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Abstract:

This research was conducted to evaluate the patamd limitations of hyperspectral remote sensang
detect iron deficiency in capital-intensive multraial crop systems, e.g. peach orchards. The noted
deficiency can be regarded as a proxy for deviativpom optimal plant functioning, while detectioh o
such deviations is in turn of significant importanio monitoring and modelling efforts of orchards a
production systems. Hyperspectral leaf, canopy,armbrne reflectance measurements were acquirad in
peach Prunus persica L.) orchard in Zaragoza, Spain. Leaf- and canepgll data were collected with a
handheld spectroradiometer (ASD, Inc.), while tH¢SA160 hyperspectral sensor provided airborne data.
Blocks of trees were treated with different amoniniton chelates (Sequestrene) which created andina
range of chlorophyll concentration as measureganés.

Hyperspectral measurements at leaf-level were ezhrout to characterize the physiological aspects of
nutrient stress, as opposed to the evaluation aritpiutrient status at the complete plant-levalesst
induced physiological changes make stress deteatidhe leaf-level possible at an early stage &f su
optimal photosynthetic functioning. Airborne imagehowever, is difficult to interpret due to altegi
illumination angles, BRDF effects, and intervenatghospheric light interactions resulting in an raitien

of the vegetative reflectance spectrum. Althougihyrstudies have implemented hyperspectral anatysis
nutrient status at large scales, this researat iiedtill in its infancy phase, since the linkuweén airborne-
and leaf-level measurements is lacking. This imdlit makes the physiological interpretation of gxé
hyperspectral research more complex. The multitiégaf, canopy, and airborne) approach presenged h
enabled the assessment of vegetation indices aid ridationship with pigment concentration at each
monitoring level. Pertinent classical chlorophglated vegetation indices were tested and new ésdic
were extracted from the spectral profiles by meaihband reduction techniques and narrow-waveband
rationing, which involved all possible 2-band conmdiions. Robustness was evaluated by studying the
index performance for datasets of increasing coxityle from leaf- to canopy- and airborne-level.
Physiological interpretations extracted from leafdl experiments were extrapolated to canopy- and
airborne level.

The measured spectra and estimated biochemicamptees were related via inversion of a linked
directional homogeneous canopy reflectance mod€RM) and the PROSPECT leaf model. Numerical
model inversion was conducted by minimizing thdedénce between the measured reflectance samples
and modelled reflectance values. An improved optition method is presented. Results are compared
with a simple linear regression analysis, linkifdocophyll to the reflectance measured at the leadl

and at the Top of Canopy (TOC), while optimal baegions and bandwidths also were analyzed.

Keywords: hyperspectral data extraction, vegetation indiecegetation stress detection, model inversion,
canopy reflectance model
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1. Introduction

The use of non-destructive methods for the detectd vegetation stress holds great promise for
optimization of the management of commercially imgot agricultural crops. Timely and efficient
agricultural management of orchards can improviel yaad fruit quality (Cordeir@t al., 1995, Tagliavini
and Rombola, 2001). The fact that the amount déctdd light depends on a number of leaf-related
factors, such as external morphology, internal cttme, and internal distribution of biochemical
components, etc., makes it possible for hypersglemote sensing to detect deviations from optynal
functioning plant systems. l.e., stress-induced sjahggical changes will affect leaf biochemical
constituents such as chlorophyll concentratiog,)(&nd water content. These constituents in turnbman
estimated from airborne image acquisition, thenetaking stress detection at the leaf-level possiblan
early stage of sub-optimal photosynthetic functigniEven though hyperspectral data can be benletficia
various applications, data volume and dimensiopabiuse both technical (storage capacity, CPU fime
processing, data transfer, etc.) and statisticathlpms. Hence, the development and optimizatiobaoid
reduction techniques and vegetation indices usitig @ limited amount of data are of utmost impoctan

In this study we attempted to generate novel, rbbodices that enable effective detection and
quantification of anomalies in the “normal” plambduction process at leaf, canopy and airbornd.leve

Carter (1993) determined the wavelengths at widgahdeflectance was generally most responsiveésst

He found that due to decreased absorption by pitsneeflectance at visible wavelengths increased
consistently with stressed leaves for eight steggsnts and among six vascular plant species. ¥isibl
reflectance seemed to be most sensitive to stneg®i535-640 nm and 685-700 nm wavelength ranges.
Infrared reflectance was comparatively unrespontivatress, but increased at 1400-2500 nm withreeve
leaf dehydration and the accompanying decreaseorfims) by water. Similar results were obtained in
other studies investigating plant stresses (Lomersrel Jensen, 1989, Penueadasl., 1994, Filellaet al.,
1995, Gamoret al., 1995). The induced iron stress in this study efassen to emphasize those findings,
because iron catalyzes the production of chlordptwlich is the critical component in the photo$tic
cycle, and differences in reflectance due to charigechlorophyll concentration are expressed in the
visible region of the spectrum. Iron is indispersdo the plant as a component of enzymes and light
energy transferring compounds central to photoggith and is moreover involved in the reduction of
nitrates and sulphates.

For that reason, the focus of the second partisfitaper lies in the retrieval of chlorophyll camtdérom
airborne imagery anéh situ measured reflectance spectra. Different techniquere used to retrieve
chlorophyll from both leaf reflectance spectra nueed in the field and canopy reflectance from ainieo
hyperspectral data. A simple linear regressionyaigtonfirmed the importance of the green peakradd
edge for chlorophyll retrieval (Carter, 1994, Gitei and Merzlyak, 1996). We further analyzed specif
wavelengths for a successful estimation gf Elowever, regression techniques require trainiat énd

the predictive algorithm is not generally appli@Grossman, 1996). The selected bands depenceon th
dataset at hand, influenced by species, canopgtsteuand viewing geometry.

A more general approach is to implement radiatremsfer models in order to explain the measured
reflectance signatures of canopies. When invethed; also allow the estimation of leaf biochemidtom
remote sensing data. Most successful applicatidnadiative transfer models for this purpose inelv
closed crop canopies (Jacquemeatidl., 1995, 2000). A major issue of open canopies sicthe peach
orchard in this study is the relative large conttitin of soil background and shadows which domitia¢e
bi-directional reflectance (BRDF) signature (Zafgjada et al., 2004). Nevertheless, good
correspondence was found between estimatggl i©@m airborne hyperspectral data amd Stu
measurements, with both linear regression and miodersion. An improved methodology for model
inversion is proposed in this paper. The main dhjes thus were to determine (i) whether logistic
regression and associated index development cardukto differentiate between various iron treatsah
the leaf-, canopy-, and airborne level and (ii) thiee chlorophyll content can be accurately estichatgng
leaf-, canopy-, and airborne level spectra, throimgplementation of standard regression and model
inversion techniques.
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2. Methodology

2.1.Iron deficiency: Logistic regression based on vegation indices

Most of the classical vegetation indices developedietect stress in plants are based on chlorophyll
(Carter, 1994, Daughtrgt al., 2000, Gamoret al., 1992, Gitelsoret al., 1996, Pefiuelagt al., 1995,
Lichtenthaleret al., 1996, Penuelat al., 1994, 1995, Zarco-Teja@tal., 2001) and water content (Eit|
al., 2006, Pwet al., 2003). Generally, these indices are expressérklative) difference of bands or band
ratio's. However, leaf and canopy structure haweresiderable impact on the efficacy of such indices
thereby making it impossible to use them at alklsleaf, canopy, airborne). Several techniques ha
been introduced to increase the robustness of dipidal parameter estimation (Blacknetral., 1996,
Chappelleet al.,1992, Daughtrt al., 2000, Kokaly and Clark, 1999). Haboudamal. (2002) proposed
an index that linked chlorophyll to the vegetatiodexes TCARI (Transformed Chlorophyll Absorption
Ratio Index) and OSAVI (Optimized Soils Adjusted gé¢ation Index) (Eg. 1). It was obtained using
simulated data and good results were obtained ada range of leaf area index values.

Chl = -30.605 * In(TCARI/OSAVI) Eq.1
TCARIZS((R7QO'RG70)'O2(R700'R550)(R7QJR670) Eq 2
OSAVI = (1+0.16)(Roc-Rs70)/(ReogtRe70+0.16) Eq.3

A drawback of the indices is that band locationd bandwidths vary with sensors. As a result, vahres
sensor dependent, requiring a calibration steparAexample, the nearest central wavelengths alaiiab
the AHS sensor are shown in Table 1.

Table 1: Suggested bands by Haboudane and available baidiSrsensor

Suggested band Haboudahe Available band AHS  Batidyid
550nm 542nm 28nm
670nm 659nm 28nm
700nm 718nm 28nm
800nm 804nm 28nm

It should be noted that, although the TCARI/OSAMéx was tested with the available AHS wavelengths,
it did not yield optimal results in our study atldevel (c-index value=0.69Hence, a standardized
difference of the measured reflectance values afsilated for each possible combination of twoedtght
wavelengths (see Eq. 4) at the three measuremasis Jehereby evading the environmental and strattu
effects on the reflectance patterns. This standedddifference was used as independent variabke in
logistic regression analysis to test the discritdinaperformance of the index. This approach allders
selection of an optimal standardized differenceetaipn index, as well as being a tool to testteds
vegetation indices. Logistic regressianvalues above 0.8 were considered indicative ofgadi
discriminatory performance.

_ wavelength 2 — wavelength 1 Eq.4

DVI =
wavelength 2 + wavelength 1
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2.2.Chlorophyll retrieval: Regression

Stepwise multiple linear regression (MLR) (Curedral., 1992, Martin and Aber, 1997, Wessn&ral.,
1988) is an empirical approach which develops digtige algorithm for chlorophyll from leaf or capyp
reflectance. It estimates the statistical relatigmsbetween the chlorophyll concentration and djeci
reflectance bands from a training dataset. Campis-&taal. (2006) suggests a robust regression based on
support vector machines that is particular usefidases with limitedh situ measurements. Regression can
be performed both at leaf- and canopy level. Howenesults seem to be inconsistent if not trainethe
appropriate level. Most importantly, the predicti&igorithm, trained on a specific site and cropnds
reliable for other conditions (Grossmahal., 1996). The selected bands depend on the databanhd,
influenced by species, canopy structure and vievgagmetry. If properly trained, regression methods
however can be very useful for a specific dataskaad. It allows analysis of band regions and laudfitis

of interest, as shown in section 3.

A linear regression was performed at leaf- anddbpanopy level in this study. The chlorophyll vedu
measuredn situ were used as the response value in the regreasalgsis. The explanatory variable was
the reflectance value in one (simple linear regoe3sor more bands (multiple regression). The optim
band was selected from the available spectrum ¢ffiraninimization of the residual sum of squaredrsrro
after regression. Bands were selected using mrtiliieestatistics in the case of multiple bands stering
the best combination of two bands based on a trgiset.

2.3.Chlorophyll retrieval: Model inversion

Another technique to retrieve chlorophyll from eeflance data is through numerical inversion of éeaf
canopy reflectance models. Inversion is usually fogpered with an iterative optimization
method (section 2.3), though lookup tables and aiewetworks are also used. Foliar chlorophyll cen b
retrieved from leaf reflectance by inverting a leaddel such as PROSPECT (Jacquemeiual., 1996).
The leaf model must be coupled with a canopy médelrder to estimate biochemical parameters from
canopy reflectance. We used the radiative trarcfappy model ACRM (Kuusk, 1995, 1995, 2003) for
this purpose.

The numerical inversion minimizes a merit or coghction. This is typically the sum of squared
differences between the measured and modelled gasygctral reflectance in each spectral band (i=
1...d) (5) (Zarco-Tejada, 2001):

d

A?=Y (R, - R,-{FJJE 6

The modelled reflectanck depends on the model parameferd he optimization thus consists of finding
the optimal model parametdpghat minimize the merit function. Modifications thiis merit function exist,
for example by weighing the contributions of thdiidual wavelengths.

In Zarco-Tejadat al. (2001), the merit function is based on an opfiedéx (Rsy/R710) that focused on a
single band ratio, rather than the entire spectitme. authors claimed superior results when a metbggt
consisting on minimizing a function based in aedde optical index was used, rather than by magdilin
the reflectance bands in the visible and NIR, @sfigdf reflectance signals included shadowed [sxé

different approach was followed in this study, vehere filtered the modelled reflectand® to simulate
the reflectance measured by the airborne hyperspesgnsor. It is important to match the modelled
spectrum to the sensor specifications, especiallysénsors such as the AHS sensor, which has garyin
bandwidths. Figure 1 shows the modelled spectruiordand after filtering.
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Figure 1: The modelled canopy spectrum before (solid) artér afdots) filtering according to the
specifications of the AHS sensor.

Finding the minimum merit function is not straigittard. Analytic solutions are unfeasible due te th
high non-linearity of the problem. Moreover, it mhgve multiple separated local minima. Only one of
these minima represents the true global minimuintefest. Gradient descent algorithms include stsiep
descent, conjugate-gradient, quasi-Newton and leemgpMarquardt algorithms (Moré, 1978). They have
a low computational cost, but can easily be stucklacal minimum, depending on the initializatioithe
parameters.

Global search methods overcome the local minimutfalpibut have a higher computational cost. We
adopted the adaptive simulated annealing (ASA Ingfr the optimization scheme. It is a very fast
implementation of the simulated annealing algoritii€inkpatrick, 1983) with some optimizations such a
a re-annealing schedule. We compared our optimizatiith the conjugate direction method of Powell
(Powell, 1964), included in the available inversiontines of ACRM by Nilson and Kuusk (1989).

3. Experiments

3.1. Experimental setup

The peach orchard is schematically presented iar&i§j2. The plot, represented as a matrix, consf3s
rows and 6 columns. The total number of trees &i@6tead of 210, due to five missing trees (ineidan
red). Each pixel corresponds to the extracteddae®py spectrum (gray levels represent the refieet in
red). Iron chlorosis was induced in the two rigbstncolumns (pixels indicated in blue). Trees wezated
in groups of three as indicated. The iron cheleds applied according to the blue color code (frigt lto
dark): Og/tree, 60g/tree, 90g/tree, and 120g/ffée. yellow pixels represent trees that have beafiegr
during the previous year (2004).

3.2.Field data collection

Fresh leaves were sampled for each tree and melasitie the ASD spectrometer. Leaf reflectance was
measured for 716 leaves, using a leaf clip ASDralse Chlorophyll was measured for each leaf with a
SPAD-502 Minolta Chlorophyll Meter and mean valugsre calculated per tree to compare with
parameters obtained at the canopy level. The SP&Bsurements were calibrated to obtain chlorophyll
concentration, by comparing SPAD readings with eom@tions derived from destructive chemical
analysis in the laboratory for a subset of leaf e The result is shown in Figure 2. A correlatio
coefficient of 0.82 was obtained.
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Figure 2: Calibration of the SPAD values using,€oncentrations derived from chemical analysisie t
laboratory.

3.3. Airborne hyperspectral data

The AHS sensor has 63 bands covering the visuahaadinfrared part of the spectrum (450nm-2500nm).
Image data were processed to top of canopy lewaigun-house developed software for atmospheric
correction based on MODTRAN. The ground resolut@in2.5m was slightly larger than the crown
diameter, which complicated tree identificatiorthie image. The peach trees were planted accorditiget
scheme in Figure 12 at a spacing of 4 meters (B&Sg). The hyperspectral image was scaled up using
factor of five (nearest neighbor resampling) inesrtb facilitate tree extraction. Any given treerefore
was covered in a region of interest (ROI) with aoleghnumber of (sub) pixels. The sub-pixels contain
exactly the same spectral information as the calggixels, since nearest neighbor resampling wasl.us
The median reflectance of the sub-pixels in the R@$ used to obtain target canopy reflectance. An
alternative was to select the pixel in the ROI wittaximum normalized difference vegetation index
(NDVI) or maximum near-infrared (NIR) value to mimize the influence of shadows and understory
(canopy openings between rows), as applied in Zagjadaet al. (2001). However, in our case a ROI
could potentially contain sub-pixels of neighbortnges due to a combination of imperfect tree positg,
overlapping ROIs, and artifacts due to upsampling.

4. Results
4.1.Vegetation indices

The most obvious characteristic of plants affettgdre deficiency is leaf chlorosis (Moralesal., 1994).
This statement wasalso statistically verified as shown in Figure 3esBits of the logistic regression
technique per wavelength (Delalieeb@al., 2006) are illustrated here. Based on the fadtdivalues above
0.8 represent significant discriminative performanbetween the two treatments (Og and 60g of
Sequestrene), it was concluded that a lack ofapplications resulted in differences in the spédianain
between 500 nm and 700 nm.
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Figure 3: Discriminatory performance of the logistic regiessper wavelength to discriminate between
leaf spectra of iron treated (60g Sequestrenenandreated trees.

The investigation into vegetation indices corrolenathese findings as shown below (Figure 4 and 5).
Figure 4 represents the’Ralues (>0.4) of a simple linear regression betwalk possible standardized
vegetation indices (Wavelength 2 — Wavelength W4velength 2 + Wavelength 1) and measured
chlorophyll concentrations.
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Figure 4: R*-values (>0.4) of a simple linear regression betwalepossible standardized vegetation
indices and measured chlorophyll concentrations

The three dimensional graphs shown in Figure Sessprt the discriminatory performanaevélue) of
logistic regression models at leaf (left), canopght) and airborne (black dots) level. The X- andxes
represent wavelength 1 and wavelength 2, respécisee Eq.4), while the third dimension represémés
c-index value visualized via color-coding. C-indemlues of 0.8 and more are indicative of good
discrimination. All results are shown for leaf arghopy level, while for airborne level, due to timeited
amount of wavelength bands, and thus also of sy indices withe-values above 0.8 were plotted as
black dots on top of the other images. Imagesfd)(k) represent the discriminatory performancéhef
logistic regression model with as binary resporaéables: trees lacking any form of iron applicat{®)

and trees treated with 60g of Sequestrene (1)adtaded canopy level respectively. Logistic regrassi
results for the trees treated with 60g and 120gshosvn in figures (c) at leaf- and airborne levad én
figure (d) at canopy-and airborne level. Finalljffatences among trees treated with 90g and 120g of
Sequestrene are illustrated in () and (f) at &af canopy level respectively. Since no black dats be
seen in the images (c-f), it can be concluded that deficiency is only detectable in extreme
circumstances when using airborne imagery. This ataints for the research at leaf and canopy level
where nearly no significant differences betweeagnsith different iron applications could be found.
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Figure 5: Discriminatory performance (c-value) of logistegression models with standardized vegetation
indices as independent variables at leaf (leftf(€gfe)), canopy (right (b),(d),(e)) and airbofbéack dots)
level.

From Figures 4 and 5 it can be deduced that the oseful vegetation indices to detect iron stregs a
those that are closely related to chlorophyll cotregion, which highlights the statement of iroriidency
causing chlorosis. Moreover, the combination ofil@mphyll sensitive band and an insensitive baolds$
more promise than a combination of two chlorophkghsitive bands for the detection of iron stresg.@®
the 63 AHS channels, channel 571 nm was selectéfdeamost useful band when combined with a NIR
(948 nm, 975 nm, 1004 nm) or SWIR (1622 nm, 21402182 nm, 2175 nm) channel for the extraction of
the amount of chlorophyll or merely to discriminatetween iron treated and iron untreated treesaditds
well as at canopy and airborne levels. Vegetatiatices based on only visible bands were not useful,
probably due to the interaction of background amaoapheric effects. Schleef al. (2005) found that in
forests a ratio index of wavelength 571 nm and 168 was independent of the LAI. Hence, the
combination of those wavelengths can be used ifigjeatly at leaf, TOC and airborne level. Howeyer
reflectance spectra are dominated by water absarftands in NIR and SWIR regions leading to the
supposition that the vegetative water content reaththe same for all trees in this study.
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4.2. Chlorophyll retrieval: regression at leaf level

Chlorophyll was estimated at the leaf level usitiffetent techniques. First, a predictive algorithvas
derived from a simple regression technique usirgingle optimized band from the available ASD leaf
spectra. A high correlation fR0.95) and low RMSE of 1.7@g/cn? were obtained, indicating that
chlorophyll in this particular instance can be dedi accurately using even single-band leaf refiexta

We have analyzed the importance of the spectrédmegand bandwidths required by investigating tes |

in predictive ability (correlation) if specific spteal regions were submitted. Figure 6 confirmg the
visual part of the spectrum was most importantcfdorophyll retrieval. The NIR was also able todice
chlorophyll concentrations, but correlation deceehas longer wavelengths (SWIR) were used. We also
filtered the ASD input spectrum according to the AKensor specifications to verify whether the AHS
sensor is suited to the task of chlorophyll retalewhis is illustrated in Figure 7 where no degitazh in
correlation can be observed after filtering.

It furthermore was established that if the ASD $@eevere further filtered, simulating multispectral
sensors, good results were still obtained at thélevel. It is useful to analyze the selected petalent
variable band after different filtering operatiods expected, for narrow bands with a full-widthhatf-
maximum (FWHM) between 16nm and 32nm, the red-gd@@§2nm) provided valuable information on
chlorophyll. However, the high frequency contairredhe red-edge region will be discarded by a @89
filter and thus must be acquired with a narrow bahle selected band as a result moved towardyr des
peak (606nm) for increasing bandwidths. This isdatid in Figure 8, which shows the selected band a
shadowed region (with corresponding bandwidth).the case where the leaf spectra were filtered
according to the AHS sensor specifications, thih fifand (571nm) was selected. This was also thé mos
appropriate band obtained in the logistic regresdietween different iron treatments. The causeseffe
relationship between iron deficiency and chloregis once again emphasized.
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Figure 6: Simple linear regression for Figure 7: Simple linear regressionor Cap
retrieval, submitting different parts of tl retrieval using the full ASD spectrurand a
spectrum. filtered spectrum according to the AHS sensor.
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bandwidths, the selected band is moved towardsig spectra according to the AHS sensor specifioat
peak. has only a slight impact on the result.

Despite the relatively good results of simple lineegression for chlorophyll retrieval, there amme
drawbacks with this technique as mentioned in secH. Inversion of radiative transfer models is an
alternative that has been used with success (Jaaaket al., 2000, Kuusk, 1998, Zarco-Tejaetal.,
2001).

Inversion of PROSPECT vyielded good results for afolichlorophyll retrieval (Figure 9, °R0.81,
RMSE=8.57ug/cnf). Filtering the ASD spectra according to the AH®or specifications did not have a
significant influence, thereby confirming the reggien results. All five PROSPECT parameters were
estimated by the optimization routine. Their mealugs and variances are shown in Table 2.

Table 2 Means and variances of estimated PROSPECT paer@ter all leaves

Parameter Mean Variange
Water equivalent thickness (Cw)| 0.0121 | 9.9810’
Leaf protein content (Cp) 0.0002 | 1.810%
Leaf pigment concentration (Cc)| 0.0031 | 1.0210’
Leaf structure parameter (N) 1.8 0.0047
Chlorophyll concentration (Cab) | 39 98

It is clear from Table 2 that apart from chlorophgimall variations in biochemical parameter values
existed. As a result, those parameters were fikéite&r mean value for further analysis at the garlevel.

10
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4.3. Airborne hyperspectral data: canopy level

A total of 205 canopy spectra were derived from A¢S image as explained in section 3.3. A single
spectrum was obtained for each tree by calculatiegnedian reflectance for the corresponding region
interest.

The radiative transfer models PROSPECT and ACRMewrererted. @, was derived by first fixing the
other four parameters for the PROSPECT leaf modtleamean values from Table 2. The canopy model
parameters were fixed as well. The sun and vievieangere set to the actual viewing geometry duttireg
flight. The leaf area index (LAI) was measured ¥0rtrees with the LAI-2000 instrument. The mearueal
(1.71) was used as LAl input to the canopy modbke Temaining parameters were fixed to the average
value of the model range, or obtained by trial endr. This was the case for the leaf angle distidin
(LAD) parameters, clumping and the refractive inddxeaf scattering layers. The chlorophyll was not
constrained. An overview of the fixed parametergtie canopy reflectance model is given in Table 3.

Table 3: Parameters used for the ACRM canopy reflectanatemo

Parameter Value
Solar zenith angle 30°
Solar azimuth angle 121°
Relative viewing azimuth 0°
Angstrom turbidity factor 0.1
Leaf area index (LAI) 1.71
Leaf size 0.03
Clumping parameter 0.8
Log eccentricity term for LAD 2.3
Mean leaf angle of elliptical LAD 45
Refractive index of leaf scattering layelsl

A simple linear regression, similar to the chlorgphetrieval from leaf reflectance, was performied
canopy level estimation. The regression performedt,bfollowed by the proposed model inversion
(R>=0.60 and RMSE=4.6®/cnt and R=0.49 and RMSE=4.4fy/cn¥, respectively). Figures 10 and 11
show the results for these two respective appreadkmgpropriate filtering of the modelled reflectanand

an improved optimization schedule increased thdopeance of model inversion considerably. E.g.,
standard model inversion using the conjugate dineanethod of Powell (Powell, 1964) for optimizatio
underestimated higher chlorophyll concentrations=(R84 and RMSE=10.5@/cnf). Correlation of the
Haboudane chlorophyll index, on the other hand, aramprovement over the standard model inversion
(R>=0.41), but underestimated the chlorophyll conegitn by 50%, with a high RMSE as a result
(22.56ug/cnT).

Results at the plot level are presented in Fig@reahd show a good correlation between the piRasvs
with low nutrient treatment appear in light coloittwlow chlorophyll concentration. Even more noéibée

is the column next to the treated trees (third fright). Those trees were grafted during the previgear,
with a loss of chlorophyll concentration as a restihe best results were obtained using the reigress
approach, but training was required. The proposedeminversion also performed well, and is gengrall
applicable to other species and geographical loesti
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Figure 10: Chlorophyll estimation fron Figure 11: Chlorophyll estimation through mod
hyperspectral image data using regression inversion using the proposed (filtering andaptive
simulated annealing) and standard methods (Ppwell
1964).
Figure 12: Schematic overview of the peach orch: Figure 13: Chlorophyll contentat the canopy leve

Treatment code (from light blue to dark blue): gt measured (left) and estimated using regressiond(g)i
60g/tree, 90g/tree, and 120g/tree. The yellow pixel and model inversion (right). Chlorophyll conceritrat
represent trees that have been grafted during tt ranges from 1@g/cnt (light green) to 4@g/cnt (dark
previous vea green).
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5. Conclusions and further research

This study explored the potential of hyperspeateflectance data to differentiate between iron ailexfit
and healthy peach trees at leaf, canopy and akbbavel. Logistic regression was used to identify
wavelengths or wavelength domains that could difigate among the different iron treatments withie
peach orchard. Leaf chlorophyll concentration wstineated fromin situ measured leaf reflectance and
airborne hyperspectral imagery over a peach orchdtdough the variance of the chlorophyll estiroati
increased with the complexity of the two levels tlesults showed that chlorophgitb content can be
estimated from airborne hyperspectral data in atpeschard for nutrient stress detection at thevaro
level. Model inversion of PROSPECT and ACRM alscsveaiccessful, yielding leaf and canopy level
values of B=0.81 and R=0.49 and RMSE=8.5®%y/cnf and RMSE = 5 .49g/cnft, respectively. However,
special care must be taken for extraction of thepg-level reflectance from the image data in ortder
minimize shadow and solil effects on the crown gpect

Further research will focus on this issue of saregleaction and the assessment of a 3D model ®itd&
account the bi-directional reflectance effects axcfion of the viewing geometry and scene companent
such as shadow and soil effects. Additional workegpuired for the validation of robust indices talbw
efficient detection and quantification of anomaliasthe normal plant production process at differen
observational scales. These indices easily camdwegorated in process models because of their meime
and compact character, thereby negating the neemlbect full-range spectral datasets for monitgrin
vegetation production systems.

Our results suggested that early detection of mbfiint stress using hyperspectral remote sensasy
significant potential. This is of importance to tagricultural market, e.g., where an early warrsggtem
based on spectral inputs would be an ideal solutiothe enforced reduction of pesticide or ferdtian
use. Farmers subsequently only have to apply tblesmicals when and where biotic abnormalities are
detected in the normal growth pattern of cropsufautt-satellite measurements will enable managers
obtain frequent hyperspectral coverage of largasréhereby making continuous monitoring of biotic
stress possible in capital-intensive crop prodacsigstems.
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