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UNSTEADY FLUID FLOW AND HEAT TRANSFER THROUGH A 
POROUS MEDIUM IN A HORIZONTAL CHANNEL WITH AN 

INCLINED MAGNETIC FIELD 

Summary 

This paper investigates the unsteady flow and heat transfer of a viscous, incompressible, 
and electrically conducting fluid through a porous medium in a horizontal channel. The basic 
physical properties of the fluid and the porous medium are constant. The fluids considered are 
those with the Prandtl number less than 1. The channel walls are made of horizontal 
permeable plates, which are at constant but different temperatures. Fluid suction/injection 
through the plates occurs at a velocity perpendicular to the plates, whose intensity is a cosine 
function of time. The applied external magnetic field is homogeneous and inclined in relation 
to the transverse plane of the channel. The problem is dealt with through an inductionless 
approximation. Fluid flow is instigated by constant pressure drops along the channel. The 
equations used to describe the problem are transformed to dimensionless forms and solved 
analytically using the perturbation method. Approximate analytical expressions for 
dimensionless fluid flow velocity and dimensionless temperature are determined as functions 
of the following physical parameters: Prandtl number, Hartmann number, porosity factor, 
frequency, amplitude, and magnetic field inclination angle. Numerical results are presented as 
diagrams and tables and are used to analyse the influence of physical parameters on the fluid 
flow velocity and temperature. 

Key words: Fluid flow, Heat transfer, Prandtl number, Hartmann number, Perturbation 
method 

1. Introduction 
The publication of Darcy’s [1] paper, in which he experimentally determined that the 

water flow velocity through sand is proportional to the pressure gradient, initiated and 
practically enabled subsequent theoretical research into the fluid flow through porous media. 
A number of researchers began to investigate this subject area, the main reason being that 
fluid flows frequently occur in nature, industry, and technological processes. Fluid flows are 
found in astrophysics, geophysics, metalworking, processing industry, chemical industry, 
pharmaceutical industry, storage engineering, petroleum industry, hydrology, medicine, 
physiology, biology, and in many other fields. Their noteworthy application in medicine 
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includes the study of blood flow through human and animal blood vessels, urine transport 
from the kidneys to the bladder, food ingestion through the oesophagus, movement through 
the gastro-intestinal tract, flow through the lungs, and gallstones passing from the gall bladder 
through the bile duct. More recent areas of study include the flow of liquid metals, 
electrolytes, and ionized gases. These are only some of the instances of fluid flow through a 
porous medium. Since the development of magnetohydrodynamics and the publication of 
Shercliff’s [2] book, numerous researchers have been studying magnetohydrodynamic (MHD) 
fluid flows. Umavathi et al. [3] studied the unsteady MHD flow of two non-mixing fluids in a 
horizontal channel. Using the perturbation method, they obtained approximate analytical 
expressions for fluid flow velocities and temperatures as functions of physical parameters. 
The results were presented in figures and tables and were analysed. Mosayebidorcec et al. [4] 
investigated the influence of variable fluid properties, the Hartmann number, the Hall current, 
the Reynolds number, the suction velocity on the unsteady MHD Couette flow, and the heat 
transfer of a dusty fluid. Umavathi et al. [5] studied the oscillatory flow and heat transfer 
through a composite porous medium in a horizontal channel. The energy equation takes the 
viscous and Darcy dissipation into consideration. The authors obtained approximate analytical 
solutions for fluid velocity, which they presented graphically and also analysed the influence 
of physical parameters. Petrović et al. [6] studied the steady flow of two non-mixing fluids 
through a porous medium between two horizontal plates at constant but different 
temperatures. The external magnetic field was homogeneous and inclined in the direction of 
the flow, whereas the external electric field was homogeneous and perpendicular to the 
vertical plane of channel symmetry. The authors analysed the obtained analytical solutions for 
fluid velocity and temperature. Gupta and Jain [7] analysed the unsteady MHD flow through a 
porous medium between two horizontal plates, where the top plate is permeable with 
exponential suction and constant velocity along its plane, while the bottom plate stretches and 
is perpendicularly influenced by a homogeneous magnetic field. To solve the problem-
describing equations in their dimensionless form, the authors used the perturbation method. 
They examined the effects of physical parameters on the velocity and shear stress. Kumar and 
Agarwal [8] investigated the MHD pulsatile flow through a porous medium of a fluid 
sandwiched between viscous fluids inside permeable horizontal plates. They used the 
Beavers-Joseph boundary conditions for sliding on the horizontal plates. The formulated 
dimensionless equations were solved using the perturbation method and the influence of 
physical parameters on the shear velocity and stress was analysed. Krishna and Reddy [9] 
studied the unsteady MHD convective flow of second grade fluid through a porous medium in 
a rotating parallel plate channel. They obtained analytical solutions using the Laplace 
transform. Lakshmanna and Venkateswarlu [10] investigated the same problem as Krishna 
and Reddy using only a slightly different approach. 

Numerous studies deal with the mass and the heat transfer around a vertical plate and in 
a vertical channel through a porous medium and under the influence of a magnetic field. 
Chamkha [11] investigated the unsteady MHD convective heat and mass transfer past a semi-
infinite vertical permeable moving plate through a porous medium and under the influence of 
a homogenous transverse magnetic field. Equations were solved using the perturbation 
method. Ahmed et al. [12] examined the unsteady MHD free convective flow past a vertical 
porous plate immersed in a porous medium. They also considered the Hall current, thermal 
diffusion, and the heat source/sink. Kumar et al. [13] studied the unsteady MHD periodic flow 
and heat transfer of viscous fluid through a porous vertical channel under the influence of a 
homogenous transverse magnetic field. They also used the perturbation model to solve the 
formulated equations. Manna et al. [14] investigated the effects of radiation on unsteady 
MHD free convective flow past an oscillating vertical porous plate embedded in a porous 
medium. Chand et al. [15] examined the influence of the Hall effect on the radiating and 
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chemically reacting MHD oscillatory convective flow in a rotating porous vertical channel. It 
was assumed that the fluid flow was caused by the pressure gradient as a periodic function of 
time. Choudhury and Das [16] studied the unsteady visco-elastic MHD convective flow and 
heat transfer through porous media with a vertical porous plate in the presence of radiation 
and a chemical reaction. The dimensionless equations were solved using the perturbation 
method. Uwanta and Usman [17] investigated the influence of Soret and Dufour effects on the 
unsteady MHD free convective heat and mass transfer flow through a porous medium over a 
vertical channel. They considered viscous dissipation and constant suction, while the thermal 
conductivity coefficient was a linear function of temperature. Barik et al. [18] examined the 
unsteady free convective MHD flow and the mass transfer through a porous medium with a 
heat source and a chemical reaction between vertical porous plates in a rotating system. The 
formulated equations were solved using the perturbation method and the solutions were 
subsequently analysed. Prakash et al. [19] studied the effects of thermal radiation, buoyancy 
force, and magnetic field on oscillatory dusty fluid flow in a vertical channel filled with a 
saturated porous medium. Kupala and Reddy [20] investigated the unsteady MHD convective 
heat and mass transfer of a Casson fluid past a semi-infinite vertical plate with a heat 
source/sink. The plate is immersed in a porous medium. Kumar [21] examined the MHD 
peristaltic transportation of a conducting blood flow with a porous medium through an 
inclined coaxial vertical channel. The author obtained analytical expressions for axial 
velocity, pressure gradient, and shear stress and analysed them. Using the Mathematica 
software, Misra and Adhirary [22] studied the heat and the mass transfer in the MHD 
oscillatory blood flow through porous arterioles in the presence of a chemical reaction. Falade 
et al. [23] investigated the effects of suction/injection and slide velocity along the channel 
wall on the unsteady MHD oscillatory flow through a vertical channel saturated with a porous 
medium. Krishna et al. [24] examined the influence of radiation and Hall effects on the 
unsteady MHD oscillatory convective flow of second grade fluid through a porous medium in 
a vertical channel. The fluid moved due to the oscillatory pressure gradient, while the 
magnetic field was homogeneous and inclined in relation to the channel. The temperature of 
one of the walls changed periodically. 

This paper analyses the unsteady flow and the heat transfer of an incompressible and 
electrically conducting fluid through a porous medium in a horizontal channel. The channel 
walls consist of horizontal permeable plates, which are kept at constant but different 
temperatures. The applied external magnetic field is homogeneous and inclined in relation to 
the transverse plane of the channel. It is assumed that the value of the Reynolds magnetic 
number is low; thus, the induced magnetic field can be disregarded. Fluid movement is caused 
by a constant pressure gradient along the channel. 

2. Formulation of the problem 
The present study considers the unsteady flow and the heat transfer of a viscous, 

incompressible, and electrically conducting fluid through a porous medium between two fixed 
horizontal plates which are at a constant distance h . The top plate is at a constant temperature

1,wT  and the bottom at a constant temperature  w2 w1 w2 .T T T  The applied external magnetic 
field is homogeneous and inclined at an angle   in relation to the transverse plane of the 
channel, while the intensity of its induction is B. It is assumed that the value of the Reynolds 
magnetic number is low; thus, the induced magnetic field can be disregarded with respect to 
the applied magnetic field, i.e. the problem can be considered in an inductionless 
approximation. The flow is caused by a constant pressure gradient along the –x axis. A 
Cartesian coordinate system is introduced (Fig. 1) such that the –x axis goes along the 
channel and corresponds to the bottom plate, while the –y axis is perpendicular to the plates. 
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Fig. 1  Physical configuration 

Since the plates are infinite, all physical quantities except pressure depend solely on the 
y coordinate and the time .t  Starting from the continuity equation, the Navier-Stokes equation 
expanded by the inclusion of the Lorentz force, which arises due to the movement of 
electrically conductive fluid in the magnetic field and due to the porous medium resistance 
force, and the energy equation, which includes Joule heating and energy dissipation caused by 
a porous medium, it follows that the described problem can be expressed using the following 
equations: 
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and boundary conditions: 

       2 10 0, 0, 0 , ,w wu u h T T T h T     (4) 

where: ,  –u  longitudinal and transversal fluid velocity, respectively; –p  pressure; ρ, μ, k, σ  
and –pc density, dynamic viscosity, thermal conductivity, electrical conductivity, and specific 
heat at constant pressure, respectively; –T fluid temperature; –K porous medium 
permeability; and cosλ=  α. It should be noted that this is a simplified mathematical model, 
but quite appropriate, as it includes the influences of the medium porosity, magnetic field and 
its inclination, and transversal velocity. The projection of the expanded Navier – Stokes 
equation onto the y –axis has been omitted because pressure distribution is not considered in 
this study. It follows from Eq.(1) that   does not depend on ;y  instead, the velocity is 
defined as a random cosine function of time .t  The transversal velocity   can be assumed to 
take the following form: 

 0 1 cos( ) ,v v A t    (5) 

where: –A real constant; – frequency; and – small quantity such that 1.A   It is 
assumed that the velocity changes periodically as a function of time around the mean value 
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0,  which is not equal to zero. For 0,A   the transversal fluid velocity is constant. By 
introducing the dimensionless quantities 

* * * * *
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equations (2) and (3) are transformed into the following dimensionless forms: 
2

2 1,u u uv Ru
t y y
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and boundary conditions (4) into the corresponding dimensionless boundary conditions: 

       0 0, 1 0, 0 0, 1 1,u u       (9) 

where the following notation is introduced, for brevity purposes: 
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It must be noted that the symbol *  has been omitted, to simplify the notation, but it will be 
implied that the quantities are dimensionless; the newly-introduced symbols, which will 
henceforth be used but are not commented here, are appended. 

3. Solution 
By assuming the solution in the forms 

         0
2

1, cos ...u y t u y t u y O      (11) 

         0 1
2, cos ...y t y t y O        (12) 

and by using them to substitute parts of Eq. (7) and Eq. (8), while disregarding small 
quantities of a higher order than 2  and separating non-harmonic and harmonic expressions, 
the following equation pairs with corresponding boundary conditions are obtained: 

2
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       0 0 0 00 0, 1 0, 0 0, 1 1u u       (15) 



M. Nikodijevic, Z. Stamenkovic, Unsteady Fluid Flow and Heat Transfer Through a Porous Medium 
J. Petrovic, M. Kocic in a Horizontal Channel with an Inclined Magnetic Field  

and 
2

01 1
1 12

dd d ,
d d d

uu u R u A
y y y

    (16) 
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1 0 12
d dd d d1 2 2 ,

d d d d d
u uA EcRu u Ec

Pr y y y y y
        (17) 

       1 1 1 10 0, 1 0, 0 0, 1 0,u u       (18) 

where the following notation is introduced, for brevity purposes: 

  1tan , .t R R       (19) 

The solution to Eq. (13) is given by the expression 

   0 1 1 2 2
1( ) exp exp ,u y C r y C r y
R

    (20) 

where the constants of integration 1C  and 2C  and the quantities 1r  and 2r  are given by the 
following expressions: 
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The problem of Prandtl number values being less than one is discussed below. This is typical 
of liquid metals, such as mercury   0.021 ,Pr   liquid sodium   0.005 ,Pr   and certain 

solutions, e.g. metal-ammonia solutions   0.7Pr  (Scheel and Schumacher, [25]). 

When Pr  number values are less than one, the solution to Eq. (14) is given by the expression 

     
     

0 3 4 1 1 2 2

3 4 1 5 2 6

( ) exp exp 2 exp 2

exp exp exp ,

y C C Pry A r y A r y

A y A r y A r y A y

     

  
 (22) 

where the constants of integration 3C  and 4C  and the notation introduced for brevity purposes 
are given by the expressions 
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 (23) 
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Equations (14) and (17) with boundary conditions (18) are solved next. After the substitution 
of 0( )u y , i.e. expression (20), in Eq. (16), it follows that its solution depends on the quantity 

 2 21 4 .D Ha       (24) 

For 0,D   the solution is given by the expression 

       (1)
1 5 1 6 2 1exp exp ,Pu y C n y C n y u y    (25) 

where 

     1 7 1 8 2exp expPu y A r y A r y  , (26) 

while the constants of integration 5C  and 6C  and the notation introduced for brevity purposes 
are given by the expressions 
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For 0,D   the solution to Eq. (16) is: 

     (2)
1 7 8 1( ) exp 2 ,Pu y C C y y u y    (28) 

where the constants of integration 7C  and 8C  are given by the expressions 

7 4 8 4 5, exp( 1 2),C R C R R      (29) 

while the solution for 0D  is 

         (3)
1 9 6 10 6 1( ) cos exp 2 sin exp 2 PRu y C R y y C R y y u y    (30) 

and the constants of integration are given by the expressions 
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It is now possible to formulate a solution to Eq. (17), which is found to depend on 
quantity 1,D  given by the expression 

 1 4 .D Pr Pr    (32) 

For 1 0,D   the solution is unique and is given by the expression 

     1 11 1 12 2( ) exp exp ,py C m y C m y y     (33) 

where 

         
         

*
15 1 1 16 1 2

17 2 1 18 2 2 19 1 20 2

exp exp

exp exp exp exp
p py y A r n y A r n y

A r n y A r n y A n y A n y

      

    
 (34) 



M. Nikodijevic, Z. Stamenkovic, Unsteady Fluid Flow and Heat Transfer Through a Porous Medium 
J. Petrovic, M. Kocic in a Horizontal Channel with an Inclined Magnetic Field  

and 
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which, in addition to the condition 1 0,D  also satisfies the condition 0.D   The constants of 
integration 11C  and 12C  and the notation introduced for brevity purposes are given by the 
following expressions: 
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For 1 0,D   the solution is also unique and is given by the expression below: 

     1 13 14( ) exp ,2 py C C y Pr yy     (37) 

which simultaneously satisfies the condition 0.D   The constants of integration 13C  and 14C  
are given by the expressions 

 13 7 14 7 8, R R exp 2 .C R C Pr      (38) 

It must be noted that solutions for 1 0D  exist only when 0.D   

If 1 0,D   there are three solutions for 0,D   which are given by the following 
expression: 

           1 15 9 16 9cos exp 2 sin exp 2 ,py C R y Pry C R y Pry y    (39) 
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where the constants of integration 15C  and 16C  are given by the expressions 
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1
*

17 9 18 9

22 6 23 6 1

24 6 25 6 2

26 6 27 6

( ) expcos sin 2 ( )

cos sin exp

cos sin exp

cos sin exp 2 ,

py PrC R y C R y y y

A R y A R y y

A R y A R y y

A R y A R y y

 





     
   
   
  

 (41) 

where the constants of integration 17C  and 18C  are given by the expressions 
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and for 0 :D   
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The constants of integration and the notation used are given by the following 
expressions: 
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Thus, we have formulated the approximate analytical expressions for the dimensionless 
fluid flow velocity in the channel and the dimensionless fluid temperature in the channel. 

4. Result analysis 
For better readability and a more efficient analysis, a portion of the obtained results is 

shown in figures and tables. Figure 2 shows the profiles of longitudinal dimensionless 
velocity for different values of the Hartmann number and for different physical quantities. It is 
noticeable that the increase in the Hartmann number value, i.e. in the intensity of the applied 
external magnetic field, causes the longitudinal velocity reduction in the channel and the 
flattening of its profile.  

   
 Fig. 2  Dimensionless velocity profiles for  Fig. 3  Dimensionless temperature profiles for 
 different Hartmann number ( )Ha values different Hartmann number (Ha) values 

For each value of the Hartmann number, the velocity reaches its maximum intensity just 
above the half of the channel height. When the intensity of the applied external magnetic field 
increases, the flow and the friction on the channel walls become reduced. 

This is due to the facts that the increase in external magnetic field intensity increases the 
Lorentz force intensity and that the pressure gradient in the direction of the primary flow 
remains constant. These conclusions are also valid in case the values of physical quantities are 
such that the discriminant is 0.D    
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Figure 3 shows the profiles of dimensionless fluid temperature in the channel for 
different values of the Hartmann number and for different physical quantities, whose values 
are identical to those for velocity profiles in Figure 2. It is noticeable that the increase in the 
Hartmann number causes the fluid temperature reduction in the channel. For the value 

 = 2,Ha  the heat is transferred from the fluid to the top channel wall, whereas for Ha  values 
of 4 and 6, the heat is transferred from the top channel wall to the fluid. These conclusions 
also apply when the values of physical quantities are such that the discriminants are 0D   
and 1 0.D   

Tables 1 and 2 provide numerical values for the distribution of dimensionless 
longitudinal velocity, i.e. primary flow velocity, and of dimensionless temperature of the 
fluid, respectively, in the cases when 0D  and 1 0.D   Table 1 shows that the primary flow 
velocity of the fluid increases up to the 55% of the channel height, and then decreases as the 

A factor increases. The dimensionless temperature of the fluid increases together with the 
A  factor over the entire cross-section of the channel, as shown in Table 2.  

Figure 4 shows the profiles of velocity for different values of the porosity factor   It is 
noticeable that the higher values of this factor lead to decreased intensity of the velocity and 
the flattening of the profile, thus reducing the flow in the channel. The most intensive increase 
in velocity occurs near the channel walls for the lowest value of the porosity factor; this value 
is also associated with the highest friction on the walls. Such effects are caused by a resistance 
force that occurs due to the existence of solid phase in the porous medium. These conclusions 
are also valid in case the values of physical quantities are such that the discriminant is 0.D   

Table 1  Dimensionless longitudinal velocity for different values of factor A  

y  u  y  u  
0A   0.4A   0.8A   0A   0.4A   0.8A 

1 0 0 0 0,45 0,05595 0,05636 0,05677
0.95 0.01425 0.01385 0.01345 0.4 0.05397 0.05453 0.0551
0.9 0.02574 0.02512 0.02451 0.35 0.05109 0.05179 0.05248
0.85 0.03492 0.03422 0.03353 0.3 0.04729 0.04807 0.04886
0.8 0.04214 0.04147 0.04079 0.25 0.0425 0.04333 0.04417
0.75 0.04771 0.04712 0.04653 0.2 0.03664 0.03747 0.03831
0.7 0.05183 0.05138 0.05092 0.15 0.0296 0.03037 0.03114
0.65 0.05471 0.05442 0.05412 0.1 0.02127 0.02189 0.02251
0.6 0.05648 0.05636 0.05624 0.05 0.01146 0.01183 0.01221
0.55 0.05723 0.05729 0.05736 0 0 0 0 
0.5 0.05704 0.05728 0.05753   

 

Table 2  Dimensionless temperature for different values of factor A  

y    y    
0A   0.4A   0.8A   0A   0.4A   0.8A   

1 1 1 1 0.45 0.45157 0.45176 0.45195
0.95 0.95036 0.95039 0.95042 0.4 0.40151 0.4017 0.40189
0.9 0.90064 0.9007 0.90076 0.35 0.35142 0.3516 0.35178
0.85 0.85088 0.85096 0.85105 0.3 0.30131 0.30147 0.30164
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0.8 0.80107 0.80118 0.8013 0.25 0.25116 0.25132 0.25147
0.75 0.75124 0.75137 0.7515 0.2 0.20099 0.20112 0.20126
0.7 0.70137 0.70152 0.70167 0.15 0.15079 0.1509 0.15101
0.65 0.65147 0.65164 0.65181 0.1 0.10057 0.10065 0.10072
0.6 0.60155 0.60172 0.6019 0.05 0.05031 0.05035 0.05039
0.55 0.55159 0.55177 0.55196 0 0 0 0 
0.5 0.50159 0.50178 0.50197   

Figure 5 shows the profiles of dimensionless temperature in the channel for different 
values of the porosity factor   and for different physical quantities, whose values are 
identical to those for velocity profiles in Figure 4. For the values of physical quantities, the 
discriminants are 0D  and 1 0.D   It is noticeable that higher values of the porosity factor, 
i.e. lower permeability of porous media, can be associated with lower fluid temperatures in 
the channel. For the values   = 5 and   = 10, heat is transferred from the fluid to the top 
wall and vice versa for the value   = 15. These conclusions also apply when the values of 
physical quantities are such that the discriminants are 0D   and 1 0.D   

   
 Fig. 4  Dimensionless velocity profiles for  Fig. 5  Dimensionless temperature profiles for 
 different values of porosity factor   different values of porosity factor   

Figure 6 shows the profiles of dimensionless velocity for different values of factor 
and for the values of physical quantities given in the figure for which the discriminant value is 

0.D   It is noticeable that the increase in factor , i.e. increase in the angle of the external 
magnetic field to the direction of the primary flow, leads to decreased velocity and flow of the 
fluid and reduced friction on the channel walls. For each value of factor ,  the velocity 
reaches its maximum intensity just above the half of the channel height. This is due to the fact 
that the increased factor   increases the Lorentz force intensity in the direction of the primary 
flow. These conclusions are also valid in case the values of physical quantities are such that 
the discriminant is 0.D   

Figure 7 shows the profiles of dimensionless temperature in the channel for different 
values of factor   and for different physical quantities, whose values are identical to those for 
velocity profiles in Figure 6. For the values of physical quantities, the discriminants D  and 

1D  are less than zero. It is noticeable that higher values of factor   can be associated with 
lower fluid temperatures in the channel. For the values  0.5   and  0.705,   heat is 
transferred from the fluid to the top wall and vice versa for the value  0.865.   
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 Fig. 6  Dimensionless velocity profiles for  Fig. 7  Dimensionless temperature profiles for 
 different values of factor   different values of factor   

These conclusions also apply when the values of physical quantities are such that the 
discriminants D  and 1D  are greater than zero. 

Tables 3 and 4 provide numerical values for the distribution of dimensionless 
longitudinal velocity and dimensionless temperature of the fluid for different values of the 
frequency factor ,t respectively, in the cases when 0D  and 1 0.D   The tables show that 
both the velocity and the temperature decrease as the t  factor increases, whereby the 
decrease is more prominent in the bottom half of the channel. 

Table 3  Dimensionless longitudinal velocity for different values of factor t  

 u  u  
y  1.571t   2.357t   3.142t  y 1.571t  2.357t   3.142t 
1 0 0 0 0.45 0.055947 0.055948 0.055949

0.95 0.014247 0.014246 0.014246 0.4 0.053969 0.053971 0.053971
0.9 0.025739 0.025737 0.025736 0.35 0.051095 0.051096 0.051097
0.85 0.034917 0.034916 0.034915 0.3 0.04729 0.047292 0.047293
0.8 0.042143 0.042141 0.042141 0.25 0.042498 0.0425 0.042501
0.75 0.047705 0.047704 0.047703 0.2 0.036638 0.03664 0.036641
0.7 0.051835 0.051834 0.051833 0.15 0.029604 0.029606 0.029607
0.65 0.054712 0.054712 0.054711 0.1 0.021266 0.021268 0.021268
0.6 0.056476 0.056476 0.056476 0.05 0.011462 0.011463 0.011463
0.55 0.057229 0.057229 0.057229 0.00 -1.2E-24 0 0 
0.5 0.057039 0.057039 0.05704   

 

Table 4  Dimensionless temperature for different values of factor t   

      
y  1.571t   2.357t   3.142t   y 1.571t   2.357t   3.142t   
1 1 1 1 0.45 0.451568 0.451568 0.451567 

0.95 0.950358 0.950359 0.950358 0.4 0.401511 0.401511 0.40151 
0.9 0.900643 0.900643 0.900643 0.35 0.351423 0.351423 0.351423 
0.85 0.850878 0.850878 0.850878 0.3 0.301307 0.301307 0.301306 
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0.8 0.801075 0.801075 0.801074 0.25 0.251163 0.251163 0.251162 
0.75 0.751239 0.751239 0.751238 0.2 0.200992 0.200992 0.200992 
0.7 0.701372 0.701372 0.701372 0.15 0.150795 0.150795 0.150795 
0.65 0.651475 0.651475 0.651475 0.1 0.100569 0.100569 0.100568 
0.6 0.601547 0.601547 0.601546 0.05 0.050307 0.050307 0.050307 
0.55 0.551586 0.551586 0.551586 0.00 1.05E-13 1.06E-13 1.05E-13 
0.5 0.501593 0.501593 0.501593     

Figure 8 shows the profiles of dimensionless fluid temperature for different values of 
the Prandtl number and for different physical quantities, as given in the figure. It is noticeable 
that the higher values of the Prandtl number can be associated with higher dimensionless 
temperatures in the channel and that for the value of  0.7,Pr   heat is transferred from the 
fluid to the top wall and vice versa for the values  0.21Pr   and  0.005.Pr   For the lower 
Prandtl value, heat is usually transferred by means of conduction. These conclusions also 
apply when the values of physical quantities are such that the discriminants D  and 1D  are 
greater than zero. 

 
Fig. 8  Dimensionless velocity profiles for different Prandtl number (Pr)  values 

5. Conclusion 
This paper analysed the unsteady MHD flow and heat transfer through a porous medium 

in a horizontal channel with permeable walls. For the sake of generality, an arbitrary magnetic 
field inclination in relation to the primary fluid flow direction was selected, while the physical 
properties of the fluid and the porous medium were constant. Solutions to the equations in 
dimensionless form were obtained using the perturbation method, after which the approximate 
analytical expressions for dimensionless primary flow velocity and dimensionless temperature 
of the fluid were determined. Numerical values of the obtained analytical expressions were 
presented in diagrams and tables for different values of flow parameters and porous medium 
factors. 

The analysis of the results led to several conclusions about the impact of the analysed 
quantities on fluid flow and heat transfer. It was observed that the combination of fluids with 
different physical properties, porous medium, amplitude of secondary the flow velocity 
oscillation, and external field intensity and its inclination can be used to control the fluid flow 
and heat transfer in the channel. It is possible to reduce the dimensionless velocity of primary 
fluid flow and the dimensionless temperature by increasing the Hartmann number values, 
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which is achieved, for instance, by increasing the intensity of magnetic induction of the 
applied external magnetic field, by increasing the inclination of the field in relation to the 
direction of primary fluid flow, or by increasing the medium porosity factor. The 
dimensionless temperature of the fluid can also be reduced with lower Prandtl number values. 
In addition, proper selection of physical parameters can create conditions where the amplitude 
of secondary flow velocity oscillation will increase/decrease the dimensionless temperature in 
the channel cross-section and decrease the velocity across the entire or half of the cross-
section. This can be significant for practical technical application. 
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