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Abstract 

Hydrogen and Nitrogen adsorption isotherms at cryogenic temperatures (77 and 87 K) 

were used to characterize the microporosity of a series of gradually activated carbons, 

representing various pore size distributions (PSD). Carbon PSDs were calculated by 

simultaneous fitting of the DFT model isotherms to their experimental counterparts. 

Resulting PSDs represent robust characteristics of the carbon structures that are 

consistent with all the data used in the analysis. The range of pore size analysis in this 

method is extended to smaller pore sizes compared to the standard nitrogen adsorption 

analysis. In addition, it is shown that this approach allows to detect and exclude 

experimental points that are not fully equilibrated due to diffusion problems in narrow 

micropores. The results of the analysis of a series of carbons activated with 

systematically increasing burn-off show that the presented approach is a useful tool for a 

comprehensive characterization of microporous carbons, and for obtaining detailed and 

reliable carbon PSDs.  
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1. Introduction 

Hydrogen storage by means of physical adsorption on various microporous materials is 

considered a safe and convenient method of handling hydrogen fuel for automotive 

applications [1, 2]. The most often studied candidates for such applications are activated 

carbons [3-5], synthetic carbons [6], single and multi-wall nanotubes [7,8], and metal 

organic framework materials [9,10]. Understanding the relationship between pore 

structure and hydrogen adsorption capacity under various temperature and pressure 

conditions is key in the development of materials that would be of practical significance 

for hydrogen storage. The pore structure of porous materials is usually described in terms 

of the pore size distribution (PSD), traditionally evaluated from the analysis of nitrogen 

or argon adsorption isotherms measured at cryogenic temperatures [11]. However, for the 

PSD analysis of materials considered for hydrogen storage it is reasonable to also use H2 

adsorption data [12]. This is because a fraction of the pores accessible to H2 may not be 

accessible to N2 or Ar molecules especially at cryogenic temperatures. Practical 

advantage of using H2 for micropore structure characterization was recently demonstrated 

in a study [13] where the H2 adsorption data measured at 77 K below 1 atm were used for 

quantitative prediction of high pressure hydrogen adsorption on porous carbons at 

ambient temperatures. The H2 adsorption was modeled by the Non-local density 

functional theory (NLDFT).  

The purpose of this work is to show that H2 adsorption data measured at 77 and 

87 K may be used in conjunction with standard nitrogen adsorption isotherms, measured 

at 77 K, to derive carbon PSD consistent with both nitrogen and hydrogen adsorption 
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isotherms. In this approach the lower limit of pore size analysis is extended below that of 

the standard nitrogen analysis. We show that, because of the fact that H2 molecules can 

access smaller pores than N2, our approach allows to characterize this part of carbon pore 

structure which is useful for hydrogen storage applications but is not “visible” by the N2 

analysis.  

The usefulness of the simultaneous analysis of adsorption data of multiple gases 

to achieve a more complete characterization of carbon materials is demonstrated. An 

example of samples which cannot be explained by N2 adsorption but can be well-

described by using N2 in conjunction with H2 is presented. This is of significant 

importance for understanding and designing carbon micro structures for many 

applications of microporous carbons including hydrogen storage, energy storage, and gas 

separation.  

 

2. Experimental 

Adsorption isotherms of nitrogen at 77 K and hydrogen at 77 and 87 K analyzed in this 

study were measured on a series of microporous carbons with increasing porosity derived 

from poly(ethylene terephthalate), PET, precursor. The initial carbon sample, PC, is a 

ground char obtained by the pyrolysis of PET waste at 773 K under nitrogen atmosphere 

followed by an ulterior heat treatment at 1200 K for 1 h. The PC sample was then 

activated with CO2 at 1200 K and, depending upon the degree of burn-off (12, 35, 58 and 

76%), the following series of activated carbon samples was obtained: PC12, PC35, PC58, 

and PC76. Measured adsorption data and detailed experimental methods were reported 

and discussed elsewhere [14-16]. 
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3. Results and Discussion 

In this work, the calculations of all model isotherms were performed following the 

implementation of Tarazona’s NLDFT [17] described by Lastoskie et al [18]. The slit 

pore model was assumed for carbon pores and the carbon-fluid interactions were 

described by the Steele potential [19]. Nitrogen NLDFT isotherms at 77 K were 

calculated using parameters reported elsewhere [20].  

The Lennard-Jones fluid-fluid interaction parameters εff and σff for H2 were taken from 

Stan and Cole [21]. For the H2 hard sphere diameter the value of σff was used. For the 

solid-fluid interaction parameters the optimized values were used. These values were 

derived [13] by fitting the DFT isotherm calculated for the flat graphitic surface to the 

adsorption isotherm measured on a graphitized carbon black sample. The values of 

parameters used to calculate the H2 model adsorption isotherms are summarized in Table 

1. Due to the fact that at low temperatures hydrogen is a quantum fluid, the quantum 

corrections were applied in the calculations of H2 isotherms by using Feynman’s 

“effective potential” [21]. 

We calculated two sets (kernels) of model NLDFT isotherms of H2 adsorption at 77.3 

and 87.4 K in the pressure range of 0-1 atm. Fig. 1 shows selected model H2 isotherms at 

both temperatures calculated for several pore widths. The pore width, w, is considered 

here an “effective pore width” [22] defined as w = H-3.4 Å, where H is the distance 

between the centers of the surface carbon atoms in the opposite pore walls. The isotherms 

in Fig. 1 are expressed in terms of the H2 density calculated per effective pore volume. 

High values of the calculated H2 density at 77 K in the 3 Å micropores, compared to the 

H2 liquid density, were discussed in the earlier work [13]. 
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Since hydrogen is a supercritical gas at 77 and 87 K its adsorption isotherms are of type 

1. It is seen that their shapes for larger pores become increasingly more similar to one 

another, and thus less sensitive to pore sizes. This implies that in order to calculate 

carbon PSD in a range of mesopores it is necessary to use an additional adsorbate such as 

N2 or Ar at their boiling point temperatures.  

Mathematical procedure used to calculate the PSD can be described as fitting of the 

theoretical adsorption isotherms to the experimental data. Usually, one isotherm of a 

single adsorbate is used for such calculations. Here, a set of multiple adsorption 

isotherms is fitted simultaneously by their corresponding model isotherms to yield a 

single PSD as a common solution for all experimental data used in the analysis. 

Mathematically, the PSD is obtained by solving the multi-adsorbate and multi-kernel 

integral equation [23] 
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where pi is the pressure of i-th adsorption point, Vm and Km are the experimental 

adsorption isotherm and the kernel for m-th adsorbate, and f(w) is the differential PSD to 

be calculated. To obtain a stable and physically feasible solution for f(w) we use the 

numerical algorithm SAIEUS [24] which utilizes the regularization procedure and 

imposes nonnegativity constraints on the solution [24, 25].  

In our calculations using Eq. (1) we consider three sets of adsorption data measured for 

each carbon sample:  

i. HH: two H2 isotherms measured at 77 and 87 K 

ii. HHN: the same two H2 isotherms as in (i) plus the N2 isotherm at 77 K  
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iii. N: single N2 isotherm 

To illustrate the problem of evaluating the PSD for larger pores (w>10 Å) using H2 

isotherms only, and the advantage of using N2 in conjunction with H2 adsorption data, we 

calculate two versions of the PSD for PC35 sample using HH and HHN data sets. The 

differential PSDs are shown in Fig. 2a and 2b for HH and HHN set, respectively. The 

error bars in this figure represent the statistical uncertainties calculated from the 

covariance matrix of the solution of Eq. (1) [24]. For pore widths smaller than ~7 Å the 

uncertainty in the calculated PSD values is relatively small in both cases, however in the 

case of the HH set (Fig. 2a) the uncertainty exceeds the calculated PSD for pores larger 

than ~10 Å. This is related to the fact that the H2 isotherms for larger pores (>10 Å) are 

similar in shape (Fig. 1) which in mathematical terms means that they are linearly 

dependent. Such linearly dependent isotherms included in the kernel lead to the non-

unique solutions of Eq. (1) even if regularization is applied. Fig. 2b shows that adding the 

N2 isotherm to the fitting procedure significantly reduces the uncertainty of the calculated 

PSD. The result obtained from the combined data (HHN) represents the effective solution 

which is consistent with H2 and N2 isotherms. The cumulative PSDs (Fig. 2c) calculated 

for the two sets of data are in good agreement for w<10 Å and diverge for w>10 Å. This 

example demonstrates that H2 isotherms (at 77 and 87 K) can be used for the PSD 

calculation only in the limited range of micropores smaller than 10 Å. However, for the 

characterization of larger pores an additional isotherm such as N2 at 77 K is necessary.  

In a systematic analysis of our samples we attempt to use Eq. (1) to fit a HHN 

adsorption data set as well as a single N2 isotherm (set N) for all samples. The results of 

fitting the model to the experimental data are shown in Fig. 3 and 4, and the calculated 
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differential and cumulative pore size distributions are shown in Fig. 5 and 6. A good fit to 

all three experimental isotherms (HHN) is obtained for all samples except for the PC 

carbon.  

It should be kept in mind that PC sample was obtained after pyrolysis of the PET 

precursor and ulterior heat treatment of the char up to 1200 K, without further activation 

step. As a result, its porosity is poorly developed and mainly composed of narrow 

micropores (based on CO2 adsorption data), as it has been described in earlier works 

[15,16]. It appears that due to slow diffusion and/or because of the pore connectivity 

problems [26] the N2 adsorption isotherm measured for this carbon is not fully 

equilibrated. In comparison with other N2 isotherms (Fig. 4) this isotherm (Fig. 4a) 

appears to be shifted to higher pressures, especially for low amounts adsorbed. The shift 

in the isotherm causes a corresponding shift in the PSD calculated from this isotherm 

(Fig. 5a). This erroneous shift in PSD is evident from the comparison with the PSD of 

PC12 (Fig. 5b). Even though the PSD calculated for PC sample from a single N2 isotherm 

is incorrect, a fairly good fit was obtained in the analysis (Fig. 4a). On the other hand, 

when the whole HHN set of data is analyzed by Eq. (1) a dramatic deviation of the fitted 

N2 curve (continuous line in Fig. 4a) from the experimental points is observed. Fitting a 

full HHN set of data for a given sample may be considered a test of consistency of the 

adsorption data for that sample. This test failed for the PC sample, which is in agreement 

with the results of Lozano-Castelló at al. [27,28] who concluded that due to diffusion 

problems the N2 adsorption isotherms at 77 K cannot be used to characterize very narrow 

micropores (<7 Å) and suggested using CO2 isotherms at 273 K instead.  

In our analysis we decided to use the HH set to characterize the PC sample. The 
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calculated narrow PSD, below ~10 Å is consistent with the sequence of PSDs (Fig. 5) 

showing gradual widening of pores sizes of carbons obtained by progressive activation 

with increasing burn-off [15]. 

Based on the above discussion of diffusion problems, and on inconsistencies in fitting 

of HHN sets some of the original low pressure N2 adsorption points were excluded from 

the PSD analysis (full circles in Fig. 4). In such cases, in the range of very narrow pores, 

the PSDs were derived based on the information from H2 data which for such pores is 

more accurate than that obtained from N2 isotherm. 

The PSDs of activated carbon samples presented Fig. 5 and 6 show the effect of 

activation of the initial PC sample whose narrow PSD is modified by activation process 

towards wider pores with increasing burn-off. It is clearly seen that with increasing 

degree of activation the difference between the results obtained from the HHN and N sets 

decreases. This is because the enlargement of pores is accompanied by the reduction the 

amount of small micropores including the narrowest ones which are not accessible to N2 

molecules.  

These results are in good agreement with those reported in earlier works on the analysis 

of the PSD by CO2 adsorption that is considered to be sensitive to sizes of narrow 

micropores [15,16].  

 

4. Conclusions 

We have demonstrated that simultaneous analysis of adsorption data of multiple gases, 

such as H2 and N2 measured at cryogenic temperatures, by using the multi-kernel 

adsorption integral equation has several advantages for the accurate characterization of 
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microporous carbon materials: 

• The calculated PSDs are robust and consistent with more than one adsorption 

isotherms. 

• This approach allows to detect and disregard experimental points that are not fully 

equilibrated due to very slow diffusion to narrow micropores. 

• The range of pore size analysis is extended to smaller pore sizes compared to the 

standard nitrogen adsorption analysis. 

Proposed approach constitutes a useful tool for a comprehensive characterization of 

activated carbons, and for obtaining detailed and reliable carbon PSDs. 
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Table 1. NLDFT parameters used in the calculations of H2 theoretical isotherms. 

 

σff, Å εff/k, K σsf, Å εsf/k, K 

3.04 34.3 3.22 31.8 
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Fig. 1. Model H2 isotherms at 77.3 (continuous line) and 87.4 K (dashed line) for selected 
pore widths expressed as densities inside the pores calculated per effective pore volumes.  
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Fig. 2. Differential PSDs calculated for PC35 sample from (a) two H2 adsorption 
isotherms, HH, and (b) from all three adsorption isotherms, HHN. Error bars represent 
uncertainties. (c) Cumulative PSDs calculated from the HH set (dashed line) and from the 
HHN set (continuous line). 
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Fig. 3. Experimental adsorption isotherms of nitrogen at 77 K (circles), hydrogen at 77 K 
(squares), and hydrogen at 87 K (diamonds) for five samples. Fits by Eq. (1) are shown 
by continuous lines. In part (a) fitting was applied to H2 adsorption isotherms (HH), in (b-
e) to all three isotherms (HHN). 
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Fig. 4. Experimental adsorption isotherms of nitrogen at 77 K for five samples. Open and 
full circles represent points used and not used in the PSD calculations, respectively. Fits 
by Eq. (1) are shown by continuous lines for the case of fitting all adsorption isotherms, 
HHN, and by dotted lines for the fits of N2 adsorption isotherms only. 
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Fig. 5. PSDs showing development of porosity for five samples. Calculations were 
performed by fitting Eq. (1) to all three adsorption isotherms, HHN, (continuous line), to 
N2 isotherm only (dotted line), and to two H2 isotherms, HH, in the case of PC sample 
(dashed line). 
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Fig. 6. Cumulative PSDs for five samples. Notation as in Fig. 5.  
 
 

 


