence of poor electrical conductivity.  

 Promising monoliths obtained from mesophase-based materials were recently 

developed [24] taking profit from their self-sintering ability. These binderless materials 

seem to be very attractive precursors to be used in supercapacitors, making up the 

novelty of the present work.  

 This paper reports the use of microporous activated carbon binderless monoliths 

(ACM) with high consistency and large porosity synthesised from mesophase pitch 

(MP) as electrode precursor in electrochemical capacitors. 

 

2.- Experimental 

 

2.1.-Carbon-based Monoliths preparation.- 

 A petroleum residue (ethylene–tar) [25] was pyrolyzed in a laboratory pilot plant at 

440 ºC and a pressure of 1.0 MPa, using a heating rate of 10 ºC/min and a soak time of 

4 h to yield MP [26]. Detailed description of the procedure was reported elsewhere [24]. 

The synthesis of the ACMs involved several steps: (i) mixture of the MP with KOH in 

different proportions in a ball mill during 30 min; (ii) uniaxial conforming at room 

temperature to produce monoliths (Φ=13mm; 1 mm), conforming under pressure of 400 

MPa (the mixture of the carbon precursors and the activating agent can be consolidated 

because of its high plasticity); (iii) heat treatment at 800 ºC under nitrogen atmosphere, 

heating rate of 2ºC min-1 and soak time of 2 h; and (iv) washing of monoliths with a 

solution of 1 M HCl, followed by extensive washing with distilled water until pH 7. The 

final step consists on drying of the monolith at 100–110 ºC for 24 h. Three different 
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monoliths (ACM-A, ACM-B and ACM-C) were prepared using KOH to MP ratios of 

4:1, 2:1 and 1:1, respectively.  

2.2.-Activated carbon and electrode preparation.- 

 In order to compare with monolith ACM-B, a powdered activated carbon (AC-B) 

was prepared using the same MP and KOH ratio. In this case the elaboration of 

electrodes required the conventional addition of a binding polymer (10 % wt. PVDF). 

2.3.- ACMs characterization.- 

 The ACMs were characterized by adsorption of N2 at 77 K. The apparent or 

equivalent BET area was determined from the N2-adsorption isotherm using the BET 

equation. The Dubinin-Radushkevich (DR) equation was applied to the isotherms to 

obtain the total micropore volume (V0) [27]. The volume of mesopores was obtained by 

difference between the volume measured at P/P0=0.95 and V0. The pore width (L0) was 

calculated from pore size distribution curves obtained using DFT calculations. 

 The electrochemical properties of the monoliths (ACMs) were tested using a 

Swagelok®-type cell in a two electrode configuration using a glassy fibrous separator 

and gold current collectors. Tests were performed in 1M H2SO4. Galvanostatic cycling 

of the supercapacitors was carried out in the voltage window between 0 and 1 V at 

current densities of 0.88 to 88 mA cm-2 (50-5,000 mA g-1) using a Biologic VMP 

multichannel potenciostat. The capacitance of the system was obtained applying the 

following equation: Ccapacitor (F) = I / (dV/dt) (avoiding the ohmic drop). In a two-

electrode system, the lower capacitance value of the two electrodes connected in series 

will give the total capacitance in accordance with the formula: 1/Ccapacitor = 1/C1 + 1/ C2. 

Assuming that C1=C2 the specific capacitance of the electrode, C(F g-1), can be obtained 

from the expression: C= 2Ccapacitor/m (m is the mass of activated carbon in the lightest 

electrode).  
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 The equivalent series resistance (ESR) was calculated from the galvanostatic cylces 

by dividing the ohmic drop by the current intensity, ESR(Ω)= IRdrop(V)/I(A). Cyclic 

voltammetry experiments were carried out at 1 and 50 mV s-1. Electrochemical 

impedance spectroscopy measurements were carried out in order to study the internal 

resistance of the carbon-based monoliths in the frequency range of 1 mHz-100 kHz with 

an AC amplitude of ±10 mV. All impedance measurements were performed on 

completely discharged cells. The Ragone plots were obtained from the galvanostatic 

experiments (constant current mode). 

 Long-term behavior of the cells was studied by galvanostatic cycling at a current 

load of 500 mA g-1 and 1 V. The effect of cycling on the specific capacitance values 

was assessed. 

The amount and type of oxygenated surface groups were determined by 

temperature-programmed decomposition (TPD) under inert atmosphere (He). The 

sample (150 mg) was placed in a U-shaped quartz cell and treated at 100 ºC for 1 h 

under a He flow of 50 ml min-1. Then, the temperature was raised at 10ºC min−1 to 

1000 ºC. On-line mass spectrometry was used to measure the decomposition products 

(CO and CO2). 

 

3.- Results and discussion 

 

3.1.-Textural and chemical characteristics of the ACMs.-  

The N2 (77K) adsorption isotherms for the three electrode materials (Figure 1) 

are type I, with a well defined plateau, indicating that the materials are essentially 

microporous. The broadening of the knee in the very low relative pressures range 
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indicates that the microporosity of the material becomes wider upon increasing 

KOH/MP ratio, especially for sample ACM-A. 

Table 1 summarizes the textural properties of the ACMs. The apparent BET area 

was obtained applying the BET equation to the corresponding isotherm. ACM-A has the 

highest BET surface (2650 m2 g-1), and a total pore volume measured at P/P0 =0.95 of 

1.27 cm3 g-1, most of the pores being micropores (73%), with an average pore width of 

1.12 nm. On the other hand, ACM-C exhibits the lowest BET surface (400 m2 g-1), with 

a much lower mesopore volume (0.03 cm3 g-1) and a narrower pore width (0.86 nm), 

being almost exclusively microporous. ACM-B is more similar to ACM-C, but with 

slightly larger BET surface (1100 m2 g-1) and larger pore volume (0.49 cm3 g-1). 

 The analysis of the microstructure of a transversal section of the monolith by 

SEM (Figure 2) reveals a continuous mass with no grain boundaries. The existence of 

voids of several microns, which may have formed in the original boundaries of the MP 

grains with KOH particles, can clearly be observed. In this way, the sample has a large 

amount of microporosity, with high accessibility due to the interparticle voids.  

 The amount and type of oxygen surface groups were determined by temperature-

programmed decomposition (TPD). All samples have very similar desorption amounts 

of CO and CO2 produced upon heat-treatment, values being: [CO] = 0.453 mmol g-1, 

[CO2] = 0.078 mmol g-1 for ACM-B. Therefore, the differences in electrochemical 

behaviour of the samples would mainly result from their textural parameters, as 

functionalities may affect in the same way to all the samples. 

3.2.-Electrochemical characteristics of the ACMs.-  

 Figure 3 shows the dependence of the specific capacitance values with the 

current density measured for the three ACMs synthesized. The higher capacitance 

values correspond to sample ACM-A, which correlates with its higher surface area (see 
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Table 1), followed by sample ACM-B, and the lowest capacitance values are those 

obtained for sample ACM-C. For example, at the lowest current density measured 

(1 mA) the specific capacitance values obtained for ACM-A are as high as 334 F g-1. 

 In order to study the resistance of the electrochemical cells prepared, impedance 

spectroscopy measurements were performed (Figure 4.a). The knee frequency appears 

at ∼ 150 mHz, value that separates the capacitative behavior of the capacitor (vertical 

line, at low frequencies [28]) from the resistive one (at high frequencies). At high 

frequencies, the imaginary part of the impedance tends towards zero and the resistance 

measured is related to the ionic resistance of the electrolyte. In the mid-frequency range, 

the cell behaves as a combination of resistor and capacitor, where the electrode porosity 

and thickness play a vital role in the determination of capacitance values [29]. In the 

range of medium-high frequencies no semicircle can be observed for any of the ACMs. 

The absence of this loop indicates that the materials have a really low intrinsic 

resistance. Additionally, the Warburg-like behaviour of the spectra indicates that there 

is a good electrolyte penetration in the porous structure of the bulk electrode (RC 

network distribution [30]). This is also reflected in the low ESR values obtained for the 

three samples: ∼ 0.6 Ω cm2. These low ESR values make these monolithic materials 

very attractive for the application under study.  

 For comparison purposes, a supercapacitor was assembled with the conventional 

carbon/polymer composite (AC-B) using the same electrolyte. The impedance spectra 

of the conventional composite and that corresponding to the monolithic electrode 

(ACM-B) are shown in Figure 4b. Contrary to the behaviour displayed by the 

monoliths, the carbon/polymer composite shows a well defined semicircle loop in the 

region of medium-high frequencies (∼21 kHz-128 Hz). This indicates a high intrinsic 

resistance of the electrode material, decreasing the performance of the cell in terms of 
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resistance and power. In this case the presence of polymer in the electrode makes the 

global resistance of the cell to be higher. An additional advantage of the monolith 

material for this application is its higher density in comparison with the electrode 

prepared using a binder. The bulk density of ACM-B is 0.5 g/cm3, significantly higher 

than that of AC-B (0.35 g/cm3). 

 The Ragone plots (Figure 5) summarise the power and energy characteristics of 

the electrochemical capacitors assembled. The graphs show the typical behaviour, with 

steady values of energy density at low power density values, to then drop very rapidly 

with increasing power density. The values of specific energy are higher for sample 

ACM-A, followed by sample ACM-B and the smaller ones correspond to sample ACM-

C, in accordance to their lower capacitance values. Very efficient energy storage 

devices are obtained using sample ACM-A, with 12 Wh Kg-1 of maximum energy and 

12,000 W Kg-1 of maximum power density in the voltage range of 1 V. 

 The behaviour of ACM-A during long-term cycling is shown in Figure 6. The 

reduction in the initial specific capacitance values was estimated in 19 % after 23,000 

galvanostatic cycles, from 279 to 226 F g-1. It has also to be mentioned that the main 

capacitance fading occurs in the beginning of cycling, during the first 3,500 cycles. 

Then the capacitance values remain practically constant during the rest of the test. This 

can be attributed to the existence of irreversible reactions at the beginning of the 

prolonged cycling (e.g. electro-oxidation) after which the values tend to stabilize. The 

cyclic voltammograms corresponding to the same electrochemical cell obtained in the 

first and 23,000th cycles are shown in Figure 6b. For both voltammograms the 

rectangular shape typical of electrical double layer capacitors was found. The main 

alteration in the shape of the cycle is the reduction in the current intensity during the 

anodic sweep, an effect generally ascribed to carbon oxidation [31]. As described 
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elsewhere [32,33] this oxidative phenomenon is more pronounced in the positive 

electrode, whereas the negative electrode hardly changes its performance during long-

term cycling. 

  

4.- Conclusions 

 

 Novel binderless monolithic materials prepared from a self-sintering mesofase-

based precursor showed an excellent performance as electrodes in high-power 

supercapacitors. The behavior of these monoliths is significantly better than the 

conventional active material/polymer composite electrodes, as a result of their improved 

electrical conductivity (due to the absence of binder) and their highly accessible 

micropores (due to the presence of interparticle voids). 

 Very high capacitance values were obtained (334 F g-1) with highest surface are 

monolith ACM-A. Moreover, this sample provided very efficient energy storage 

devices, with 12 Wh Kg-1 of maximum energy density and 12,000 W Kg-1 of maximum 

power density in the voltage range of 1 V.  

 Long-term cycling experiments performed on ACMs show an excellent 

behavior, with a total loss of the initial capacitance values of 19 % after 23,000 

galvanostatic charge-discharge cycles, which mainly occurred during the first 3,500 

cycles.  

 

 

Acknowledgements.- This work has been performed with financial support from MEC 

(projects MAT2007-61467 and MAT2007-61734). V. Ruiz acknowledges a predoctoral 

research grant from FICYT. 



 11

 References

                                                 
[1] Kötz R, Carlen M. Principles and applications of electrochemical capacitors  

Electrochim Acta 2000; 45(15-16): 2483-98. 

[2] Conway BE. Electrochemical Supercapacitors, Scientific Fundamentals and 

Technological Applications. New York: Kluwer Academic/Plenum Publishers; 1999: 

11-31.  

[3] Burke A. Ultracapacitors: Why, how, and where is the technology. J Power 

Sources 2000; 91(1): 37-50. 

[4] Arbizzani C, Gallazzi MC, Mastragostino M, Rossi M, Soavi F. Capacitance and 

cycling stability of poly(alkoxythiophene) derivative electrodes. Electrochem Commun 

2001; 3(1): 16-19. 

[5] Choi D, Blomgren GE, Kumta PN. Fast and reversible surface redox reaction in 

nanocrystalline vanadium nitride supercapacitors. Adv Mater 2006; 18(9): 1178-82. 

[6] Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of 

energy in capacitors. Carbon 2001; 39 (9): 937-950. 

[7] Marsh H, Yan DS, O´Grady TM, Wenneberg A. formation of active carbons 

from cokes using potassium hydroxide. Carbon 1984; 22 (6): 603-611. 

[8] Berger D, Carton B, Métrot A. Interaction of potassium and sodium with 

carbons. In: Trower PA, Walker Jr PL, editors. Chemistry and Physics of Carbon, vol 

12. New York: Marcel Dekker; 1975; p. 1-36. 

[9] An KH, Kim WS, Park YS, Choi YC, Lee SM, Chung DC et al. Supercapacitors 

using single-walled carbon nanotube electrodes. Adv Mater 2001; 13(21): 497-500. 

[10] Shiraishi S, Kurihara H, Oya A. Preparation and electric double layer 

capacitance of mesoporous carbon. Carbon Science 2001; 1(3-4): 133-137. 



 12

                                                                                                                                               
[11] Ruiz V, Blanco C, Granda M, Menéndez R, Santamaría R. Influence of electrode 

preparation on the electrochemical behaviour of carbon-based supercapacitors. J Appl 

Electrochem 2007; 37: 717-721.  

[12] Yoon SY, Lee J, Hyeon T, Oh SM. Electric double-layer capacitor performance 

of a new mesoporous carbon. J Electrochem Soc 2000; 147 (7): 2507-2512. 

[13] Weng TC, Teng H. Characterization of High Porosity Carbon Electrodes 

Derived from Mesophase Pitch for Electric Double-Layer Capacitors. J Electrochem 

Soc 2001; 148: A368-A373. 

[14] Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M. Studies and 

characterisations of various activated carbons used for carbon/carbon supercapacitors. J 

Power Sources 2001; 101(1): 109-116. 

[15] Saliger R, Fischer U, Herta C, Fricke J. High surface area carbon aerogels for 

supercapacitors. J Non-Cryst Solids 1998; 225: 81-85. 

[16] Hebalkar N, Arabale G, Sainkar SR, Pradhan SD, Mulla IS, Vijayamohanan K, 

et al. Study of correlation of structural and surface properties with electrochemical 

behaviour in carbon aerogels. J Mater Sci 2005 ; 40: 3777-3782. 

[17] Fan LZ, Hu YS, Maier J, Adelhelm P, Smarsly B, Antonietti M. High 

electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon 

monolith as a support. Adv Funct Mater 2007; 17: 3083-3087. 

[18] Kosmulski M, Skubiszewska-Zieba J, Leboda R, Marczewska-Boczkowska K, 

Próchniak P. New ceramic-carbon composites for electrodes for electrochemical 

capacitors. J Colloid Interface Sci 2007; 309: 160-168. 

[19] Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF. Capacitive deionization of 

NaCl and NaNO3 solutions with carbon aerogel electrodes. J Electrochem Soc 1996; 

143 (1): 159-169. 



 13

                                                                                                                                               
[20] Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF. Capacitive deionization of 

NH4ClO4 solutions with carbon aerogel electrodes. J of ApplElectrochem 1996; 26 (10): 

1007-1018. 

[21] Lemay JD, Hopper RW, Hrubesh LW, Pekala RW. Low-density microcellular 

material. MRS Bull. 15 (1990) 19-20. 

[22] Molina-Sabio M, Rodríguez-Reinoso F. Role of chemical activation in the 

development of carbon porosity. Colloid Surf A-Physicochem Eng Asp 2004; 241 (1-3): 

15-25. 

[23] Molina-Sabio M, Almansa C, Rodríguez-Reinoso F. Phosphoric acid activated 

carbon discs for methane adsorption. Carbon 2003: 41(11): 2113-2119. 

[24] Ramos-Fernández JM, Martínez-Escandell M, Rodríguez-Reinoso F. Production 

of binderless activated carbon monoliths by KOH activation of carbon mesophase 

materials. Carbon 2008; 46(2): 384-386. 

[25] Torregosa-Rodríguez P, Martínez-Escandell M, Rodríguez-Reinoso F, Marsh H, 

Gómez de Salazar C, Romero Palazón E. Pyrolysis of petroleum residues. II. Chemistry 

of pyrolysis. Carbon 2000; 38(4): 535-546. 

[26] Marsh H, Martínez-Escandell M, Rodríguez-Reinoso F. Semicokes from pitch 

pyrolysis: mechanisms and kinetics. Carbon 1999; 37(3): 363-390. 

[27] Rodríguez-Reinoso F, Garrido J, Martín-Martínez JM, Molina-Sabio M, 

Torregrosa R. The combined use of different approaches in the characterization of 

microporous carbons .Carbon 1989; 27(1): 23-32. 

[28] De Levie R. On porous electrodes in electrolyte solutions. Electrochim Acta 

1963; 8: 751-780. 



 14

                                                                                                                                               
[29] Ganesh V, Pitchumani S, Lakashminarayanan V. New symmetric and 

asymmetric supercapacitors based on high surface area porous nickel and activated 

carbon. J Power Sources 2006; 158: 1523-1532. 

[30] Chen WC, Wen TC, Teng H. Polyaniline-deposited porous carbon electrode for 

supercapacitor. Electrochim Acta 2003; 48(6): 641-649. 

[31] Mitrovic D, Panic V, Dekanski A, Milonjic S, Atanasoski R, Nikolic B. The 

effect of the composition of the dispersing medium of oxide sols on the electrocatalytic 

activity of sol-gel obtained RuO2-TiO2/Ti anodes. J Serb Chem Soc 66(11-12) (2001) 

847-857. 

[32] Zuleta M, Björnbom P, Lundblad A. Effects of pore surface oxidation on 

electrochemical and mass-transport properties of nanoporous carbon. J Electrochem Soc 

2005; 152 (2): A270-A276. 

[33] Malmberg H., Ruiz V, Blanco C, Santamaría R, Lundblad A, Björnbom P. An 

insight into Faradaic phenomena in activated carbon investigated by means of the 

microelectrode technique. Electrochem Commun 2007; 9(9): 2321–2325. 

 

 



 15

Table captions 

 

Table 1.- Textural characterization of ACMs 
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Figure Captions 

 

Figure 1. N2 Adsorption isotherms at 77 K. 

 

Figure 2.- SEM image of a transversal section of ACM-B monolith. 

 

Figure 3.- Variation of the specific capacitance values with the current density. Current 

load 50-5000 mA g-1 and operating voltage 1 V. 

 

Figure 4.- Complex-plane impedance plots for: a) the activated carbon monoliths 

(ACMs) and b) the conventional carbon/polymer composite (AC-B). 

 

Figure 5.- Ragone plots for the electrochemical cells. 

 

Figure 6.- a) Variation of the specific capacitance values on the number of cycles at a 

current density of 320 mA g-1 and b) cyclic voltammogram performance during cycling. 
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Table 1.-  

 

sample Vt/cm3 g-1 V0/cm3 g-1
 L0 /nm Smic/ m2 g-1 SBET/ m2 g-1 Vmeso/cm3 g-1 

ACM-A 1.27 0.92 1.12 1830 2652 0.33 

ACM-B 0.49 0.47 0.92 990 1107 0.05 

ACM-C 0.20 0.17 0.86 315 403 0.03 

Vt: total pore volume, V0: total volume of micropores, L0: average pore size, Smic: microporous 
surface area, SBET: apparent BET area, Vmeso: volume of mesopores. 
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Figure 1. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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