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A New Root-Knot Nematode Parasitizing Sea Rocket from Spanish
Mediterranean Coastal Dunes: Meloidogyne dunensis n. sp.
(Nematoda: Meloidogynidae)

J. E. Paromares Rius,' N. Vovias,? A. TRoccoLs,? G. Ligganas,” B. B. Lanpa,' P. CastirLo’

Abstract: High infection rates of European sea rocket feeder roots by an unknown root-knot nematode were found in a coastal
dune soil at Cullera (Valencia) in central eastern Spain. Morphometry, esterase and malate dehydrogenase electrophoretic phe-
notypes and phylogenetic trees demonstrated that this nematode species differs clearly from other previously described root-knot
nematodes. Studies of host-parasite relationships showed a typical susceptible reaction in naturally infected European sea rocket
plants and in artificially inoculated tomato (cv. Roma) and chickpea (cv. UC 27) plants. The species is herein described and
illustrated and named as Meloidogyne dunensis n. sp. The new root-knot nematode can be distinguished from other Meloidogyne spp.
by: (i) perineal pattern rounded-oval, formed of numerous fine dorsal and ventral cuticle striae and ridges, lateral fields clearly
visible; (ii) female excretory pore at the level of stylet knobs, EP/ST ratio 1.6; (iii) second-stage juveniles with hemizonid located
1 to 2 annuli anteriorly to excretory pore and long, narrow, tapering tail; and (iv) males with lateral fields composed of four incisures
anteriorly and posteriorly, while six distinct incisures are observed for large part at mid-body. Phylogenetic trees derived from
distance and maximum parsimony analyses based on 18S, ITS1-5.85-ITS2 and D2-D3 of 28S rDNA showed that M. dunensis n. sp.
can be differentiated from all described root-knot nematode species, and it is clearly separated from other species with resemblance
in morphology, such as M. duytsi, M. maritima, M. mayaguensis and M. minor.

Key words: histopathology, host-parasite relationships, ITS1, ITS2, Meloidogyne, morphology, new species, phylogeny, ribosomal
DNA, root-knot nematode, scanning electron microscopy, taxonomy.

Sedentary endoparasitic root-knot nematodes of the
genus Meloidogyne Goeldi, 1892 are among nature’s
most successful plant parasites, being distributed world-
wide and encompassing more than 90 nominal species
(Eisenback and Triantaphyllou, 1991; Karssen, 2002;
Karssen and Moens, 2006). These nematodes infect
thousands of different herbaceous and woody mono-
cotyledonous and dicotyledonous plants and cause se-
rious losses to numerous agricultural crops worldwide
(Karssen and Moens, 2006). The systematic position of
the genus Meloidogyne at family level has been discussed
for many years. In this paper, we agree with the classi-
fication proposed by De Ley and Blaxter (2002).

Nematode surveys in the Mediterranean coastal sand
dunes in central eastern Spain revealed high infection
rates of European sea rocket (Cakile maritima Scop.)
feeder roots by a root-knot nematode. This root-knot
nematode is morphologically close related to Meloido-
gyne maritima (Karssen et al., 1998) and resembles
Meloidogyne minor (Karssen et al., 2004), which
prompted us to perform a comparative study among
related species. Some reliable diagnostic approaches
commonly used to identify and compare certain root-
knot nematode species include analyses of isozyme phe-
notypes and molecular analyses. The analysis of isozyme
electrophoretic patterns, in particular esterase (Est)
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and malate dehydrogenase (Mdh), has been proved to
be a valuable tool for precise identification of Meloido-
gyne species (Eisenback and Triantaphyllou, 1991).
Similarly, molecular approaches useful for distinguish-
ing Meloidogyne spp. include random amplified poly-
morphic DNA (RAPD) (Blok et al., 1997), restriction
fragment length polymorphisms (RFLP) (Hugall et al.,
1994) and sequence differences within ribosomal (Wis-
hart et al., 2002; Chen et al., 2003; Blok, 2005) or mi-
tochondrial DNA (Blok et al., 2002). In addition, de-
velopment of species-specific sequence-characterized
amplified region (SCAR) primers has been achieved
for rapid identification of the three most widely distrib-
uted species, M. arenaria (Neal, 1889) Chitwood, 1949,
M. incognita (Kofoid and White, 1919) Chitwood, 1949
and M. javanica (Treub, 1885) Chitwood, 1949 (Zijlstra
et al., 2000).

This work describes a new nematode species found
infecting European sea rocket and its phylogenetic re-
lationship with other root-knot nematodes based on
distance and maximum parsimony analyses of se-
quences from the 18S, ITS1-5.8S-ITS2 and D2-D3 of
28S rDNA. Additionally, host-parasite relationships
were studied in naturally infected European sea rocket
and in artificially inoculated tomato (Lycopersicon escu-
lentum Mill.) and chickpea (Cicer arietinum L.) plants.
The undescribed root-knot nematode is herein de-
scribed as Meloidogyne dunensis n. sp., the species epithet
referring to the habitat of the nematode.

MATERIALS AND METHODS

Nematode populations: Samples of European sea rocket
roots, together with rhizosphere and bulk soil, were
collected with a shovel from the upper 30 cm of soil in
Mediterranean coastal sand fore-dunes at Cullera (Va-



lencia), central eastern Spain, in December 2005 by the
first author. Samples were collected about half way up
in the seaward dune face. For diagnosis and identifica-
tion, females were collected directly from galled roots,
while males, eggs and second-stage juveniles (]J2) of
nematodes were extracted from the rhizosphere by cen-
trifugal-flotation (Coolen, 1979) and from feeder roots
of European sea rocket by blending in a 0.5% NaOCI
solution for 4 min (Hussey and Barker, 1973). Speci-
mens for light microscopy (LM) were killed with gentle
heat, fixed in a 4% solution of formaldehyde + propi-
onic acid and processed to glycerin by Seinhorst’s rapid
method (Seinhorst, 1966).

To obtain inoculum of M. dunensis n. sp. for histopa-
thology and electrophoretic and molecular analyses,
the nematode population under study and a reference
M. javanica population from olive trees sampled at Cor-
doba, Spain (Nico et al., 2003), were increased on to-
mato (cv. Roma) in a glasshouse at 25 + 3°C. For that,
a single egg mass of M. dunensis n. sp. was placed be-
neath the roots of individual tomato seedling in 12-cm
pots filled with sterile loamy soil. Sixty days after inocu-
lation, tomato plants were uprooted, their roots gently
washed free of soil and the root tissues teased apart
using forceps and transfer needles to remove adult fe-
males. Inoculum for histopathology was obtained by
extracting eggs and ]2 from 2-mon-old cultures using
0.5% sodium hypochlorite (Hussey and Barker, 1973),
followed by centrifugal flotation (Coolen, 1979).

Morphological studies: Individuals (J2 and males) for
morphological studies were collected on the rhizo-
sphere and roots of naturally infected European sea
rocket as described above. Second-stage juveniles
and males were infiltrated in glycerin by standard pro-
cedures (Seinhorst, 1966; Esser, 1986). Glycerin-infil-
trated specimens were used for studies of morphomet-
ric traits and drawings with camera lucida. Photomicro-
graphs of perineal patterns, J2 and males were made
with a 35-mm camera attached to a Reichart compound
microscope (Reichart-Jung, Milton Keynes, UK)
equipped with differential interference contrast (DIC)
optics. Measurements of all stages were made with cam-
era lucida and by ocular micrometer. All measurements
are in micrometers (pm) unless otherwise stated. Ran-
domly selected specimens of each life-stage were mea-
sured. Formaldehyde (4% solution) fixed specimens
were dehydrated in a gradient ethanol series, critical-
point dried, sputter-coated with gold and observed by
scanning electron microscopy (SEM) according to Abo-
lafia et al. (2002).

Perineal patterns of mature females were prepared
by standard procedures (Hartman and Sasser, 1985).
Briefly, root tissues were teased apart with forceps and
half spear to remove adult females. The lip and neck
regions of the nematode were excised, and the poste-
rior end was cleared in a solution of 45% lactic acid to
remove remaining body tissues. Then, the perineal pat-
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tern was trimmed and transferred to a drop of glycerin
and processed as described by Hartman and Sasser
(1985). At least 50 perineal patterns were examined for
species identification.

Isozyme analysis: Esterase and Mdh phenotypes of
Meloidogyne dunensis n. sp. from Cullera (Valencia),
Spain, were compared with a reference population of
M. javanica from Coérdoba, Spain. Five, young egg-
laying females of both nematode species were macer-
ated in microtubes containing 5 pL of 20% (wt/vol)
sucrose, 1% (vol/vol) Triton X-100 and 0.01% (wt/vol)
bromophenol blue. Electrophoresis was carried outin 7
x 8-cm separating (pH 8.8) and stacking (pH 6.8) ho-
mogeneous gels, 7% and 4% polyacrylamide, respec-
tively, 0.75-mm thick, with Tris-glycine buffer in a Mini
Protean II electrophoresis unit (BioRad, Madrid,
Spain). Gels were stained with the substrate a-naphthyl
acetate for Est and with Fast Blue RR (Sigma-Aldrich,
Madrid, Spain) for Mdh (Esbenshade and Triantaphyl-
lou, 1985).

DNA extraction, PCR assays and sequencing: Nematode
DNA was extracted from single adult females. Amplifi-
cations were performed with a PTC 200 thermocycler
(M] Research, Watertown, MA). The different regions
of rDNA were amplified as described by Castillo et al.
(2003) and Tigano et al. (2005) using the following
primer sets: MelF (5'-TACGGACTGAGATAATGGT-3")
and MelR (5'-GGTTCAAGCCACTGCGA-3") for the
188, 5367 (5'-TTGATTACGTCCCTGCCCTTT-3’) and
F195 (5'-TCCTCCGCTAAATGATATG-3") for the
ITS1-5.85-1TS2, D2A (5'- ACAAGTACCGTGAGGGA-
AAGTTG-3") and D3B (5'-TCGGAAGGAACCAGCTA-
CTA-3") for the D2-D3 region of 28S. The different
rDNA products were purified after amplification with a
gel extraction kit (Geneclean turbo; Q-BIOgene SA,
Illkirch Cedex, France), quantified using a Nanodrop
spectrophotometer (Nanodrop Technologies, Wil-
mington, DE) and used for direct DNA sequencing.
DNA fragments from three PCR amplifications from
three different samples were sequenced in both direc-
tions using the same amplification primers with a ter-
minator cycle sequencing ready reaction kit (BigDye;
Perkin-Elmer Applied Biosystems, Warrington, UK) ac-
cording to the manufacturer’s instructions. The result-
ing products were purified and run on a DNA multi-
capillary sequencer (Model 3100 genetic analyzer; Ap-
plied Biosystems, Foster City, CA) at the University of
Cordoba sequencing facilities. The 18S, ITS1-5.8S-ITS2
and D2-D3 sequences of M. dunensis n. sp. were depos-
ited as GenBank Accession EF612713, EF612711 and
EF612712, respectively.

Phylogenetic analysis: The 18S, ITS1-5.85-ITS2 and D2-
D3 sequences of M. dunensis n. sp. were compared di-
rectly with sequences in the EMBL and GenBank data-
base using BLAST to identify the most closely related
nematode sequences. Database sequences with high
similarity were then directly aligned over equalized
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lengths with the sequences of M. dunensis n. sp. using
Bionumerics 4.5 software (Applied Maths, Kortrijk, Bel-
gium). 18S sequence (AJ966499) of P. thornei Sher and
Allen, 1953 and ITS1-5.85-ITS2 (AB053485) and D2-
D3 (AF170443) sequences of Pratylenchus coffeae (Zim-
merman, 1898) Filipjev and Schuurmans Stekhoven,
1941 were used as outgroup taxa. Phylogenetic trees
were generated by the Neighbor-Joining (NJ]) and
Maximum-Parsimony (MP) methods with UPGMA clus-
ter analysis using Bionumerics 4.5 software. The phylo-
grams were bootstrapped 1,000 times to assess the de-
gree of support for the phylogenetic branching indi-
cated by the optimal tree for each method.

Histopathology: Galled roots of European sea rocket
plants naturally infected by M. dunensis n. sp. were se-
lected for histopathological studies. Roots were gently
washed free of adhering soil and debris, and individual
galls were selected together with healthy roots. Tissues
were fixed in formaldehyde chromo-acetic solution for
48 hr, dehydrated in a tertiary butyl alcohol series (40—
70-85-90-100%), embedded in paraffin with a melting
point of 58°C and sectioned with a rotary microtome.
Sections 10-12 pm thick were placed on glass slides,
stained with safranin and fast-green, mounted perma-
nently in a 40% xylene solution of a polymethacrylic
ester (Synocril 9122X, Cray Valley Products, NJ), exam-
ined microscopically and photographed (Johansen,
1940). The same procedures were used for histopatho-
logical examination of roots from two cultivated plants,
tomato (cv. Roma) and chickpea (cv. UC 27), artifi-
cially inoculated with M. dunensis n. sp. Both plants
were selected since they are a common Meloidogyne
susceptible host in temperate and semiarid regions of
the Mediterranean Basin.

SYSTEMATICS

Meloidogyne dunensis n. sp.
(Figs. 1-4, Table 1)

Holotype (female in glycerin): L = 734 pm; maximum
body width = 520 pm; a = 1.4; stylet length = 14 pm;
dorsal pharyngeal gland opening (DGO) = 4.3 pm; ex-
cretory pore from anterior end = 23 pm; excretory pore
distance from anterior end/length of stylet (EP/St) =
1.6; vulva slit length = 21 pm; and distance from vulva to
anus =14 pm.

Female paratypes: (n = 12) L = 549 + 86 (395-620) pm;
maximum body width = 400 + 80 (380-542) pm; a =
1.3 £ 0.3 (1.0-1.6); stylet length 14 + 1.8 (13-16) pm;
excretory pore distance 23 + 1.3 (19-24) pm; EP/ST
ratio (excretory pore to anterior end distance/stylet
length) = 1.6 + 0.2 (1.2-1.8); vulva slit = 20 + 1.2 (18-
22) pm; vulva-anus distance = 15 + 0.8 (13-16) pm.

Female: Body completely or partially enclosed by
galled tissue, distinctly annulated, pearly white, pear
shaped and sometimes globose. Neck region distinct,

124 + 5.7 (118-132) pm long. Head region set off from
the body, often twisted. Head cap distinct, variable in
shape, labial disk elevated; cephalic framework weakly
sclerotized. Stylet cone slightly curved ventrally, shaft
cylindrical, knobs rounded and sloping backwards in
most of the specimens. Excretory pore located slightly
posterior to the level of stylet knobs. Pharyngeal gland
with a large mononucleate dorsal lobe and two sub-
ventral gland lobes. Perineal pattern rounded-oval (as
illustrated in figures), typically formed of numerous
fine dorsal and ventral cuticle striae and ridges, lateral
fields clearly visible. The dorsal arch encloses the usu-
ally fine but distinct phasmids. The vulva slit is centrally
located to the unstriated area, slightly wider than the
vulva-anus distance; anus fold clearly visible. Com-
monly, large egg sac occurs outside the root gall, con-
taining up to 400 eggs.

Eggs: Embryonated eggs (n = 30): Length: 98 + 2.8
(94-103) pm; maximum width 40 = 1.3 (38-42) pm
Length/Width = 2.4 + 0.1 (2.2-2.5). Egg shell hyaline
and unsculptured when observed under light micro-
scope. Second-stage juvenile in full embryonated eggs
folded three to four times.

Male: Body vermiform, tapering anteriorly; tail
rounded, with twisted posterior body portion. Lip re-
gion slightly set off, 5.7 + 0.48 (4.7-6.0) pm high, 11.3
+ 1.16 (8-12.3) pm wide, with large labial annulus and
a prominent post labial annulus. Prominent slit-like am-
phidial openings between labial disc and lateral lips.
Labial framework strongly sclerotized; vestibule exten-
sion distinct. Stylet with straight cone and shaft. Stylet
knobs rounded and sloping backwards. Body annula-
tion distinct, 3 + 0.4 (2.2-3.7) pm wide. Lateral field
composed of four incisures anteriorly and posteriorly.
Six distinct incisures were observed at mid-body, form-
ing five equidistant bands, in 20% of the specimens. In
SEM (face view), labial disc is high and narrower than
the head region, continuous with medial lips; lateral
lips absent; stomatal opening slitlike, located in large
elongate prestoma. Amphidial apertures large, elon-
gated, slit-like between labial disc and lateral sectors of
head region. Testis single, long, monorchic, occupying
31 to 67% of body cavity. Tail usually curved ventrally,
short, with bluntly rounded tip and finely annulated.
Phasmids small and located at level of the cloaca.

Second-stage juveniles: Body translucent white, vermi-
form, rather long, tapering at both ends with very long,
narrow tail. Anterior end angular; lip region continu-
ous with body contour. In SEM view, the slit-like stoma
is located in oval-shaped prestoma, surrounded by six
pore-like openings of inner labial sensilla. Medial lips
and labial disc dumbbell-shaped in face view. Labial
disc rounded, raised slightly above medial lips. Lateral
lips small and oval-rounded, lower than labial disc and
medial lips. Elongate amphidial apertures located be-
tween labial disc and lateral lips. Lip region not annu-
lated; body annuli distinct but fine. Lateral fields be-
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FiG. 1. Line drawings of Meloidogyne dunensis n. sp. A) Second-stage juvenile (J2) anterior end. B) J2 lateral field at mid-body. C) J2
pharyngeal region. D) ]2 lip region. E-H) ]2 tail regions. I) Male entire body. J) male stylet. K, O) Male anterior end. L.) Male lateral field at
mid-body. P, Q) Female pharyngeal region. R) Outline of whole females. S) Perineal pattern.

ginning near level of procorpus as two lines; near meta- line tail terminus, irregularly areolated. Stylet delicate;
corpus third line begins and shortly splits making four cone straight, narrow, sharply pointed; shaft becomes
lines, running entire length of body until end near hya- slightly wider posteriorly; knobs large, rounded, sepa-
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FiGc. 2. Photomicrographs of Meloidogyne dunensis n. sp. Second-stage juvenile (A-C): A) Pharyngeal region. B, C) Tail regions. Male (D-H):
D) Pharyngeal region. E, G) Tail region at different magnification. F) Lip region. H) Lateral field. Female (I-P): I) Pharyngeal region. J, K)
Anterior end. L, N-P) Perineal patterns. M) Whole body. Scale bars: A-I, L, N-P = 25 ym; J, K = 15 pm. M = 250 pm.

rate from each other, backwards directed. Procorpus anterior to it. Gland lobe variable in length, with three
faintly outlined; metacorpus oval-shaped with enlarged equally sized nuclei and overlapping intestine ventrally.
lumen lining; isthmus not clearly defined, pharyngeal- Excretory pore distinct, at level with the half or poste-
intestinal junction at excretory pore level, or slightly rior third of isthmus. Hemizonid distinct, located 1 to 2
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Fi6. 3. Scanning electron microscope photographs of Meloidogyne dunensis n. sp. Second-stage juvenile: A-C) Lip region. D, F) Tail region.
E) Ventral view of anal region. G, H) Lateral field at mid-body. Male: H) Lateral field at pharyngeal region. I-]) Lip region. K) Lateral field
at mid-body. L-M) Tail region. Scale bars: A, G, E, G, I =5 pm; B =2 pm; D, F, L, M, 20 pm; H, J, K= 10 pm.

annuli anteriorly to excretory pore, extending for two Hyaline tail terminus clearly defined; tail tip finely
additional body annuli. Tail thin, conoid; annulations rounded, rarely clavate. Rectum dilated. A few fat drop-
diminish in size, become more irregular posteriorly. lets may occur in hyaline tail terminus. Phasmids small,
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FiG. 4. Scanning electron microscope photographs of Meloidogyne dunensis n. sp. A-C) Female lip regions. D-I) Perineal patterns showing
typical variation. (ep = excretory pore). Scale bars: A-C =5 pm; D, F, I = 50 ym; E, G, H= 20 pm.

difficult to observe, located posterior to anus, at mid-tail
level.

Type host and locality: Holotype female and additional
paratypes from a population extracted from soil
samples and infected roots of European sea rocket
(Cakile maritima Scop.) collected by the first author
from the Mediterranean coastal dunes in Cullera (Va-
lencia), central eastern Spain.

Type specimens: Holotype female, female perineal pat-
terns, allotype male, J2 and paratype males, mounted
on glass slides deposited in the author’s nematode col-
lection at the Istituto per la Protezione delle Piante,
CNR, Bari, Italy, and Instituto de Agricultura So-
stenible, CSIC, Cordoba, Spain. Additional males and
J2 paratypes were distributed to the United States De-
partment of Agriculture Nematode Collection, Belts-
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TaBLE 1. Morphometrics of adult males and second-stage juveniles (J2) of Meloidogyne dunensis n. sp.*

Males

J2

Mean + SD (range)

Mean + SD (range)

n
Lb

Head width

Head height

Stylet

Conus

Knobs width

D.G.O.

O (%)

Head to center of median bulb
Median Bulb height

Median Bulb width

Isthmus length

Pharynx (to cardia)

Pharynx. (to end of gland lobe)
Pharyngeal overlap

Head end to excretory pore
Max body diam.

Annuli width

Lateral field width

Head end to gonad primordium
Testis length

T (%)

12

1,371 £172.2 (1,196-1,813)

113+ 1.2 (8-12.5)
5.7+ 0.5 (4.5-6)
20 + 1.6 (16-22)
11+0.8 (9.5-11.5)
45+ 0.3 (4-5)
3.5+ 0.7 (2.5-4.5)
17.4 + 8.7 (12.5-24.5)
82 + 5.5 (74.5-93.0)
91.5 + 2.6 (19.5-26.5)
12.0 + 1.7 (9.0-14.5)
99.5 + 6.9 (12.0-32.5)
124 = 11.5 (108-143)
248 + 63.8 (190-407)
124.5 + 62.6 (59.5-286)
146 + 12.2 (121.5-166)
45 + 4.0 (36-49)
3.0 + 0.4 (2.2-3.7)

697 + 183.4 (486-1,057)
50 + 12.1 (31-67)

15
446 + 23.0 (417-483)
6.0 £ 0.3 (5.5-6.0)
2.5+ 0.2 (2.5-3.0)
115+ 0.6 (11.0-12.5)
6.0 + 0.5 (5.0-6.5)

2.0 + 0.3 (2-9)

9.5+ 0.4 (1.5-3.0)
91.0 = 3.8 (14-27)

58 + 3.4 (53-56)

18+ 0.9 (12.5-15.0)

9+ 0.6 (8-10)

83 + 4.3 (77-90)
201 = 23.7 (152-232)
115 + 28.5 (65-146)

85 + 4.5 (79-94)
15.0 £ 1.1 (18-17)

1.1=0.1 (1.0-1.2)

5.0 + 0.6 (3.5-5.5)
955 + 44.2 (184-318)

Tail length
Anal body diam.
Tail hyaline portion (J2)

5.7+ 1.3 (3.5-8.0)
175+ 1.9 (14.0-19.5)

68.0 + 7.8 (54-82)
11.0 + 0.8 (9.5-12.5)
— 14.0 £ 1.9 (9.5-16.5)

Spicules 35.5 + 2.9 (29-38) —
Gubernaculum 8.5+ 1.3 (6.0-10.5) —

a 33.4 + 4.0 (26.8-41.6) 29.5 £ 2.9 (25.6-34.5)
b 11.6 + 1.4 (9.8-14.9) 5.3 +0.3 (4.9-6.0)
b’ 5.9+ 1.1 (4.4-8.0) 2.2 +0.3 (2.0-3.0)

[¢ 280.6 + 59.5 (186.6-385.3) 6.7 +£ 0.8 (5.1-8.3)
¢ 0.3+0.1 (0.2-0.5) 6.3+ 0.5 (5.1-6.8)

“ All measurements are in pm unless otherwise stated.
" All other abbreviations used are defined by Siddiqi (2000).

ville, MD, University of California Riverside Nematode
Collection and Nematode Collection of Wageningen,
Wageningen University and Research Center, Labora-
tory of Nematology, Wageningen, The Netherlands.

Etymology: The species name is in accordance with the
habitat (coastal dunes).

Diagnosis: Meloidogyne dunensis n. sp. can be distin-
guished from all other Meloidogyne spp. by a number of
morphological and molecular characteristics. Useful di-
agnostic characters include the morphology of female
perineal pattern, rounded-oval, typically formed of nu-
merous fine dorsal and ventral cuticle striae and ridges;
lateral fields not clearly visible in most of fixed speci-
mens; the female excretory pore position, which is
slightly posterior to the level of stylet knobs, EP/ST
ratio = 1.6 + 0.2 (1.2-1.8); the second-stage juvenile’s
body length, which is 417-483 pm long, having a rela-
tively short stylet, 11-12.5 pm in length; the narrow tail,
about 70 pm long, tapering to a slender terminal digi-
tiform process, with hyaline region = 14 + 1.9 (9.5-16.5)
pm long; and males with stylet 20 pm long and lateral
fields composed of four or rarely six incisures.

Relationships: The female perineal pattern morphol-

ogy of M. dunensis n. sp. places it in the Jepson’s Group
3 (Jepson, 1987) and apparently resembles M. duytsi
Karssen, van Aelst and van der Putten, 1998, M. mar-
itima Jepson, 1987, M. mayaguensis Rammah and
Hirschmann, 1988 and M. minor, but differs distinctly
from these species in the position of the excretory pore
(EP/ST ratio, 1.6 vs. 2.8, 1.1, 3.0 and 1.3, respectively)
and perineal pattern morphology. In addition, the fol-
lowing characters and morphometrics separate M.
dunensis n. sp. from M. maritima (Karssen et al., 1998)
(Table 2): position of hemizonid in J2 (anterior, adja-
cent to excretory pore vs. posterior not adjacent to ex-
cretory pore), J2 stylet length (11.5 pm vs. 12.4 pm);
spicules and gubernaculum length (35, 8.5 pm vs. 28.9,
7.3 pm). Also, M. dunensis n. sp. can be differentiated
from M. minor (Karssen et al., 2004) (Table 2): stylet
(11.5 pm vs. 9.2 pm) and tail length of J2 (68 pm vs. 54
pm); spicules (35 pm vs. 25.6 pm) and gubernaculum
length (8.5 pm vs. 6.1 pm).

Meloidogyne dunensis n. sp. also differs markedly from
the other known European root-knot nematodes (Kars-
sen and van Hoenselaar, 1998; Karssen, 2002; Castillo
et al., 2003): M. ardenensis Santos, 1968; M. artiellia
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TABLE 2.

Morphological and morphometrics differences among Meloidogyne species common in European coastal sand dunes®.

dunensis n. sp. duytsi hapla maritima minor
Female
Stylet length 14 (13-16) 13.3 (12.6-13.9) 15 (13-17) 14.2 (13.9-15.2) 14.2 (12.6-15.2)

Knobs shape

EP/ST ratio
Perineal pattern

Isozyme® phenotype
Est
Mdh

Body length
Stylet length
Hemizonid position

Tail length
Tail hyaline portion

Stylet length
Knobs shape

Spicules
Gubernaculum

rounded and/or
sloping backwards

1.6 (1.2-1.8)
rounded to oval with
numerous fine
dorsal and ventral

striae

VS1
Nlc

446 (417-483)
11.5 (11.0-12.5)
anterior, adjacent
to EP
68 (54-82)
14.0 (9.5-16.5)

20 (16-22)
rounded and sloping
backwards
35 (29-38)
8.5 (6.0-10.5)

transversely ovoid

2.8 (2.4-3.4)
asymmetrical shaped,
dorsal arch low,

with coarse striae

VS1
N2

424 (403-454)
11.1 (10.7-12.0)
anterior, adjacent
to EP
70 (65-77)
11.3 (9.5-13.3)

19.8 (19.0-20.2)
transversely ovoid

95.9 (24.0-27.2)
7.1 (6.3-7.6)

relatively small,
rounded and set off

3.0
rounded with low
dorsal arch, with
punctations in tail
terminus area

H1
H1
J2
337 (360-500)
9.7 (7.9-10.9)
anterior, not adjacent
to EP
(48-70)
(12-19)
Male
20.5 (19-22)
relatively small,
rounded, set off
25.7 (21.6-28.1)
8.2 (7.2-9.4)

rounded to ovoid,
slightly sloping
backwards
1.1 (0.7-1.2)
small, rounded to
weakly oval, dorsal
arch low with
coarse striae

VS1-S1
Nlc

471 (442-512)
12.4 (12.0-12.6)
posterior, not adjacent

to EP
72 (66-76)
13.6 (9.0-17.1)

20.5 (19.6-22.1)
transversely ovoid

98.9 (27.8-29.7)
7.3 (6.3-7.6)

transversely ovoid,
slightly sloping
backwards
1.3 (1.1-1.7)
small, rounded with
fine striae, dorsal
arch low with
coarse striae

VS1
Nla

377 (310-416)
9.2 (7.6-10.1)
posterior, adjacent
to EP
54 (49-63)
16.1 (12.0-22.1)

17.8 (17.1-19.0)
transversely ovoid

95.6 (22.8-28.4)
6.1 (5.7-6.3)

“ All measurements are in pm unless otherwise stated.

" Isozyme phenotypes used are defined by Esbenshade and Triantaphyllou (1985).

Franklin, 1961; M. baetica Castillo, Vovlas, Subbotin and
Troccoli, 2003; M. fallax Karssen, 1996; M. hapla Chit-
wood, 1949; M. hispanica Hirschmann, 1986; M. kralli
Jepson, 1983; M. lusitanica Abrantes and Santos, 1991;
and M. microtyla Mulvey, Townshend and Potter, 1975.
In addition, M. dunensis n. sp. differs from related spe-
cies in Est and Mdh phenotypes, as well as sequences of
the ITS1-5.85-ITS2 region, the D2-D3 fragment of the
28S gene of rDNA and the small subunit 18S rDNA
sequence (see below).

Isozyme and molecular characterization: The isozyme
electrophoretic analysis of five-specimen groups of
young egg-laying females of M. dunensis n. sp. revealed
one very slow, weak VSI Est band after prolonged stain-
ing (Fig. 5A) and a Nlc Mdh phenotype with two very
weak bands (Fig. 5B) that did not occur in the Est and
Mdh phenotypes of M. javanica, which showed ]3 and
N1 phenotypes, respectively (Fig. 5).

Amplification of the 18S, ITS1-5.8S-ITS2 and D2-D3
region of 285 rDNA yielded single fragments of ap-
proximately 900, 700 and 840 bp, respectively, for M.
dunensis n. sp. The alignments of the 18S, ITS1-5.8S-
ITS2 and D2-D3 region of 28S gene sequences were
780, 580 and 800 bp in length, respectively. The ITS
and D2-D3 sequences of M. dunensis n. sp. were clearly
different from that present in the GenBank database.
Substantial sequence divergence for 18S (0.8-3.2%),
ITS1-5.8SITS2 (10.5-57.2%) and D2-D3 region of 28S
(7.5-32.4%) sequences for the new species distinguish
M. dunensis n. sp. from other studied root-knot nema-
todes and support its separate specific status (see be-
low).

The topology of the phylogenetic trees obtained with
the NJ and MP was consistent, therefore only NJ trees
are shown in Figure 6 with bootstrap values. Different
Meloidogyne spp. were used in the phylogenetic analysis
of 18S, ITS1-5.85-ITS2 and D2-D3 genes due to se-
quence availability in the GenBank database. For 18S
rDNA data, three main clades were identified in the
NJ analysis of 18S (Fig. 6A). One clade with low boot-
strap support included the most common and widely
disseminated species (M. arenaria, M. javanica and
M. incognita) plus other Meloidogyne spp. (M. arabicida,
M. ethiopica, M. exigua, M. floridensis, M. mayaguensis,
M. morocciensis and M. paranaensis), but the relation-
ships within this clade were poor. Another clade with
moderate bootstrap support (62%) included M. dunen-
sisn. sp. together with M. ardenensis, M. hapla, M. grami-
nis, M. maritima, M. microlyla and M. partityla. A third,

dunensis dunensis
/—% /—%

B

g
mj mj mj mj
Fic. 5. Esterase (Est) and malate dehydrogenase (Mdh) electro-

phoresis patterns of protein homogenates from five young, egg-laying
females of Meloidogyne dunensis n. sp., and five young, egg-laying fe-
males of M. javanica = reference population.
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Rooted Neighbor-Joining trees resulting from analysis of alignments of: A) 18S, B) ITS1-5.85-ITS2 and C) D2-D3 of 28S of rDNA

sequences of Meloidogyne dunensis n. sp. with other root-knot nematodes. Bootstrap support more than 50% given for appropriate clade.

highly supported clade (90%) comprised M. chitwoodi,
M. fallax, M. graminicola, M. minor, M. naasi and M.
onyzae. The trees obtained from NJ analysis of ITS1-
5.85-ITS2 and D2-D3 sequences showed that M. dunen-
sis n. sp. formed a clade with different Meloidogyne
spp- and maximum bootstrap support (100%) apart
from the clade including M. baetica and M. artiellia
(Fig. 6B,C). In the NJ analysis of ITS1-5.8S-ITS2, M.
dunensis n. sp. (Fig. 6B) appeared occupying a basal
position in a clade (92% support) with different
Meloidogyne spp. such as M. hapla, M. mayaguensis, M.
arenaria, M. javanica, M. thailandica and M. incognita
and as a sister taxon (96% support) to M. minor,
M. chitwoodi and M. fallax; whereas in the NJ analysis
of D2-D3 sequences, it stood separately from all the
other Meloidogyne spp. included in the analysis occupy-
ing a basal position within the tree (100% support)
(Fig. 6C).

Histopathology: European sea rocket plants, as well as
the cultivated hosts (tomato and chickpea), showed

similar disease reaction (Figs. 7,8). Root galls induced
on the three host roots were variable in size but rela-
tively large (almost three times the root diameter) and
located commonly along the root axis but rarely on the
root tip. Numerous lateral roots arising from galled
root portions were also galled. Frequently, galls con-
taining more than one nematode female were observed
associated with their separated feeding sites. Compara-
tive histological observations on healthy and M. dunen-
sisinfected European sea rocket, tomato and chickpea
roots revealed marked cellular alterations into cortex,
endodermis and vascular parenchyma tissues induced
by the nematode during its feeding activity. In the per-
manent feeding sites, the nematode induced a success-
ful formation of large, multinucleate giant cells adja-
cent to the vascular tissues in all three plant hosts. This
formation led to disorganization and disruption of xy-
lem elements and primary phloem cells. Nematode
feeding sites comprised three to eight giant cells which
surrounded the lip region of a single female (Figs. 7,8).
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FiG. 7.

Infection and feeding site structures of Meloidogyne dunensis n. sp. in naturally infected sea rocket roots. A, F) Cross-sections showing

nematode infections. B) Longitudinal section. C-E) details of nematode feeding-sites showing multinucleate giant cells with hypertrophied

nuclei. Scale bars: A, F = 200 pm; B-E = 100 pm.

Active multinucleated giant cells contained granular cy-
toplasm, thickened cell wall and numerous hypertro-
phied nuclei and nucleoli. Dense giant cell cytoplasm
lined deeply stained thick walls. The histological modi-
fications induced by M. dunensis n. sp. in roots of Eu-
ropean sea rocket, tomato and chickpea revealed a typi-
cal susceptible reaction to infection by the nematode.
The development and parasitic habit of M. dunensis n.
sp. that we observed in European sea rocket, chickpea
and tomato were similar to those reported for Meloido-
gyne spp. on susceptible host plants (Jepson, 1987).
Remarks: Morphology characters and isozyme and

molecular analyses have permitted the identification of
this new taxon. Although the esterase phenotype of M.
dunensis n. sp. was similar to that of M. minor, which also
revealed a single VS1 band at a similar position (Kars-
sen et al., 2004) but different to that of M. maritima
which shows an Est VSI-S1 phenotype (Karssen et al.,
1998), the Mdh phenotype of M. dunensis n. sp. was
similar to that of M. maritima but clearly different than
that of M. minor, which revealed an N1a phenotype with
two additional weaker bands after prolonged staining
(Karssen et al., 2004). Similarly, isozyme electropho-
retic phenotypes of M. dunensis sp. n. were different



Fic. 8. Histopathology of Meloidogyne dunensis n. sp. in artificially infected roots of: A-C) Tomato (cv. Roma). D-F) chickpea (cv. UC 27)
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showing multinucleate giant cells with hypertrophied nuclei. Scale bars = 200 pm.

from those of other root-knot nematodes showing re-
semblance in morphology. Also, the isozyme electro-
phoretic phenotype of M. ardenensis is characterized by
a faint multiple banding Est phenotype and an Nla
type Mdh phenotype (Karssen, 2002), and M. mayaguen-
sis shows a VSI-S1 phenotype of Est with two major
bands and an Nla Mdh phenotype with one strong
band (Brito et al., 2004). Finally, M. duytsi is character-
ized by a VSI1 Est pattern and an N2 Mdh pattern
(Table 2), which clearly differs from that of M. dunensis
n. sp. (Karssen et al., 1998).

The trees obtained from NJ analysis of different
rDNA sequences agreed with those obtained in similar

analysis by Castillo et al. (2003) and Tigano et al.
(2005). The addition of the sequences of this new spe-
cies or different or additional sequences from GenBank
database to the distance and maximum parsimony
analyses caused small subtle changes in topology of the
dendrograms shown in Figure 6 compared to that re-
ported previously (Castillo et al., 2003; Tigano et al.,
2005). NJ and MP analysis showed that 18S, ITS1-5.8S-
ITS2 and D2-D3 sequences of M. dunensis n. sp. present
enough divergence to differentiate M. dunensis n. sp.
from other species with resemblance in morphology,
such as M. duytsi, M. maritima, M. mayaguensis and M.
MInor.
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