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ABSTRACT 
This research was conducted to assess the potential of hyperspectral indices to detect iron defi-
ciency in capital-intensive multi-annual crop systems. A well-defined hyperspectral multi-layer 
dataset was constructed for a peach orchard in Zaragoza, Spain, consisting of hyperspectral 
measurements at various monitoring levels (leaf, crown, airborne). Trees were subjected to four 
different treatments of iron application (0 g / tree, 60 g / tree, 90 g / tree, and 120 g / tree). Ground-
based measurements were used to characterise the on-site peach (Prunus persica L.) orchard in 
terms of chlorophyll, dry matter, water content, and leaf area index (LAI). Indices were extracted 
from the spectral profiles by means of band reduction techniques based on logistic regression and 
narrow-waveband ratioing involving all possible two-band combinations. Physiological interpreta-
tions extracted from leaf-level experiments were extrapolated to crown- and airborne level. It was 
concluded from leaf level measurements that a decrease in leaf chlorophyll concentration resulted 
due to iron deficiency. The results suggested that spectral bands and narrow waveband ratio vege-
tation indices, selected via multivariate logistic regression classification, were able to distinguish 
iron untreated and iron treated trees (C-values>0.8). Moreover, the most appropriate indices ob-
tained in this manner fulfilled the expectations by being highly correlated (R2>0.6) to the measured 
chlorophyll concentrations. The visible part of the spectrum, mostly dominated by the amount of 
pigments (e.g. chlorophyll, carotenoids), provided the most discriminative spectral region (505 - 
740 nm) in this study. The discriminatory performance of a combined chlorophyll and soil-adjusted 
vegetation index was compared to the results of the selected vegetation indices to estimate the 
effects of soil background and LAI on those indices. 

Keywords: vegetation hyperspectral indices, normal plant state, iron deficiency. 

INTRODUCTION 
The potential yield of capital-intensive multi-annual crops (e.g., fruit orchards) is seldom realised in 
reality. Reductions in yield and fruit quality can be caused by physiogenic aspects, pathogens (bi-
otic stress), abiotic stress (e.g., extreme temperature, dryness, high salinities), and improperly 
managed vegetative production systems (1,2). However, a targeted monitoring and modelling of 
growth processes in such agricultural production systems potentially could enable early detection 
and treatment of production limiting factors. Non-destructive techniques, furthermore, are essential 
for capturing data in a continuous manner, thereby enabling rapid response and minimised unin-
tentional impacts. Remote sensing provides an excellent tool to capture the structure and physio-
logical status of a plant using reflectance patterns (3). The incident energy of the sun is partly re-
flected, transmitted, and absorbed by plant material. The amount of reflected light depends on a 
number of leaf-related factors, such as external morphology, internal structure, concentration, and 
internal distribution of biochemical components, etc. Stress-induced physiological changes could 
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affect these factors, thereby making stress detection at the leaf-level possible at an early stage of 
sub-optimal photosynthetic functioning. Any opportunity to monitor these factors in an ongoing or 
periodic remote sensing framework offers the potential to model plant production processes, and 
therefore also to steer the process by means of adapted management measures.  

Carter (4) examined the wavelengths at which leaf reflectance was generally most responsive to 
stress. He found that the reflectance at visible wavelengths increased consistently due to de-
creased absorption by pigments with stressed leaves for eight stress agents and among six vascu-
lar plant species. The visible reflectance seemed to be most sensitive to stress in the 535-640 nm 
and 685-700 nm wavelength ranges. The infrared reflectance was comparatively unresponsive to 
stress, but increased at 1400-2500 nm with severe leaf dehydration and the accompanying de-
creased water absorption. Similar results were obtained in other studies investigating plant stress 
(5,6,7,8). The induced iron stress in this study was chosen to validate those findings, because 
iron catalyses the production of chlorophyll, and varying amounts of iron application should there-
fore be detectable in the visible region according to the findings of Carter (4). One should note, 
however, that the airborne hyperspectral images in this study will be more difficult to interpret due 
to soil background effects, Bidirectional Reflectance Distribution Function (BRDF) effects, and at-
mospheric effects which scatter light and result in an alteration of the vegetative reflectance spec-
trum.  

Even though hyperspectral data can be beneficial to various applications, data volume and dimen-
sionality cause both technical (storage capacity, CPU time for processing, data transfer, etc.) and 
statistical challenges. Hence, the development and optimisation of band reduction techniques and 
vegetation indices using only a limited amount of data are of utmost importance. We therefore at-
tempted to generate indices in this study that enable effective detection and quantification of 

ral indices to model the changes of those specific biochemical constituents caused by iron 
stress.  

 applications (Se-
 0 g / tree, 60 g / tree, 90 g / tree, and 120 g / tree.  

 

anomalies in the “normal” plant production process at leaf, crown, and airborne level. 

The study objectives can be summarised as (i) assessment of the utility of hyperspectral data at 
the leaf, crown, and airborne level for plant stress detection, (ii) evaluation of the potential to track 
spectral changes due to differences in biophysical indicators of iron stress, such as leaf chlorophyll 
a+b (Ca+b), dry matter (Cm), water (Cw), and leaf area index (LAI), and (iii) to test and generate hy-
perspect

METHODS 
Study area 
The peach orchard used for data collection was located in Zaragoza, Spain (41°46’ N, 1°37’ E). A 
total of 48 trees from 205 were selected for leaf and crown measurements. Those selected peach 
trees were treated in blocks of 3 trees with different amounts of iron chelate
questrene), varying between

Leaf level measurements 
Leaf hyperspectral reflectance data were collected for a total of 716 leaves in July 2005 using a 
plant probe attached to a portable FieldSpec Pro spectroradiometer (9) (Analytical Spectral De-
vices Inc., Boulder, USA) with a spectral range of 350 - 2500 nm. The sampling interval across the 
350 - 1050 nm range is 1.4 nm with a spectral resolution of 3 nm. The sampling interval and the 
spectral resolution are approximately 2 nm and 10 nm, respectively, for the 1050 - 2500 nm range. 
A Spectralon (ASDI, Boulder, USA) white reference panel was used to adjust the sensitivity of the
instrument detector according to the specific illumination conditions and for reflectance derivation.  

Laboratory reflectance and transmittance measurements were collected for a total of 155 leaf 
samples using a Li-Cor 1800-12 Integrating Sphere (Li-Cor 1800-12S, Li-COR, Inc., Lincoln, Ne-
braska, USA) coupled to a portable FieldSpec JR spectroradiometer (Analytical Spectral Devices 
Inc., Boulder, USA) with a spectral range of 350 - 2500 nm. While the sampling interval and spec-
tral resolution across the 350 - 1050 nm are similar to that of the FieldSpec Pro model, the values 
for the 1050 - 2500 nm range are approximately 2 nm and 30 nm, respectively. Both spectroradi-
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ometers were warmed up for 90 minutes prior to measurement to avoid spectral steps at the detec-
tor overlap wavelength regions, which occur due to different warm-up rates for the three spectrora-
diometer arrays. Resultant data were interpolated by the ASDI software to produce values at each 

af samples. The result is shown in Figure 1. A coefficient of determination of 0.86 was 
obtained.  

nanometer interval.  

Chlorophyll was measured for each leaf with a SPAD-502 Minolta Chlorophyll Meter and mean 
values were calculated per tree to compare with parameters obtained at the crown level. The 
SPAD measurements were calibrated to obtain chlorophyll concentration by comparing SPAD 
readings with concentrations derived from destructive chemical analysis in the laboratory for a 
subset of le
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Figure 1: Calibration of the field SPAD values using Cab concentrations derived from chemical 
analysis in the laboratory. Data of leaves over the whole range of iron chelate applications were 
taken into account: T0 = 0 g / tree, T1 = 60 g / tree, T2 = 90 g / tree, T3 = 120 g / tree. 

 trees with 60 g / tree, 12 

 fisheye light sensor. The calcula-
ording to Villalobos et al. (10). 

 trees due to a combination of imperfect tree 
ng ROIs, and artifacts due to resampling.  

Crown level measurements 
Crown level hyperspectral measurements were gathered from 48 selected peach trees with the port-
able FieldSpec JR spectroradiometer specified above. Measurements were collected from a cherry 
picker, allowing an approximate height of 3.60 m above the trees. A footprint diameter of 159.6 cm 
was obtained, given a field of view of 25°. Each group of three trees was treated with differing 
amounts of Sequestrene, resulting in 12 trees without iron application, 12
trees with 90 g / tree, and another 12 trees with 120 g Sequestrene / tree. 

Leaf area index was estimated for 10 trees with an LAI-2000 (Licor Inc., Nebraska) instrument in 
addition to the spectral data. The LAI-2000 is a portable instrument that is able to provide immedi-
ate LAI estimates by measuring diffuse radiation by means of a
tions for LAI were performed acc

Airborne level measurements 
Airborne image data were acquired with the AHS -160 sensor (63 bands; 450 – 2500 nm) on July 
12, 2005, under cloud free conditions. Image data were processed by the Flemish Institute for 
Technological Research using in-house developed software (11) described by Kempeneers et al. 
(12). The ground resolution of 2.5 m was similar to the average crown diameter, which compli-
cated the tree identification in the image. The peach trees were planted with a row spacing of four 
metres (8/5 pixels). Image data were processed to tree level by resampling to a resolution of 0.5 m 
(nearest neighbour). Any given tree, therefore, was covered by a region of interest (ROI) with an 
integer number of (sub) pixels. Furthermore, the sub-pixels contain exactly the same spectral in-
formation as the original pixels due to the use of nearest neighbour resampling. However, a ROI 
could potentially contain sub-pixels of neighbouring
positioning, overlappi
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Vegetation indices 
A logistic regression-based band selection technique (13) was used due to the non-normality of 
the data to select the wavebands that were most suitable to detect the spectral changes caused by 
the application of different amounts of iron chelates. Single wavebands can constitute acceptable 
indicators of biochemical constituents, but are subject to variability caused by environmental fac-
tors, e.g., solar angle and background scattering. Vegetation indices also result in reduction of data 
dimensionality and therefore might be valuable in terms of data processing and analysis. More-
over, they are able to surpass the limitations of single bands by minimising external factors, result-
ing in improved correlations with vegetative biochemical constituents. Most of the classical vegeta-
tion indices developed to detect stress in plants are based on chlorophyll 

ll absorption and high 
 domain, due to intra-cellu

      

(14,15,16,17,18,19,6,20) and water content (21,22). 

The Normalised Difference Vegetation Index (NDVI) (Eq. 1) is probably the most studied vegeta-
tion index in literature. It makes use of the characteristic features of vegetative reflectance spectra 
R(λ), namely low reflectance in the red part of the spectrum due to chlorophy
reflectance values in the near infrared lar structure. 

REDRNIRR ()( +

However, the most relevant information on the physiological status of a plant is not necessarily re-
lated to these two regions. Furthermore, the NDVI often is not a good indicator of stress as it is pre-
cise for Leaf Area Index (LAI), biomass, and chlorophyll determination only at relatively low levels of 
those factors (23,19). The concept of this vegetation index, however, is potentially useful for the deri-
vation of novel standardised indices with the potential for improved estimation of biophysical parame-
ters. The inclusion of a shortwave infrared (SWIR) spectral band can, for example, provide useful 
complementary information on the moisture status of the leaf/canopy. Therefore, an attempt was 
made to identify the most optimal combination of two distinct spectral features. A standardised differ-
ence of the measured reflectance values R was calculated for each possible combination of two dif-
ferent wavelengths 1

REDRNIRRNDVI )()( −
=      (1) 

λ  and 2λ  (Eq. 2). This standardised difference was then used as independent 
variable in a logistic regression analysis. This approach allowed for the selection of an optimal stan-

 well s being a tool t

       

dardised difference vegetation index, as  a o test existing vegetation indices.  
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+

     (2)

The same analysis was performed on randomly selected datasets to ensure that the process out-
put remained insensitive to a v

)()( 12 λλ RR −
=  

ariation in inputs. These datasets were randomly chosen subsam-

ccount in this study, due to the fact that iron stress causes chlorosis, i.e., 

      

ples from the original dataset.  

Soil background and LAI have a considerable impact on the vegetation spectrum, making it difficult 
to use vegetation indices at all sensing levels (leaf, crown, airborne). Much attention has been paid 
to increasing the robustness of biochemical parameter estimation over the last number of years 
(24,25,15,26). The influence of the soil background on the spectrum necessitated researchers to 
develop new soil adjusted indices such as SAVI (27) and TSAVI (28). Rondeaux et al. (29) devel-
oped the “optimised soil adjusted vegetation index”, OSAVI, based on the near infrared and red 
reflectance properties of soil and vegetation. Haboudane et al. (30) proposed a combination of the 
chlorophyll index TCARI (Transformed Chlorophyll Absorption Ratio Index) (Eq. 4) and OSAVI 
(Eq. 5) to retrieve leaf chlorophyll at canopy level, thereby taking into account the effects of non-
photosynthetic materials and LAI (Eq. 3). Acceptable results were obtained in that study based on 
simulated data and including a wide range of leaf area index values. The use of this index there-
fore was also taken into a
chlorophyll degradation.  

OSAVI
TCARIChl ln605.30−=      (3) 
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One potential drawback of developed indices is that band locations and bandwidths vary with sen-
sors. The nearest central wavelengths available in the AHS sensor, presented in Table1, were 
therefore used to test selected indices.  

Table 1: Suggested bands by Haboudane and available band in AHS sensor 

Suggested band 
(Haboudane) 

Available 
band (AHS) 

Bandwidth 

550 nm 
670 nm 
700 nm 
800 nm 

542 nm 
659 nm 
718 nm 
804 nm 

28 nm 
28 nm 
28 nm 
28 nm 

Discriminatory performance 
The ability of the indices to discriminate between spectra of trees with different amounts of iron 
treatments is represented by C-index values. This C-index is identical to a widely used measure of 
diagnostic discrimination, the area under the ‘Receiver-Operator Characteristic’ (ROC) (31). ROC 
plots are created by plotting the sensitivity values, the true positive fraction (i.e. iron treated tree 
correctly classified as iron treated) against 1-specificity, the false-positive fraction (i.e. iron un-
treated tree classified as iron treated tree). A curve that maximises sensitivity for low values of the 
false-positive fraction is considered a good model and is quantified by calculating the area under 
the curve (C-index). The C-index is an interpretable and objective statistical measure to evaluate 
and compare the discriminatory performance of the different wavelengths or linear combinations of 
them, and has values usually ranging from 0.5 (random) to 1.0 (perfect discrimination) but can 
have values below this range indicating a model that is worse than random (32). Values above 0.8 
are generally accepted to represent significant discriminative models (33). Wavelengths with C-
values above 0.8, therefore, were selected in this study due to their ability to discriminate between 
spectral values of infected and non-infected vegetation. 

RESULTS AND DISCUSSION 
The most obvious symptom of plants affected by Fe deficiency is leaf chlorosis (13). This was con-
firmed through visual analysis of the measured vegetation spectra. An overview of the spectral sig-
natures collected by the spectroradiometer at leaf (a) and crown levels (b) is given in Figure 2. 
Blue lines represent spectra measured in trees treated with 60 g of Sequestrene (Fe-chelate), 
while red spectra were obtained by measuring trees lacking Fe treatment. Considerable overlap 
was found in the spectra of these two treatments, but there was a clear dissimilarity observable in 
the visible part of the spectrum (more specifically between 500 - 700 nm), mostly dominated by 
pigment concentrations (34). The iron deficient trees seemed to reflect more energy in this spec-
tral domain compared to the iron treated trees, indicating a reduction in pigments available to ab-
sorb the energy in these wavelengths for the first case.  

This statement was also statistically verified as shown in Figure 3. Results of the per-wavelength 
logistic regression technique (35) are illustrated here. Based on the fact that C-values above 0.8 
represent significant discriminative performance between two treatments, it was concluded that a 
lack of iron applications resulted in differences in the spectral domain between 500 nm and 750 
nm. No C-index values above 0.8 were obtained for the distinction between 60 g, 90 g and 120 g 
iron per tree, implying that iron stress is only detectable in extreme circumstances when using sin-
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gle bands of hyperspectral imagery or, alternatively, that no iron stress was present when a mini-
mum of 60 g Sequestrene per tree was applied.  
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Figure 2: (a) Spectra obtained by measuring leaf reflectance of iron treated trees (blue) and non 
treated trees (red) and (b) spectra obtained by measuring top of canopy reflectance of iron treated 
trees (blue) and non treated trees (red).  
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Figure 3: Discriminatory performance of the per-wavelength logistic regression to discriminate be-
tween leaf spectra of trees treated with a different amount of Sequestrene: (a) 0 g – 60 g, (b) 0 g - 
90 g, (c) 0 g - 120 g, (d) 60 g - 90 g (e) 60 g – 120 g, and (f) 90 g - 120 g . 

(e) (f) 

wavelength (nm) 

C
-v

al
ue

s 

C
-v

al
ue

s 

wavelength (nm) wavelength (nm) 



EARSeL eProceedings 6, 2/2007 88 

 
Figure 4: Discriminatory performance (C-value) of logistic regression models with standardised 
vegetation indices as independent variables at crown (left), leaf (right), and airborne (black dots) 
level. Images (a) & (b), (c) & (d), (e) & (f), (g) & (h), (i) & (j), and (k) & (l) respectively illustrate the 
discriminatory performances for trees treated with 0 g and 60 g, 0 g and 90 g, 0 g and 120 g, 60 g 
and 90 g, 90 g and 120 g, and 60 g and 120 g Sequestrene.   
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The investigation into vegetation indices corroborated these findings, as shown in Figure 4. The 
three dimensional graphs shown in Figure 4 represent the discriminatory performance (C-value) of 
logistic regression models at leaf (left), crown (right) and airborne (black dots) level. The x- and y-
axes represent wavelength 1 and wavelength 2, respectively (Eq. 2), while the third dimension 
represents the C-index value visualised via colour-coding. C-index values of 0.8 and greater are 
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indicative of good discrimination. All results are shown for leaf and crown level, while for airborne 
level, due to the limited number of wavebands, only indices with C-values above 0.8 were plotted 
as black dots in each graph. Images (a) and (b) represent the discriminatory performance of the 
logistic regression model as binary response variables trees lacking any form of iron application 
and trees treated with 60 g of Sequestrene at leaf and crown level, respectively. Images (c) & (d), 
(e) & (f), (g) & (h), (i) & (j), and (k) & (l), respectively, illustrate the discriminatory performances of 
all possible SDVI’s for the cases with 0 g and 90 g, 0 g and 120 g, 60 g and 90 g, 90 g and 120 g, 
and 60 g and 120 g Sequestrene added per tree. 

It has been reported in literature that biochemical parameters such as chlorophyll content, water 
content, and dry matter content can be estimated from hyperspectral imagery via spectral indices 
(36,37). Figure 5 represents the R2-values of a simple linear regression between all possible stan-
dardised vegetation indices (see Eq.2) and measured (a) chlorophyll, (b) water, and (c) dry matter 
contents to evaluate relationships between these biochemical parameters and iron deficiency. 
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Figure 5: R2-values of a simple linear regression between all possible standardised vegetation in-
dices and averaged (a) chlorophyll, (b) water, and (c) dry matter content for each tree. Spectral re-
gions with atmospheric disturbances (e.g., water absorption bands) were removed from the image. 

From Figures 4 and 5 it can be deduced that the most useful vegetation indices to detect iron 
stress are those that are closely related to chlorophyll concentration (R2>0.6, Figure 5), which em-
phasises the conclusion that relates iron deficiency to chlorosis. Reduced correlations were found 
between indices predicting iron deficiency and those related to measured water content (R² ~0.6), 
and even lower correlations to dry matter content (R2~0.4).  

The 571 nm waveband was selected from 63 AHS wavebands, as the most useful band when 
combined with a NIR (948 nm, 975 nm, 1004 nm) or SWIR (1622 nm, 2140 nm, 2152 nm, 2175 
nm) waveband for the extraction of chlorophyll amount or merely to discriminate between iron 
treated and iron untreated trees at leaf, crown, and airborne levels (Table 2). The discriminatory 
performances of the vegetation indices were lower at crown level than at leaf level, which was at-
tributed to the interaction of background effects. Therefore, the discriminatory performance of the 
combined index TCARI/OSAVI (Figure 6), which is insensitive to LAI variations (from 0.5 to 8) and 
minimises soil effects on the crown reflectance (25), was compared to the results of above-
mentioned vegetation indices to estimate the effects of soil background and LAI on those indices. 
The discriminative power of single wavebands and standardised differenced vegetation indices 
was, however, deemed satisfactory for the detection of iron chlorosis in this study. 

TCARI/OSAVI was shown to be a suitable index at leaf level (C = 1) and crown level (C = 0.93), 
but exhibited reduced discriminative power at airborne level (C = 0.76), since only C-values above 
0.8 are assumed to represent an acceptable discriminatory performance.  

The SDVI based on wavelengths 571 nm and 1622 nm was found to perform the best for predict-
ing iron deficiency at all levels, although the statistical significance between differences was not 
evaluated. Reduced LAI and soil background effects were found for these indices since C-values 
at crown and airborne level were still relatively high.  
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Figure 6: Index values of a combined chlorophyll and soil adjusted vegetation index (TCARI/OSAVI) 
at each monitoring level (left: leaf level, middle: crown level, right: airborne level). Black dots repre-
sent measurements of trees with iron chlorosis while red dots represent measurements of trees with 
60 g Sequestrene added per tree.  

Table 2: Wavelength combinations which performed best when discriminating between iron treated 
(e.g. in case 60 g / tree) and iron untreated trees, compared to the TCARI/OSAVI index perform-
ance for each monitoring level (leaf, crown and airborne). Index performances are given by C-
index values, while biophysical correlations are shown using R2-values of simple linear regres-
sions.   

C-Index / R2
 Leaf Crown      Airborne     Ca+b          Cw          Cm  

TCARI/OSAVI 1.00 0.93         0.76          0.73        0.55        0.24 
SDVI (571 nm, 948 nm) 1.00 0.94         0.80          0.77        0.59        0.28 
SDVI (571 nm, 975 nm) 1.00 0.94         0.81          0.77        0.59        0.28 
SDVI (571 nm, 1004 nm) 1.00 0.93         0.81          0.75        0.61        0.29 
SDVI (571 nm, 1622 nm) 1.00 0.94         0.89          0.70        0.60        0.27 
SDVI (571 nm, 2140 nm) 0.97 0.94         0.83          0.62        0.57        0.23 
SDVI (571 nm, 2152 nm) 0.98 0.94         0.82          0.65        0.56        0.22 
SDVI (571 nm, 2175 nm) 0.98 0.95         0.84          0.66        0.54        0.21 

CONCLUSIONS 
This study explored the potential of hyperspectral reflectance data to differentiate between iron de-
ficiency and healthy peach trees at leaf, crown, and airborne level. Logistic regression was used to 
identify wavelengths or wavelength ratios that best differentiated among the iron treated and un-
treated trees within the peach orchard. The most appropriate vegetation indices to detect iron 
stress were found to be closely related to chlorophyll concentration (R2>0.6, Figure 5), which cor-
roborated the conclusion that iron deficiency is one of the causes of leaf chlorosis. Reduced corre-
lations were found between indices predicting iron deficiency and those related to measured water 
content (R2 ~0.6) and dry matter content (R2~0.4). The combination of two wavebands in a stan-
dardised differenced vegetation index format resulted in higher discriminatory power than single 
wavebands. Waveband 571 nm was selected as the most useful band when combined with a NIR 
(948 nm, 975 nm, 1004 nm) or SWIR (1622 nm, 2140 nm, 2152 nm, 2175 nm) waveband for appli-
cation at all monitoring levels. Such waveband combinations proved useful for the extraction of the 
chlorophyll amount or merely to discriminate between iron treated and iron untreated trees. Tree 
LAI values were generally high in this study, resulting in minor effects of soil background on crown 
spectra.  

The results suggested that the detection of iron chlorosis using hyperspectral remote sensing has 
significant potential. This is of importance to the agricultural market, e.g., where an early warning 
system based on spectral inputs would be an ideal solution to the enforced reduction of pesticide 
or fertilisation use. Vegetation indices could be easily incorporated in process models, thereby ne-
gating the need to collect full-range spectral datasets for monitoring vegetation production sys-
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tems. Farmers subsequently only have to apply specific chemicals when and where biotic abnor-
malities are detected in the normal growth pattern of crops. Future at-satellite measurements will 
enable managers to obtain frequent hyperspectral coverage of large areas, thereby making con-
tinuous monitoring of biotic stress possible in capital-intensive crop production systems. 
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