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Summary 

 

Maturation via proteolytical processing is a common trait in the viral world, and is 

often accompanied by large conformational changes and rearrangements in the capsid. 

The adenovirus protease has been shown to play a dual role in the viral infectious 

cycle: (a) in maturation, as viral assembly starts with precursors to several of the 

structural proteins, but ends with proteolytically processed versions in the mature 

virion; and (b) in entry, because protease-impaired viruses have difficulties in 

endosome escape and uncoating. Indeed, viruses that have not undergone proteolytical 

processing are not infectious. We present the 3D structure of immature adenovirus 

particles, as represented by the thermosensitive mutant Ad2 ts1 grown under non-

permissive conditions, and compare it with the mature capsid. Our 3DEM maps at 

subnanometer resolution indicate that adenovirus maturation does not involve large 

scale conformational changes in the capsid. Difference maps reveal the location of 

unprocessed peptides pIIIa and pVI and help to define their role in capsid assembly 

and maturation. An intriguing difference appears in the core, indicating a more 

compact organization and increased stability of the immature cores. We have further 

investigated these properties by in vitro disassembly assays. Fluorescence and 

electron microscopy experiments reveal differences in the stability and uncoating of 

immature viruses, both at the capsid and core levels, as well as disassembly 

intermediates not previously imaged. 

 

Keywords: Adenovirus, virus maturation, virus uncoating, virus structure, three-

dimensional electron microscopy 

 



 3

Introduction 

 

The icosahedral, non enveloped adenovirus capsid is composed of at least 11 different 

polypeptides plus the dsDNA genome. Crystal structures for only the major coat 

protein (hexon) and the vertex proteins (penton base and fiber) are available 1; 2; 3; 4. 

The positions of minor capsid components IIIa, VI, VIII and IX in the virion have 

been defined by hybrid electron microscopy (EM) / X-ray crystallography studies 5; 6; 

7; 8. There is at present no detailed structural information about the disposition of 

DNA and DNA-binding proteins (V, VII, µ) in the viral core 9. 

 

Like many other viruses, adenovirus undergoes a final maturation step driven by a 

virus encoded protease (reviewed in 10). Pulse-chase experiments established that 

several of the viral structural peptides are synthesized in a precursor form, while the 

mature, infective particle contains the cleaved products. The agent responsible for 

proteolytic maturation is the viral L3 23 K protein or adenovirus protease (AVP) 11. 

AVP recognizes (M/I/L)XGX-G and (M/I/L)XGG-X sequence motifs to cleave minor 

capsid proteins IIIa, VI and VIII, as well as DNA binding proteins VII, µ, and the 

terminal protein (TP) 12. Such cleavages result in a total mass of more than 6 MDa 

cleaved peptides in the 150 MDa virion (Table 1), that might be expected to change 

location or organization during virion maturation. The putative scaffolding protein L1 

52/55K has a sequence cleavage motif at residue 351 (LAGT-G) and also appears to 

be cleaved during maturation; however, whether the AVP is responsible for L1 

52/55K processing is not clear, as this protein is absent from the mature particles and 

present in very few copies in immature, DNA containing virions 13. The C-terminal 

peptide of precursor polypeptide pVI (pVIC), released upon cleavage by AVP, and the 
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viral dsDNA, act as cofactors and increase the protease catalytic rate by several orders 

of magnitude 14; 15; 16; 17. It has also been reported that precursor pVI, but not mature 

VI, acts as a carrier to transport newly synthesized hexon to the nucleus 18, via 

interaction of a nuclear localization signal located in the pVIC peptide with importin 

α/β. 

 

A classic human adenovirus type 2 (Ad2) thermosensitive mutant (Ad2 ts1) is 

deficient in proteolytic processing 19. When grown at the non-permissive temperature 

(39°C), Ad2 ts1 does not package the viral protease 20, and produces capsids 

containing the unprocessed protein precursors. Viral genome packaging is 

unimpaired, but the virus is not infectious. It has been shown that the defect in 

infectivity is linked to a defect in uncoating. Immature Ad2 ts1 attaches to the host 

cell and follows the same internalization process as the wild type virus, but is not able 

to escape the endosome and is recycled to the membrane or degraded in lysosomes 21; 

22. On the other hand, wild type virus treated with protease inhibitors can proceed all 

the way to the nuclear pore, but fails to release its DNA 22. Coimmunoprecipitation of 

fiber with hexon after different periods of endocytosis indicated that fiber release is 

much less efficient in immature Ad2 ts1 than in wild type virus, even after treatment 

with protease inhibitors 22, while kinetics studies indicated that immature Ad2 ts1 

accumulated a disassembly intermediate containing core components 23. Proper 

release of polyeptide VI from the uncoating virion seems to be required to disrupt the 

endosomal membrane 24. 

 

Other large icosahedral dsDNA viruses, most notably herpesvirus and tailed 

bacteriophage, undergo maturation by proteolytic processing 25. This process is 
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generally coupled with DNA packaging, and involves large rearrangements of the 

capsid building blocks. On the other hand, no such maturation process has been 

described for the structural counterpart of adenovirus in the bacteriophage world, the 

membrane-containing PRD1, or any other of the PRD1-adenovirus lineage members 

26. The only changes reported for PRD1 correspond to an increase in capsid-

membrane contacts upon DNA packaging 27; 28. 

 

Here we report comparison of the structure and uncoating behavior of immature Ad2 

ts1 and wild type viruses, studies undertaken to address the following questions: what 

are the structural rearrangements involved in proteolytic maturation? What is the 

location of the uncleaved peptides in the capsid? And, how do the structural 

differences relate to differences in infectivity? 
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Results 

 

Structure of mature and immature capsids 

 

Using cryo-electron microscopy (cryo-EM) data, we have obtained 3D density maps 

for wild type and immature (Ad2 ts1 grown at 39ºC) adenovirus at approximately 9 Å 

resolution (Fig. 1). To detect possible fine changes in the relative position of 

capsomers between the mature and immature particles, the crystal structures of hexon 

and penton base were independently fitted to the wild type and ts1 maps, to obtain a 

quasi-atomic model for each viral species (Fig. 1). The RMSD between the molecules 

fitted to the wild type and ts1 maps was 2.64 Å for the 11048 C-α atoms in the 

icosahedral asymmetric unit (AU). This RMSD was mainly due to a ~2 Å shift along 

the virus radius of the whole AU, consistent with the fitting accuracy on a 9 Å 

resolution map. There were no evident large scale rearrangements, or significant 

changes in the relative rotation between capsomers. 

 

Difference mapping: localization of unprocessed peptides 

 

Detailed inspection of the 3DEM maps revealed two main differences between the 

mature and immature virus capsids. First, a well defined feature appeared beneath 

some hexons in the ts1 map, at the interface between capsid and core (type 1 

difference; Fig. 2, boxes). Second, diffuse extra density filled the inner cavities of all 

hexon trimers in ts1 (type 2 difference; Fig. 2, circles; also visible in Fig. 1A). These 

differences were better interpreted by making use of difference maps. The difference 
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map between the wild type cryo-EM map and its quasi-atomic model, containing only 

the hexon and penton base structures, revealed the molecular envelopes corresponding 

to minor coat proteins IX, IIIa, and VIII, as well as fiber and hexon loops not present 

in the crystal structure (Fig. 2B and D, yellow). Overlaying this map with that 

calculated by subtracting the wild type from the ts1 virus cryo-EM maps (Fig. 2 B 

and D, red) showed the location of the main differences between the mature and 

immature capsids with respect to the densities assigned to minor capsid components 

in the current model for the wild type virus 7. 

 

Sixty copies (one per AU) of type 1 difference density (Fig. 2, boxes) were found 

underneath the vertex region, intercalated between the five arms of a star formed by 

the densities corresponding to polypeptide IIIa and one of the two independent copies 

of polypeptide VIII in the AU. At this position, the type 1 difference is within contact 

range of multiple capsid components: polypeptides IIIa and VIII, hexons 1 

(peripentonal) and 2 (close to the 2-fold axis) in one AU, and hexon 4 in the adjacent 

AU across the icosahedral edge (Fig. 2B). The type 1 difference is therefore making a 

bridge between two icosahedral facets, and between the ring of peripentonal hexons 

and those making the central plate of the facet, known as the group-of-nine (GON). 

Because of its position, the type 1 difference could arise from the uncleaved C-

terminal fragments of polypeptide VIII or IIIa. The mass of the type 1 difference 

peak, when measured at 1.25 σ contour level, is 2.1 kDa. This is much closer to the 

expected value for the C-terminal polypeptide IIIa peptide (IIIaC, 1.8 kDa) than to the 

expected value for the polypeptide VIII C-terminal fragment (12.6 kDa, Table 1). At 

the same contour level, the calculated mass for the N-terminal fragment of VIII (Fig. 

2B, star) is 10.8 kDa, in reasonable agreement with the expected value (12.1 kDa). 
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Furthermore, no similar difference density was found close to the second independent 

copy of polypeptide VIII in the AU (Fig. 2B, star). This evidence indicates that the 

type 1 difference is more likely to correspond to a part of the pIIIa precursor that to 

the C-terminal fragment of pVIII. 

 

Extra density (type 2 difference, circles in Fig. 2) was found inside all hexon cavities 

in the ts1-wild type difference map. This is the position proposed for polypeptide VI 

in the current adenovirus capsid model 7. The average mass of the 4 independent type 

2 peaks in the AU is 0.9 ± 0.2 kDa. Therefore, type 2 difference can be attributed to 

either the uncleaved pVI C-terminal peptide (1.3 kDa, Table 1), or to a larger 

structural order in the precursor vs. the processed polypeptide. For hexons 2, 3 and 4, 

this extra density appears at medium height in the cavity, close to a hexon loop 

previously shown to be involved in interaction with VI 18. In the peripentonal hexons 

(green in Fig. 2B and D), however, type 2 difference reaches to the innermost region 

in the cavity (Fig. 2D). This region of the hexon trimer is highly acidic (Fig. 2E), 

suggesting a role for electrostatic interactions between capsid components. Similar 

charge-rich regions (although basic in this case) have been found in the internal cavity 

of the trimeric major coat protein of bacteriophage PRD1 and Paramecium bursaria 

Chlorella virus type 1 (PBCV-1), both members of the adenovirus structural lineage, 

and proposed to interact with minor capsid components 29; 30. Interestingly, both 

polypeptide VI and its precursor pVI present basic isoelectric point values (9.6 and 

9.9 respectively), while the AVP cofactor pVIC has an even more basic character 

when considered separately (pI=11.7). 
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Apart from those underneath the vertex region and inside the central hexon cavities, 

no other significant differences were observed between the wild type and ts1 

icosahedral protein shells. There was no difference at the external side of the capsid, 

nor was there any negative difference density in the ts1-wild type map that could 

account for the presence of protease in the mature virus. 

 

Core organization 

 

Adenovirus cryo-EM maps do not provide information on the organization of DNA 

and DNA-binding proteins in the viral core, because this part of the particle does not 

follow icosahedral symmetry. Nevertheless, a difference was observed between the 

wild type and ts1 3D maps at the core level. While in the wild type map the weak core 

density follows the icosahedral profile of the capsid, the ts1 core presents a somewhat 

more spherical profile (Fig. 1). Radial average plots showed that core density is 

stronger for ts1 than for wt, particularly in the first layer beneath the icosahedral shell 

(Fig. 3A). This indicates a more compact or more ordered state for the immature core. 

Further evidence for a difference in core organization and stability was found from 

the occasional observation of disrupted virions in ts1 cryo-EM preparations. In these 

particles the icosahedral protein shell peels away, leaving behind a well defined 

spherical particle of approximately 650 Å diameter. This disruption pattern is not 

observed for the wild type virus, where the contents of broken capsids show a much 

more diffuse aspect (Fig. 3B). 

 

Disassembly assays 
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Some broken viral particles like those described above appear routinely in virus 

preparations, but the reason for their disruption is not known. Therefore, we tried to 

characterize the different disassembly patterns for mature and immature virions under 

more controlled conditions. Structural changes in viruses subject to increasingly 

higher temperatures (15 to 80ºC) were monitored by two different techniques. DNA 

exposure to the solvent was measured by the increase in fluorescence of propidium 

iodide (PI) when bound to DNA, while disassembly products were imaged by 

negative staining electron microscopy. 

 

When DNA release was measured as a function of temperature, the fluorescence 

pattern of mature and immature viruses indicated a different behavior (Fig. 4A). The 

first sharp increase in fluorescence occurred at 45ºC for wild type virus, but was 

delayed until 47ºC for ts1. Fluorescence became more intense at a consistently slower 

rate for ts1 than for wild type, until a plateau was reached at 60ºC for wild type and 

65ºC for ts1. Our results differ from previous fluorescence studies on DNA release, in 

which very little change in TOTO-1 fluorescence was observed for ts1 under a range 

of pH and temperature 24. Our experimental conditions vary from those reported by 

Wiethoff and collaborators in the lower ionic strength (15 vs. 100 mM NaCl) and the 

presence of EDTA. Low ionic strength has been shown to reduce adenovirus stability 

31, while chelation of divalent cations by EDTA loosens core compaction 32. Both 

conditions may have facilitated detection of in vitro disassembly intermediates not 

previously observed, as shown below. 

 

When the disassembly products were examined by electron microscopy, the most 

conspicuous difference between wild type and ts1 appeared for samples heated in the 
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45-50ºC range (Fig. 4B). In wild type sample, we observed broken capsids forming 

planar, open hexon arrays of different sizes, while cores appeared as untidy 

filamentous bundles with a relatively compact center. Conversely, in ts1 preparations 

at 45 and 47ºC the protein shell retained its spherical arrangement, with openings 

consistent with loss of pentons and the peripentonal hexon ring, or of larger parts of 

the capsid. These holey shells contained a spherical, compact core, from which a 

single filament projected. This filament is thicker (12.3 ± 2.3 nm, N=50) that those 

protruding from wild type cores (5.3 ± 1.5 nm, N=100), indicating a different protein 

coating for the released DNA. 
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Discussion 

 

Viral capsid components fulfill many different roles during the infectious cycle, 

among them recognition of assembly partners in the crowded host cell, virion 

stabilization against conditions in the extracellular milieu, and release of viral genome 

upon entry. Changes in their organization during the maturation process are often 

used for switching among functions and ensure the generation of a final, infectious 

particle. In tailed bacteriophage, and the structurally related herpesvirus, this process 

has been extensively studied and shown to involve large rigid body movements of 

capsomers, together with capsid expansion required to accommodate the packaged 

genome 25. Other DNA viruses, like papillomavirus, seem to follow the opposite 

direction, with a compaction of the procapsid required to achieve stability 33. Finally, 

the bacteriophage representative of the adenovirus lineage, PRD1, maintains capsid 

size and organization during the transition from the empty protein-membrane shell to 

the final virion 27; 28. It is therefore not surprising that the capsid structure of immature 

adenovirus, as revealed here by a 9 Å resolution 3DEM map of the Ad2 ts1 mutant, 

presents only relatively small differences with that of the wild type, mature virus. 

 

What, then, are the changes produced by proteolytic processing of many adenovirus 

polypeptides that result in an incorrect uncoating behavior, and therefore a lack of 

infectivity? We observed differences in the structure of immature vs. mature 

adenovirus at two levels: as additional ordered elements in the icosahedral protein 

shell, and as a general reorganization of the core. These differences may act together 

to produce the differential uncoating behavior that we have observed by biophysical 

methods and by direct imaging using the electron microscope. 



 13

 

AVP cleaves minor capsid proteins IIIa, VI, and VIII. We find difference peaks in our 

ts1-wild type maps at two positions in the capsid: the periphery of a highly helical 

structure forming a cartwheel underneath the vertex region, and inside the hexon 

trimer cavity oriented towards the virus core. According to the current adenovirus 

capsid model 7, the rim of the cartwheel underneath the vertex is formed by a tight 

overlap of polypeptides IIIa and VIII. Our type 1 difference density, located at this 

rim, could arise from either of the two proteins. However, the peak size, and the fact 

that a similar difference peak does not appear close to the second independent copy of 

polypeptide VIII in the AU, indicates that type 1 difference is most likely originated 

by the pIIIaC peptide. This structural element must play a role in increasing the 

network of interactions required for capsid assembly, and in hindering adequate 

uncoating of immature virus. Its position suggests that it is acting as a molecular 

stitch, riveting together two adjacent facets in the icosahedrons, as well as fastening 

the peripentonal ring to the GONs. As in the case of a surgical stitch, this structure 

would be removed by the protease action when no longer needed, allowing uncoating 

to proceed. Evidence for the importance of polypeptide IIIa in adenovirus capsid 

architecture has already been reported. Ad2 ts112 mutant, with three point mutations 

in IIIa, accumulates empty particles 34; 35; and only small, unstructured peptides were 

tolerated as N-terminal extensions in IIIa 8. Our findings reveal one more aspect of the 

key, multifunctional role of this minor coat protein during assembly. 

 

The current adenovirus capsid model locates polypeptide VI in the internal cavity of 

the hexon trimer, which would attribute our type 2 difference peak to its precursor 

pVI. The assignment of polypeptide VI to a location inside the hexon trimer is 
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problematic, since the copy number of VI, estimated around 360, is too low to have 

one molecule of VI per hexon monomer (copy number 720), and too high to have one 

VI per hexon trimer (copy number 240). The weak difference density between the 

wild type cryo-EM map and the quasi atomic model at this position has been 

interpreted as arising from partial occupancy 7 in a 1:1 hexon-VI interaction. The 

appearance of a difference peak inside the cavity of all four hexon trimers in the AU 

of our ts1-wild type map, at reasonably high density levels, indicates an increased 

icosahedral ordering in the pVI precursor. The strong negative charge of the hexon 

cavity, together with the basic character of pVIC, and the type 2 difference peak size, 

make it very tempting to interpret this difference density as the 11-residue peptide. 

However, such a sequestered location would appear to hinder interaction of AVP 

(packaged with the DNA) with its second cofactor 15; 17, as well as the proposed 

interaction with the nuclear import machinery to aid in hexon nuclear import 18. On 

the other hand, one could hypothesize that this putative electrostatic interaction would 

be important for the carrier function of pVI, while its perturbation by cleavage of 

pVIC would be the trigger to facilitate polypeptide VI release and therefore endosomal 

escape. 

 

Apart from polypeptides IIIa, VI and VIII, AVP also cleaves core proteins VII, µ, and 

TP. Since the viral core does not follow icosahedral symmetry, it is not possible to 

analyze differences in this region using icosahedral cryo-EM reconstructions. 

However, both analysis of the ts1 3D map and direct observation of virions by 

electron microscopy indicate a different, more structured and stable core organization 

for the immature particle. These properties may result, at least in part, from 

differences in the interactions of protein VII and its precursor with the viral genome: 
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an N-terminal sequence of pVII, but not of mature protein VII can efficiently 

crosslink to viral DNA in intact particles 36. Another core component, polypeptide µ, 

is extensively proteolyzed from its 80 residue precursor to a final 19 residue peptide. 

Studies showing that mature polypeptide µ can precipitate dsDNA from solution 

suggested that this small peptide could have a role in condensing the viral genome to 

fit it into the capsid shell 37. It is possible that this function is enhanced by the 

uncleaved pre-µ amino and carboxy-terminal extensions, either via direct interactions 

with the viral genome or with other core components, to keep the viral genome in a 

stable form during morphogenesis. Further connection between pre-µ and virus 

stability has been found in an Ad5 variant lacking polypeptide V, where a 

thermosensitive phenotype was rescued by a cluster of mutations in the N-terminal 

fragment of the immature polypeptide 38. 

 

The differences in capsid and core structure we observe correlate with a different in 

vitro disassembly behavior for mature and immature capsids and cores when the 

virion is subject to heat treatment. An “all or nothing” disruption pattern was found 

for wild type virus, with completely disordered capsids and cores at 45 ºC. The 

immature virus, on the contrary, seemed to follow a slower, sequential disassembly 

process, going through loss of pentons and peripentonal hexons and partial, well 

ordered unraveling of protein-coated DNA. This unraveling pattern is consistent with 

the asymmetric DNA packing determined by the location of packaging specific 

sequences at the left end of the viral genome 39, and may also correlate with the 

presence of a singular, specialized vertex structure in the otherwise icosahedral shell 

40. There is currently uncertainty regarding the mode of adenovirus DNA packaging, 

since evidence exists to support both concerted and sequential assembly and 
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packaging 41; 42. One intriguing question arises from our observations on the immature 

core: how can such a compact organization be reconciled with DNA packaging 

through a single vertex into the empty procapsid?  

 

In conclusion, our findings indicate that three main players participate in modulating 

the stability switch required to go from adenovirus assembly to uncoating. First, a 

molecular stitch formed by pIIIaC increases capsid stability during assembly by 

riveting together adjacent facets and the ring of peripentonal hexons. Second, 

electrostatic interactions between pVIC and hexon may hamper release of polypeptide 

VI and therefore endosomal escape. And third, a tighter organization of DNA and 

DNA binding proteins pVII and pre-µ in the core would hinder passage through the 

nuclear pore and bar access of the cellular transcriptional machinery to the viral 

genome. 
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Note: while this manuscript was under review, a 10.5 Å resolution cryoEM study of 

Ad2 ts1 was reported 43. These authors also note a stronger core signal in the 

immature virus, compatible with increased icosahedral order or with higher density. 

They also observe that in their ts1 3D map the density gap usually found between the 

icosahedral shell and the non-icosahedral core disappears. This is interpreted by 

Silvestry and co-workers as the immature core being more ordered, but less 

condensed, than the mature one. This is at variance with our results, where the same 

gap is present in the wild type and ts1 3D maps, and images of disrupted virions 

clearly show a much more condensed state in the immature core. 
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Materials and Methods 

 

Virus production and purification. We used as control wild type, mature virions the 

E1-deleted human adenovirus type 5 (Ad5) variants Ad5GL, Ad5Luc1-HFpIIIa, and 

Ad5GLflagIIIa, previously described in 44 and 8. Ad5GL is completely wild type for 

all structural polypeptides, while Ad5Luc1-HFpIIIa and Ad5GLflagIIIa encode small 

peptides (approximately 20 residues) fused to the N-terminus of polypeptide IIIa. 

Viruses were propagated in HEK293 cells, purified as previously described 8, and 

stored at -70ºC in PBS (8 mM Na2HPO4, 2 mM KH2PO4, 137 mM NaCl, and 2.7 mM 

KCl [pH 7.4]) plus 10% glycerol. Virus titers were 5x1012 (Ad5GL), 1x1012 (Ad5Luc-

HFpIIIa), and 4x1012 (Ad5GLflagIIIa) part/ml. Immature virus was obtained by 

propagating the Ad2 ts1 mutant in HeLa cells at 39.5º. Particles were purified by 

equilibrium centrifugation in CsCl gradients, desalted on a 10DC column (Bio-Rad) 

and stored in 20 mM Hepes pH 7.8, 150 mM NaCl plus 10% glycerol at -70ºC at a 

final concentration of 1x1013 part/ml. 

 

Cryo-electron microscopy. Virus samples were dialyzed for 1 hour at 4ºC against 

PBS, applied to freshly carbon-coated, glow discharged Quantifoil R2/4 300 mesh 

Cu/Rh grids, and vitrified in liquid ethane using a Leica CPC plunger. Grids were 

mounted in a Gatan 626 cryostage and examined in a FEI Tecnai G2 FEG microscope 

operating at 200 kV. Micrographs were recorded on Kodak SO-163 film under low 

dose conditions at a nominal magnification of 50,000x, and digitized in a Zeiss 

Photoscan TD scanner using a step size of 7 µm (1.4 Å in the sample). 
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Three-dimensional reconstruction. All image processing and three-dimensional 

reconstruction tasks were performed using the software package XMIPP 45; 46, except 

for determination of micrograph contrast transfer function (CTF) parameters which 

was done with CTFFIND 47. Micrographs free of drift and astigmatism (290 for wild 

type, 297 for ts1) were selected and downsampled to a final pixel size of 2.8 Å/px. 

Particles were manually picked, extracted into 408x408 pixel boxes, normalized, and 

corrected for the phase oscillations of the CTF (phase flip). Images were 

automatically sorted into defocus groups covering a range between -0.5 and -5.8 µm 

for wild type, -0.5 and -5.1 µm for ts1. Iterative projection matching against a 

previously obtained 14 Å resolution wild type Ad5 map 8 was carried out using an 

algorithm designed to efficiently calculate the test orientations for very fine angular 

steps (Marabini, Scheres et al., in preparation). Orientation searches were performed 

with decreasing angular steps, from 2 degrees to a final 0.2 degrees; correction of the 

CTF amplitudes was performed using Wiener filtering; and 3D reconstruction was 

performed using interpolation in Fourier space 48. Icosahedral symmetry was imposed 

throughout the refinement process. The final datasets included 9018 (wild type) and 

9621 (ts1) particles. Fourier shell correlation (FSC) with a threshold of 0.3 gave a 

resolution of 8.9 Å (wild type) and 8.7 Å (ts1). At FSC = 0.5, the corresponding 

resolution values were 9.7 and 9.5 Å. A temperature factor of approximately -450 Å2 

was calculated according to 49 and applied to the final maps to enhance high 

resolution features. Enhanced maps were low-pass filtered to the calculated 

resolution, and grayscale normalized within radii 294 to 490 Å, roughly enclosing the 

icosahedral capsid shell. The mature and immature virus 3DEM maps have been 

deposited at the Macromolecular Structure Database (MSD, 



 20

http://www.ebi.ac.uk/msd) with accession codes EMD-1579 and EMD-1586, 

respectively. 

 

Fitting of high resolution structures and calculation of difference maps. Starting 

from the previously reported adenovirus quasi-atomic model (PDB ID 2BLD, 6), the 

crystal structures of four hexon trimers and one penton base molecule were fitted into 

our wild type and immature virus maps using URO 50, with icosahedral symmetry 

enforced. Since the Ad5 and Ad2 hexon structures are practically identical 2, the Ad5 

hexon (PDB ID 1P30) was used for both maps. The scale of the maps was refined 

during fitting, giving a final pixel size of 2.76 Å. This scale was used to calculate the 

various difference maps. RMSD values between the fitted AU for wild type and ts1 

were calculated with LSQMAN 51. A 9 Å resolution density map was calculated from 

the fitted hexon and penton base crystal structures, using EMAN PBD2MRC 52. 

Difference maps revealing those capsid components other than hexon and penton base 

were calculated by subtracting this map from the cryo-EM reconstructions. Another 

difference map was calculated by subtracting the wild type cryo-EM map from that of 

the ts1 mutant. Surface rendering figures were created with UCSF Chimera 53, using 

the Hide Dust tool to remove small, unconnected blobs from the difference maps. All 

maps were contoured at the same level (1.25σ after grayscale normalization within the 

icosahedral shell). Difference peak mass values were calculated by measuring their 

volumes at 1.25σ level with Chimera, and considering an average protein density of 

1.33 g/cm3. The electrostatic potential of a hexon trimer was calculated with the 

PyMol (http://www.pymol.org/) APBS plug-in 54 and visualized with Chimera. 
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Disassembly assays. Mature and immature virus samples (5x1010 part/ml) were 

incubated at different temperatures in 8 mM Na2HPO4, 2 mM KH2PO4, 15mM NaCl, 

0.1mM EDTA, pH=7.4 with 1 mM propidium iodide (Molecular Probes). 

Fluorescence emission spectra were obtained employing a Hitachi Model F-2500 FL 

Spectrophotometer equipped with a cell holder and Peltier temperature control device. 

A 10-min equilibration time was used at each temperature before data acquisition. 

Sample volumes of 0.150 ml were examined in sealed quartz cuvettes. The sample 

was excited at 535 nm and the emission was monitored from 580 to 700 nm using 

excitation and emission slit widths of 8 nm. The fluorescence intensity near the 

wavelength of maximum fluorescence intensity for each spectrum (607 nm) was 

plotted as a function of temperature. The spectra were corrected by subtraction of the 

buffer spectrum at each corresponding temperature. PI maximum intensities for each 

temperature are presented as a fraction of the initial maximum (I/Io) with standard 

errors (N=3). For imaging of disassembly products, samples were adsorbed to glow 

discharged, collodion/carbon coated EM grids, negatively stained with 2% uranyl 

acetate, and observed in a Jeol 1200EX-II transmission electron microscope. 
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Figure Legends 

 

Fig 1. 3DEM maps and quasi-atomic models. Central sections of the wild type (A) 

and ts1 (B) maps, both filtered at 8.9 Å resolution. The bar represents 200 Å. Higher 

density is white. (C) Resolution assessment. Fourier shell correlation curves for the 

wild type (wt) and ts1 3DEM maps. (D) Surface rendering showing the wild type AU, 

as seen from outside the virion. The 4 independent hexon trimers are labeled 1-4. 

Hexon 1 and its symmetry mates form the peripentonal ring; hexon trimers 2, 3 and 4 

form the GONs. The bar represents 100 Å. (E) Ribbon representation showing the 

wild type quasi-atomic AU model. The four hexon trimers have been labeled as in (D) 

and depicted in different colors to facilitate interpretation. One penton base molecule 

is shown in dark blue. (F) A slab of the AU showing the good correspondence 

between the cryoEM density (semitransparent surface) and α-helices at the base of the 

hexon trimers, colored as in (E). Black filled symbols indicate the 5-fold (pentagon), 

3-fold (triangle) and 2-fold (oval) icosahedral symmetry axes. 
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Fig 2. Differences between mature and immature capsids. (A) Details of sections (42 

Å away from the virion center, looking along a 2-fold axis as in Fig. 1 A and B) of the 

wild type (wt) and ts1 3DEM maps, as indicated. The positions of extra densities 

appearing in the ts1 map are indicated with a white square (type 1 difference, at the 

capsid-core interface) and circle (type 2 difference, inside the hexon cavity). (B) 

Surface rendering of the wild type-quasi atomic model (yellow) and ts1-wild type 

(red) difference maps superimposed on the quasi-atomic model density map 

(semitransparent). Note that the AU is shown as seen from inside the virus, i.e. rotated 

180º around a horizontal axis with respect to Fig. 1D, E and F. The four independent 

hexon trimers and one penton base molecules are colored as in Fig. 1E. Black boxes 

and circles indicate the location of type 1 and type 2 difference densities. Black filled 

stars indicate the position of the second independent polypeptide VIII copy (the first 

one is located underneath the peripentonal ring). Black filled symbols indicate the 5-

fold (pentagon), 3-fold (triangle) and 2-fold (oval) icosahedral symmetry axes. (C) 

Schematics showing an AU in the same orientation as in (B). The four hexon trimers 

are represented as hexagons, and the penton base as a pentagon. Black and grey 

shapes indicate the current model assignments for polypeptides IIIa, VI and VIII. Red 

boxes and circles indicate the location of the ts1-wild type type 1 and 2 differences. 

(D) A section across the icosahedral edge showing the inner cavities of hexon trimers 

1 (green) and 2 (purple). External density in the wild type-quasi-atomic difference 

map (yellow) corresponds to the fiber (f) and hexon loops (hl). Colors and symbols as 

in (B). (E) Electrostatic surface coloring for a hexon trimer. The front half of the 

molecule has been clipped away to reveal charges within the cavity. All scale bars 

represent 50 Å. 
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Fig 3. Differences between mature and immature cores. (A) Radial average profile of 

the wild type and ts1 3DEM maps. (B) Examples of disrupted virions found in cryo-

EM preparations of wild type (wt) and ts1 samples, as indicated. An arrow indicates 

an intact particle. The scale bar represents 100 nm. 
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Fig 4: Disassembly assays. (A) Analysis of DNA release for wild type and ts1 virus 

measured by extrinsic PI fluorescence at 607 nm as a function of temperature. 

Average values and error bars indicating standard deviations for triplicate 

measurements are plotted. (B) Negative stain electron microscopy images of wild type 

and ts1 disassembly intermediates obtained at 45 or 47ºC, as indicated. The scale bar 

represents 200 nm. 



1

Table 1. Adenovirus polypeptides cleaved by AVP. Residue numbers refer to Ad2 sequence. 

Shadowed rows indicate peptides with a strong tendency to structural disorder, as predicted 

by FOLDINDEX 54.

Polypeptide Precursor 

length (aa)

Cleaved 

peptides

Peptide 

mass 

(kDa)

Approximate 

copy number

Total 

peptide 

mass in 

virion (kDa)

Disorder 

prediction 

(FOLDINDEX)

IIIa 585 570-585 1.8 60 108 yes

VI 250 1-33 3.6 360 1296 no

239-250 1.3 360 468 yes

VII 198 1-24 2.6 800 2080 yes

VIII 227 112-2273 12.6 120 1512 no

µ 80 1-32 3.4 100 340 yes

51-80 2.9 100 290 no

TP 653 Not clear1 322 2 64 ?

1 Four potential sites predicted by PattinProt 55.

2 Estimated from the difference in mass between the precursor (87 kDa) and the final product 

(55 kDa).

3 The C-terminal fragment of polypeptide VIII is considered, as the N-terminal fragment has 

previously been assigned to ordered density in the wildtype capsid 7. PattinProt predicts two 

more cleavage sites, at residue numbers 131 and 157.

Table
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