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H. Liu,66 W. Park,66 M. V. Purohit,66 R. M. White,66 J. R. Wilson,66 M. T. Allen,67 D. Aston,67 R. Bartoldus,67 P. Bechtle,67

R. Claus,67 J. P. Coleman,67 M. R. Convery,67 J. C. Dingfelder,67 J. Dorfan,67 G. P. Dubois-Felsmann,67 W. Dunwoodie,67

R. C. Field,67 T. Glanzman,67 S. J. Gowdy,67 M. T. Graham,67 P. Grenier,67 C. Hast,67 W. R. Innes,67 J. Kaminski,67

M. H. Kelsey,67 H. Kim,67 P. Kim,67 M. L. Kocian,67 D. W. G. S. Leith,67 S. Li,67 S. Luitz,67 V. Luth,67 H. L. Lynch,67

D. B. MacFarlane,67 H. Marsiske,67 R. Messner,67 D. R. Muller,67 C. P. O’Grady,67 I. Ofte,67 A. Perazzo,67 M. Perl,67

T. Pulliam,67 B. N. Ratcliff,67 A. Roodman,67 A. A. Salnikov,67 R. H. Schindler,67 J. Schwiening,67 A. Snyder,67 D. Su,67

M. K. Sullivan,67 K. Suzuki,67 S. K. Swain,67 J. M. Thompson,67 J. Va’vra,67 A. P. Wagner,67 M. Weaver,67

W. J. Wisniewski,67 M. Wittgen,67 D. H. Wright,67 A. K. Yarritu,67 K. Yi,67 C. C. Young,67 V. Ziegler,67 P. R. Burchat,68

A. J. Edwards,68 S. A. Majewski,68 T. S. Miyashita,68 B. A. Petersen,68 L. Wilden,68 S. Ahmed,69 M. S. Alam,69 R. Bula,69

J. A. Ernst,69 V. Jain,69 B. Pan,69 M. A. Saeed,69 F. R. Wappler,69 S. B. Zain,69 M. Krishnamurthy,70 S. M. Spanier,70

R. Eckmann,71 J. L. Ritchie,71 A. M. Ruland,71 C. J. Schilling,71 R. F. Schwitters,71 J. M. Izen,72 X. C. Lou,72 S. Ye,72

F. Bianchi,73 F. Gallo,73 D. Gamba,73 M. Pelliccioni,73 M. Bomben,74 L. Bosisio,74 C. Cartaro,74 F. Cossutti,74

G. Della Ricca,74 L. Lanceri,74 L. Vitale,74 V. Azzolini,75 N. Lopez-March,75 F. Martinez-Vidal,75,k D. A. Milanes,75

A. Oyanguren,75 J. Albert,76 Sw. Banerjee,76 B. Bhuyan,76 K. Hamano,76 R. Kowalewski,76 I. M. Nugent,76 J. M. Roney,76

R. J. Sobie,76 P. F. Harrison,77 J. Ilic,77 T. E. Latham,77 G. B. Mohanty,77 H. R. Band,78 X. Chen,78 S. Dasu,78 K. T. Flood,78

J. J. Hollar,78 P. E. Kutter,78 Y. Pan,78 M. Pierini,78 R. Prepost,78 S. L. Wu,78 and H. Neal79

(BABAR Collaboration)

1Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
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We present an updated measurement of the CP-odd fraction and the time-dependent CP asymmetries in
the decay B0 ! D��D�� using �383� 4� � 106B �B pairs collected with the BABAR detector. We
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determine the CP-odd fraction to be 0:143� 0:034�stat� � 0:008�syst�. The time-dependent CP asym-
metry parameters are determined to be C� � �0:05� 0:14�stat� � 0:02�syst� and S� � �0:72�
0:19�stat� � 0:05�syst�. The nonzero value of the measured S� indicates the evidence of CP violation
at the 3:7� confidence level.

DOI: 10.1103/PhysRevD.76.111102 PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh

In the standard model (SM), CP violation is described
by a single complex phase in the Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix, V [1].
Measurements of CP asymmetries by the BABAR [2]
and Belle [3] collaborations have firmly established this
effect in the b! �c �c�s charmonium decays [4] and pre-
cisely determined the parameter sin2�, where � is
arg	�VcdV�cb=VtdV�tb
. The amplitude of the decay B0 !
D��D�� is dominated by a tree-level, color-allowed b!
c �cd transition. Within the framework of the SM, the CP
asymmetry of B0 ! D��D�� is equal to sin2� when the
correction due to penguin diagram contributions is ne-
glected. The penguin-induced correction to the CP asym-
metry, estimated in models based on the factorization
approximation and heavy quark symmetry, is predicted to
be about 2% [5], while contributions from non-SM pro-
cesses may lead to a large correction [6]. Such a deviation
in the sin2� measurement from that of the B0 ! �c �c�K���0

decays would be evidence of physics beyond the SM.
Studies of CP violation in B0 ! D����D���� transitions

have been carried out by both the BABAR and Belle col-
laborations. Most recently, the Belle collaboration reported
evidence of large direct CP violation in B0 ! D�D�

where CD�D� � �0:91� 0:23� 0:06 [7], in contradic-
tion to the SM expectation. However, a large direct CP
violation has not been observed in this channel by BABAR
[8], nor in previous measurements with B0 ! D��D��

decays that involve the same quark-level weak decay
[9,10].

The B0 ! D��D�� decay proceeds through the
CP-even S and D waves and through the CP-odd P
wave. In this paper, we present an improved measurement
of the CP-odd fraction R? based on a time-integrated one-
dimensional angular analysis. We also present an improved
measurement of the time-dependent CP asymmetry, ob-
tained from a combined analysis of time-dependent flavor-
tagged decays and the one-dimensional angular distribu-
tion of the decay products.

The data used in this analysis comprise �383� 4� � 106

��4S� ! B �B decays collected with the BABAR detector
[11] at the PEP-II asymmetric-energy e�e� storage rings.
We use a Monte Carlo (MC) simulation based on GEANT4
[12] to validate the analysis procedure and to study the
relevant backgrounds.

We select B0 ! D��D�� candidates from oppositely
charged pairs of D� mesons. The D�� is reconstructed in

its decays to D0�� and D��0. We reconstruct candidates
for D0 and D� mesons in the modes D0 ! K���,
K����0, K�������, K0

S�
��� and D� !

K�����. We reject the B0 candidates for which both
D� mesons decay to D�0 because of the smaller branching
fraction and larger backgrounds. To suppress the e�e� !
q �q (q � u, d, s, and c) continuum background, we require
the ratio of the second and zeroth order Fox-Wolfram
moments [13] to be less than 0.6.

For each B0 ! D��D�� candidate, we construct a like-
lihood function Lmass from the masses and mass uncer-
tainties of the D and D� candidates [14]. In this likelihood,
the D mass resolution is modeled by a Gaussian function
whose variance is determined candidate-by-candidate from
the mass uncertainty resulting from a vertex fit of the D
meson decay products. The D� �D mass difference reso-
lution is modeled by the sum of two Gaussian distributions
whose parameters are determined from simulated events.
The maximum allowed values of � lnLmass and j�Ej �
jE�B � Ebeamj, the difference between the B0 candidate
energy E�B and the beam energy Ebeam in the ��4S� frame,
are optimized separately for each final state using simu-
lated events to obtain the highest expected signal
significance.

We include candidates with an energy-substituted mass,

mES �
�������������������������
E2

beam � p
�2
B

q
, greater than 5:23 GeV=c2, where

p�B is the B0 candidate momentum in the ��4S� frame.
On average, we have 1.8 B0 candidates per event in data
after all the selection requirements. In cases where more
than one candidate is reconstructed in an event, the candi-
date with the smallest value of� lnLmass is chosen. Studies
using MC samples show that this procedure results in the
selection of the correct B0 candidate more than 95% of the
time.

The total probability density function (PDF) of the mES

distribution is the sum of the signal and background com-
ponents. The signal PDF is modeled by a Gaussian func-
tion and the combinatorial background is described by a
threshold function [15]. Studies based on MC simulation
show that there is a small peaking background from B� !
�D�0D�� in which a �D0 originating from a �D�0 decay is

combined with a random soft �� to form a D�� candidate.
This background is described by the same PDF as the
signal, and its fraction with respect to the signal yield is
fixed to �1:8� 1:8�%, as determined in MC simulation. An
unbinned maximum likelihood (ML) fit to the mES distri-
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bution yields 617� 33�stat� signal events, where the mean
and width of the signal Gaussian function and the threshold
function shape parameters are allowed to vary in the fit.
The signal purity in the region of mES  5:27 GeV=c2 is
approximately 65%.

Following [16], we define three angles depicted in Fig. 1
within the transversity framework: the angle �1 between
the momentum of the slow pion from the D�� and the
direction opposite the D�� flight in the D�� rest frame; the
polar angle �tr and azimuthal angle �tr of the slow pion
from the D�� evaluated in the D�� rest frame, where the
coordinate system is defined with the z axis normal to the
D�� decay plane and the x axis opposite to the D��

momentum.
The time-dependent angular distribution of the decay

products is given in Ref. [17]. Taking into account the
detector efficiency as a function of the transversity angles
and integrating over the decay time and the angles �1 and
�tr, we obtain a one-dimensional differential decay rate:
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where R? � jA?j2=�jA0j
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2 � jAkj2�=�jA0j

2 � jAkj2�, A0 is the amplitude for
longitudinally polarized D� mesons, Ak and A? are the
amplitudes for parallel and perpendicular transversely po-
larized D� mesons. The three efficiency moments
Ik�cos�tr�, where �k � 0; k;?�, are defined as

 Ik�cos�tr� �
Z
d cos�1d�trgk��1; �tr�"��1; �tr; �tr�; (2)

where g0 � 4cos2�1cos2�tr, gjj � 2sin2�1sin2�tr, g? �
sin2�1, and " is the overall detector efficiency. The effi-
ciency moments are parametrized as second-order even
polynomials of cos�tr with parameter values determined
from the MC simulation. In fact, the three Ik functions
deviate only slightly from a constant, making the decay
distribution [Eq. (1)] nearly independent of the amplitude
asymmetry �.

The CP-odd fraction R? is measured in a simultaneous
unbinned ML fit to the cos�tr and the mES distributions
shown in Fig. 2. The background in the cos�tr distribution
is modeled as an even, second-order polynomial, while the
signal PDF is given by Eq. (1). The finite detector resolu-
tion of the �tr measurement is modeled by the sum of three
Gaussian functions plus a small tail component that ac-
counts for misreconstructed events, where all the parame-
ters are fixed to the values determined in the MC
simulation. The resolution function is convolved with the
signal PDF in the maximum likelihood fit. We categorize
events into three types: D��D�� ! �D0��; �D0���,
�D0��; D��0�, and �D��0; �D0���, each with different
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FIG. 2. Measured distribution of mES (a) and of cos�tr in the region mES > 5:27 GeV=c2 (b). The solid line is the projection of the fit
result. The dotted line represents the background component.

FIG. 1. Depiction of the B0 ! D��D�� decay in the trans-
versity basis. The three transversity angles are defined in the text.
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signal-fraction parameters in the likelihood fit. Their effi-
ciency moments and cos�tr resolutions are separately de-
termined from the MC simulation. The other parameters,
determined in the likelihood fit, are the cos�tr background-
shape parameter, three mES parameters (width and mean of
the signal Gaussian, and the threshold function shape
parameter), as well as R?.

After fitting to data and taking into account possible
systematic uncertainties, we find

 R? � 0:143� 0:034�stat� � 0:008�syst�: (3)

Figure 2 shows the projections of the data and the fit result
onto mES and cos�tr.

In the fit described above, the value of �, the asymmetry
between the two CP-even amplitudes in the transversity
framework, is fixed to zero. We estimate the corresponding
systematic uncertainty by varying its value from�1 to�1
and find negligible change (0.003) in the fitted value of R?.
Other systematic uncertainties arise from varying fixed
parameters within their errors: the parametrization of the
angular resolution (0.006), the determination of the effi-
ciency moments (0.004), and the background parametriza-
tion (0.004). The total systematic uncertainty on R? is
0.008.

We perform a combined analysis of the cos�tr distribu-
tion and its time dependence to extract the time-dependent
CP asymmetry, using the event sample described previ-
ously. We use information from the other Bmeson (Btag) in
the event to tag the initial flavor of the fully reconstructed
B0 ! D��D�� candidate (Brec). The multivariate flavor
tagging algorithm is described in detail elsewhere [18].
We define six mutually exclusive tagging categories in
order of expected tag purity from lepton to hadron, which
includes kaon and pion tags. The total effective tagging
efficiency of this algorithm is �30:5� 0:4�%.

The decay rate f��f�� for a neutral B meson accom-
panied by a B0� �B0� tag is given by

 f���t; cos�tr� / e�j�tj=�B0 fG�1� �!� � �1� 2!�

� 	F sin��md�t� �H cos��md�t�
g;

(4)

where �t � trec � ttag is the difference between the proper
decay time of the Brec and Btag mesons, �B0 � �1:530�
0:009� ps is the B0 lifetime, and �md � �0:507�
0:005� ps�1 is the mass difference between the B0- �B0

mass eigenstates [19]. The average mistag probability !
describes the effect of incorrect tags, and �! is the differ-
ence between the mistag rate for B0 and �B0. The G, F, and
H coefficients are defined as:
 

G � �1� R?�sin2�tr � 2R?cos2�tr;

F � �1� R?�S�sin2�tr � 2R?S?cos2�tr;

H � �1� R?�C�sin2�tr � 2R?C?cos2�tr;

(5)

where we allow the three transversity amplitudes to have
different �k � �q=p�� �Ak=Ak��k � 0; k;?� [17] due to pos-
sibly different penguin-to-tree amplitude ratios, and define
the CP asymmetry parameters Ck � �1� j�kj2�=�1�
j�kj2�, Sk � 2Im��k�=�1� j�kj2�. Here, we also define:
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CkjAkj

2 � C0jA0j
2

jAkj
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2 � S0jA0j
2

jAkj
2 � jA0j

2 :

(6)

In the absence of penguin contributions, we expect that
C0 � Ck � C? � 0, and S0 � Sk � S? � � sin2� [5].

In Eq. (4), the small detector efficiency effects are not
taken into account and instead are absorbed into the value
of R?, which is allowed to vary in the final fit. Any bias in
the resulting values of C�, C?, S�, and S? is below the
sensitivity of our MC validation sample and is accounted
for in the MC statistics systematic. Hence, a dedicated
method to correct for detector efficiency is not required.
However, the ‘‘effective’’ value of R? obtained in this way
is not identical to the value measured from the time-
integrated analysis that includes the efficiency correction.
This approach incorporates the uncertainty in R? directly
into the determination of the CP parameters in the ML fit.

The technique used to measure the CP asymmetry is
analogous to that used in BABAR measurements as de-
scribed in Ref. [18,20]. We calculate the time interval �t
between the two B decays from the measured separation
�z between the decay vertices of Brec and Btag along the
collision (z) axis [20]. The z position of the Brec vertex is
determined from the charged daughter tracks. The Btag

decay vertex is determined by fitting charged tracks not
belonging to the Brec candidate to a common vertex, em-
ploying constraints from the beam spot location and the
Brec momentum [20]. Only events with a �t uncertainty
less than 2.5 ps and a measured j�tj less than 20 ps are
accepted. We perform a simultaneous unbinned ML fit to
the cos�tr, �t, and mES distributions to extract the CP
asymmetry. The signal PDF in �tr and �t is given by
Eq. (4). The signal mistag probability and the difference
between the mistag rate for B0 and �B0 are determined for
each tagging category from a large sample of neutral B
decays to flavor eigenstates, Bflav. In the likelihood fit, the
expression in Eq. (4) is convolved with an empirical �t
resolution function determined from the Bflav sample. The
�tr resolution is accounted for in the same way as described
previously.

Our increased statistics allows for better treatment of the
background in this analysis. The background �t distribu-
tions are parametrized by an empirical description that
includes components that have zero lifetime, and that
have an effective lifetime similar to the signal. The lifetime
of the second component and its relative fraction are
allowed to vary in the likelihood fit. We also allow the
lifetime component to have free effective CP asymmetry
parameters, Ceff and Seff , for each tagging category to take
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into account a possible difference in mistag rates in the
background. The background shape in �tr is modeled by an
even, second-order polynomial in cos�tr, as in the time-
integrated angular analysis.

From our fit to data we determine
 

C� � �0:05� 0:14�stat� � 0:02�syst�;

C? � 0:23� 0:67�stat� � 0:10�syst�;

S� � �0:72� 0:19�stat� � 0:05�syst�;

S? � �1:83� 1:04�stat� � 0:23�syst�:

(7)

The correlations between C� and C� and between S� and
S� are �0:46 and 0.39, respectively. All other correlations
are negligible. Figure 3 shows the �t distributions and

asymmetry in yield between B0 and �B0 tags, overlaid
with the result of the likelihood fit. Because R? is small,
we have rather large statistical uncertainties for the mea-
sured C? and S? values. We repeat the fit assuming that
both CP-even and CP-odd states have the same CP asym-
metry, i.e. C� � C? � C and S� � S? � S. We find

 C � �0:02� 0:11�stat� � 0:02�syst�;

S � �0:66� 0:19�stat� � 0:04�syst�:
(8)

In both cases, the effective CP asymmetries in the back-
ground are found to be consistent with zero. To further test
the consistency of the fitting procedure, the same analysis
is applied to the B0 ! D��s D�� control sample. The result
is consistent with no CP violation as expected.

The sources of systematic uncertainty on the CP asym-
metries and their estimated magnitudes are summarized in
Table I. We vary the yield and CP asymmetries of possible
backgrounds that peak under the signal. We also vary fixed
parameters in the fit for the assumed parameterization of
the �t resolution function, the possible differences be-
tween the Bflav and BCP mistag fractions, and knowledge
of the event-by-event beam-spot position. We evaluate the
uncertainty due to possible interference between the sup-
pressed b! u �cd amplitude and the favored b! c �ud am-
plitude for some tag side decays [21]. We also include
systematic uncertainties incurred from the finite MC sam-
ple used to verify the fitting method. All of the systematic
uncertainties are much smaller than the statistical
uncertainties.

In summary, we have reported measurements of the
CP-odd fraction, R?, and time-dependent CP asymmetries
for the decay B0 ! D��D��. The measurement is consis-
tent with and supersedes the previous BABAR result [9].
The time-dependent asymmetries are found to be consis-
tent with the SM predictions. The nonzero value of the
measured S� indicates the evidence of CP violation at the
3:7� confidence level.

We are grateful for the excellent luminosity and machine
conditions provided by our PEP-II colleagues, and for the
substantial dedicated effort from the computing organiza-

TABLE I. Systematic errors on time-dependent CP asymmetry parameters for the decay B0 !
D��D��.

Source C� S� C? S? C S

Peaking backgrounds 0.008 0.028 0.037 0.110 0.003 0.028
�t resolution parametrization 0.009 0.011 0.018 0.022 0.008 0.010
Mistag fraction differences 0.008 0.024 0.016 0.035 0.008 0.024
Beam-spot position 0.004 0.007 0.019 0.042 0.003 0.005
�md, �B 0.004 0.006 0.016 0.004 0.001 0.006
Angular resolution 0.009 0.031 0.076 0.116 0.008 0.012
Tag-side interference and others 0.014 0.009 0.017 0.021 0.014 0.009
MC statistics 0.005 0.013 0.031 0.150 0.001 0.013
Total 0.024 0.053 0.098 0.229 0.021 0.044

sp0.1 / st
nev

E 20

40

60

80
tags0B

tags
0

B

t (ps)∆
-8 -6 -4 -2 0 2 4 6 8

yrte
m

mysa 
wa

R

-0.5

0

0.5

(a)

(b)

FIG. 3. The distribution in �t of the yield in the region mES >
5:27 GeV=c2 for B0� �B0� tagged candidates (a) and the raw
asymmetry �NB0 � N �B0 �=�NB0 � N �B0 �, as functions of �t (b).
In (a), the solid (dashed) curves represent the fit to the data for
B0� �B0� tags.
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