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Abstract. This research investigates the process simulation of sodium methoxide (NaOCH3) 
synthesis from methanol (CH3OH) and sodium hydroxide (NaOH) under three synthesis 
schemes: schemes A, B, and C. Scheme A consisted of one equilibrium reactor and two 
distillation columns, scheme B one reactive distillation column and one distillation column, 
and scheme C one reactive distillation column and pervaporation membrane. The simulation 
parameters included CH3OH/NaOH feed flow ratio (1.2-1.6), number of stages (5-30), 
bottom flow rate (1400-1600 kg/h), and feed stage location (5, 10, 15, 20, 21, 22, 23, and 
24). The simulation parameters were varied to determine the optimal NaOCH3 synthetic 
conditions under different schemes with 0.01 wt% water content, maximum 45 wt% 
NaOCH3, and lowest total energy consumption. The results showed that scheme C had the 
lowest total energy consumption (34.25 GJ/h) under the optimal synthetic condition of 1.4 
for CH3OH/NaOH feed flow ratio, 25 for the number of stages, 1550 kg/h for the bottom 
flow rate, and the 24th feed stage location, with the NaOCH3 flow rate of 675 kg/h. Scheme 
C thus holds promising potential as an energy-efficient alternative for synthesis of NaOCH3. 
The novelty of this research lies in the use of pervaporation membrane in place of distillation 
column to separate CH3OH from water and to lower energy consumption and capital cost. 
 
Keywords: Sodium methoxide, methanol, sodium hydroxide, reactive distillation, 
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1. Introduction 
 
Sodium methoxide (NaOCH3) is a high-performance 

alkoxide catalyst that is primarily used in the biodiesel 
production from waste cooking oil [1], waste chicken fat 
[2], palm oil [3], canola oil [4], as an intermediary in 1G-
biodiesel [5], and enzymatic saccharification enhancer [6].  

In biodiesel production, 25-30 wt% NaOCH3 in 
methanol (CH3OH) is used as homogeneous catalyst for 
transesterification reaction [7]. NaOCH3 is a more 
effective alternative to alkaline metal hydroxides to 
improve the yield and purity of biodiesel [1]. Existing 
NaOCH3 synthesis technologies include the reactor-
distillation-distillation system [8, 9] and reactive 
distillation-distillation scheme [10-12]. Sodium hydroxide 
(NaOH) is commonly used as the precursor for industrial-
scale production of NaOCH3 due to low cost and low 
toxicity.  

In [13], reactive distillation was used to enhance 
dimethyl carbonate synthesis. The reactive distillation was 
also used to convert vegetable oil into biodiesel [14, 15]. 
In [7], different NaOCH3 synthetic strategies, including 
reactive distillation, were investigated and results 
compared [7].  

The final stage of NaOCH3 synthesis involves 
separating CH3OH from water. The distillation 
technology is commonly utilized to separate between 
water and the raw material (CH3OH) which is recycled to 
the synthetic system. The construction of a distillation 
column requires substantial financial investments. As a 
result, pervaporation technology was proposed to separate 
the material from water [16-20].  

In [16], pervaporation was used to esterify organic 
acids and improve the conversion of the reactants. In [17], 
the reactive distillation augmented with pervaporation was 
used to synthesize ethyl tert-butyl ether (ETBE) from 
ethanol and tert-butyl alcohol. The pervaporation 
efficiently removed water from the bottom product, 
enhancing the fraction of ETBE in the top product. In 
[18], the reactive distillation integrated with zeolite NaA 
membrane-based pervaporation was utilized to etherify 
tert-amyl alcohol into tert-amyl ethyl ether. The integrated 
scheme increased the tert-amyl ethyl ether yield by 10 %. 
The pervaporation was also used to separate bioethanol 
[19] and biodiesel-CH3OH mixture [20]. 

The reactor-distillation-distillation and reactive 
distillation-distillation technologies are commonly used in 
biodiesel production. However, the reactor-distillation-
distillation technology suffers from limited equilibrium 
conversion which results in low single-pass conversion 
and high energy consumption (i.e., operating cost) due to 
high amounts of unreacted raw material (CH3OH), 
requiring multiple recycles. Meanwhile, the reactive 
distillation-distillation scheme predominantly suffers from 
high energy consumption due to high amounts of 
unreacted CH3OH.  

 As a result, this research proposes a novel reactive 
distillation-pervaporation technology which requires 
neither additional reactor nor second distillation column, 

resulting in lower capital cost. The proposed distillation-
pervaporation technology also reduces the amounts of 
unreacted CH3OH and multiple recycling, thereby 
lowering energy consumption.  

Specifically, this research investigates the process 
simulation of NaOCH3 synthesis from CH3OH and 
NaOH under three synthesis schemes: schemes A, B, and 
C. Scheme A consisted of one equilibrium reactor and two 
distillation columns, scheme B one reactive distillation 
column and one distillation column, and scheme C one 
reactive distillation column and pervaporation membrane. 
The simulation parameters included CH3OH/NaOH feed 
flow ratio (1.2, 1.3, 1.4, 1.5, 1.6), number of stages (5, 10, 
15, 20, 25, 30), bottom flow rate (1400, 1450, 1500, 1550, 
1600 kg/h), and feed stage location (5, 10, 15, 20, 21, 22, 
23, and 24). The simulation parameters were varied to 
determine the optimal NaOCH3 synthetic conditions 
under schemes A, B, and C, with 0.01 wt% water content, 
maximum 45 wt% NaOCH3, and lowest total energy 
consumption. 
 
2. Modeling and simulation  

 
Simulations were carried out by using ASPEN Plus to 

determine the optimal NaOCH3 synthetic conditions that 
minimize the energy consumption of schemes A, B, and 
C, given 0.01 wt% water content and maximum 45 wt% 
NaOCH3.   
 
2.1 Reaction model 

NaOCH3 is synthesized by reversible exothermic 
reaction which is expressed in Eq. (1). 
 

CH3OH + NaOH ↔ NaOCH3 + H2O        (1) 
 

It is assumed that a hydroxide-methoxide ionic 
equilibrium (Eq. (2)) is achieved once CH3OH and NaOH 
species are mixed [19]. 
 

CH3OH + OH- ↔ CH3O- + H2O                   (2) 
 

In terms of ion activities (a), the equilibrium 
constant of the hydroxide-methoxide ionic equilibrium (K) 
is expressed in Eq. (3).  

K =  
−

−

OHOHCH

OHOCH

xaxa

xaxa

)()(

)()(

3

23                                (3) 

The temperature-dependent equilibrium constant (K) is 
expressed in Eq. (4). Eq. (4) was derived from the linear 
regression of the experimental data in [7, 21].  
 

ln K = -4.374 + 1751/T                                  (4) 
 
where K is the chemical equilibrium constant and T is the 
system temperature in Kelvin. In Eq. (4), the equilibrium 
constant (K) decreases with increase in the system 
temperature due to the exothermicity of the reaction.  
2.2 Process modeling 
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The vapor-liquid equilibrium calculations under 
schemes A, B, and C were performed using the electrolyte 
non-random two-liquid with Redlich-Kwong equation of 
state (eNRTL-RK) model. The eNRTL-RK model is ideal 
for an electrolyte system for ionic species in asymmetric 
reference state [7, 22]. The eNRTL model can describe the 
interaction between electrolyte molecules in liquid phase, 
and the RK model is used to characterize the non-ideal 
behavior of vaporized molecules in gas phase. The 
interactions between water and CH3OH; and between 
water and NaOCH3 were from the ASPEN Plus database, 
while the interaction between NaOCH3 and CH3OH was 
from [7].  

The MESH (material balance, vapor-liquid 
equilibrium equations, mole fraction summations, and 
heat balance) model was used to characterize the reactive 
distillation-pervaporation process (scheme C). In scheme 
C, the pervaporation unit was used to separate CH3OH 
from water using nonporous membrane and CH3OH was 
recycled into the system.  

Table 1 tabulates the simulated NaOCH3 synthesis 
schemes: schemes A, B, and C. Under schemes A, B, and 
C, the total pressure of the ordinary (RadFrac) and reactive 
distillation columns (RadFrac) was 1 atm, and the NaOH 
concentration in the NaOH feed stream was 50 wt% in 
aqueous solution with a flow rate of 999.5 kg/h. Given the 
assumptions, the NaOCH3 flow rate was 675 kg/h (or 5.4 
kt/y). The demand for the catalyst NaOCH3 of a large-
scale biodiesel production plant in Europe was 300 kt/y, 
suggesting the huge market potential for NaOCH3 [23].  

Under scheme C, the pervaporation membrane was of 
hydrophilic type. The membrane performance was 
determined by the permeate flux, separation factor, and 
pervaporation separation index. The membrane 
performance was affected by the membrane polymer 
arrangement, membrane porosity, interaction between 
permeate molecules and the membrane, and diffusion of 
the components [28]. Existing studies on pervaporation 
utilized the pervaporation technology in dehydration of 
organic mixture, azeotropic separation, and flavor 
recovery [24-27]. The permeate flux is defined by Eqs. (5) 
and (6) [24].  

J =  iPiJ ω                                        
       (5) 

Ji = Qi∆pi            (6) 
 
where J is total permeate flux, Ji is the partial flux of 

component i, ωiP is the mass fraction in the permeate 
(kg/kg), Qi is the permeance or pressure normalized flux 
[29], and Δpi is the driving force expressed by partial 
pressure.  

The separation factor (α) of the membrane is 
calculated by Eq. (7), where y and x are permeate and feed 
composition [24].  

αab  =  
ba

ba

xx
yy

                                                     (7) 

 
Table 1. Simulated NaOCH3 synthesis schemes 

 
 Scheme A Scheme B Scheme C 
Prediction 
models 

ENRTL-
RK 

ENRTL-
RK 

ENRTL-RK + 
MESH 

Number of 
operating 
units  

3 units 2 units 2 units 

Reaction 
reactor 

REQUIL RadFracb RadFracb 

NaOCH3 
separator 

RadFraca RadFracb RadFracb 

CH3OH 
separator 

RadFraca RadFraca Pervaporation 
membrane 

Note:  a denotes the ordinary distillation column, and b denotes the 
reactive distillation column.  

Scheme A consisted of an equilibrium reactor and two 
distillation columns for separation of NaOCH3 and CH3OH. 

Scheme B consisted of one reactive distillation column and 
one ordinary distillation column. 

Scheme C consisted of one reactive distillation column and 
one pervaporation. 

 
The pervaporation separation index (PSI) is expressed 

by Eq. (8) [24]. 
 
PSI = J∙α                                    (8) 
 
The permeate flux, separation factor and PSI of 

scheme C were based on [24], and the results were 
validated by ASPEN Plus prior to use. 

 
3. Results and Discussion  

 
3.1 Simulation results under scheme A  

Fig. 1 illustrates the schematic of scheme A, and 
Table 2 tabulates the initial operating condition of feed 
and distillation column (DIST-2) of scheme A. The 
optimal CH3OH/NaOH feed flow ratio in S-505 that 
maximized the NaOCH3 yield was determined by varying 
the feed flow ratio between 1, 1.5, 2, 2.5, 3, 3.5, and 4, 
given the DIST-1 reflux ratio of 0.001 [7].  

 

 
 
Fig. 1. The schematic of NaOCH3 synthesis under scheme 
A 
 
 
 
 
 
Table 2. Initial operating condition of feed and distillation 
column (DIST-2) of NaOCH3 synthesis under scheme A. 
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Parameters Values 

Pressure (atm) 1 
Temperature of reactor (˚C) 55 
NaOH solution feed rate (kg/h) 999.5 
NaOH solution feed temperature (˚C) 30 
CH3OH make-up feed temperature (˚C) 30 
 
DIST-2 

 

Pressure (atm) 1 
Theoretical number of stages 34 
Condenser Partial-vapor 
Distillate to feed ratio 0.7841 
Reflux ratio 0.8495 
Feed stage location 24 
 

Fig. 2 shows the effect of CH3OH/NaOH feed flow 
ratio on the composition of product (water, CH3OH, and 
NaOCH3) and the reboiler duty of scheme A, given the 
reflux ratio of 0.001. The results revealed that increased 
CH3OH/NaOH feed flow ratio had no effect on the 
NaOCH3 yield but improved the purity of NaOCH3 as the 
water content decreased. The reboiler duty was positively 
correlated with the CH3OH/NaOH feed flow ratio.  

Fig. 3 (a) illustrates the effect of CH3OH/NaOH 
feed flow ratio on the water content under variable reflux 
ratios (R) of the first distillation column (DIST-1) of 
scheme A (R = 0.001, 0.1 0.4, and 0.8). The higher the 
reflux ratio, the higher the water content in the product. 
The finding was attributable to the non-vaporization of 
NaOCH3 salt, unlike water and CH3OH. The lowest water 
content in the product was achieved under 
CH3OH/NaOH feed flow ratio of 4 (Fig. 3 (a)). Fig. 3 (b) 
shows the effect of reflux ratio on water content, given the 
CH3OH/NaOH feed flow ratio of 4. The lowest water 
content was realized under the reflux ratio of 0.001, given 
the CH3OH/NaOH feed flow ratio of 4. 

Given the reflux ratio (R) of 0.001, DIST-1 of 
scheme A was operated without condenser to minimize 
water contamination in NaOCH3. The water content in 
NaOCH3 should not exceed 0.1 wt% to avoid reversible 
reaction [10]. The water content was below 0.1 wt% at the 
CH3OH/NaOH feed flow ratio of 4 and reflux ratio of 
0.001 (Figs. 3 (a)-(b)), with the energy consumption of 
2229.37 GJ/h (Fig. 2). Table 3 presents the optimal feed 
condition of NaOCH3 synthesis under scheme A. 

 
3.2 Simulation results under scheme B 

The feed and product conditions of the reactive 
distillation column (D-501) and distillation column (D-
502) under scheme B were based on [10]. The values were 
validated by ASPEN Plus and results tabulated Table 4. 

Fig. 4 illustrates the schematic of NaOCH3 synthesis 
under scheme B. Under scheme B, 27 g/h of 50 wt% 
NaOH in aqueous solution (stream 504) was fed at 1 atm 

  
Fig. 2. Effect of CH3OH/NaOH feed flow ratio on the 
composition of product and reboiler duty of scheme A, 
given the reflux ratio of 0.001. 
 

(a) 
 

(b) 
Fig. 3. Water content in the product under scheme A: a) 
effect of CH3OH/NaOH feed flow ratio given variable 
reflux ratios (R), b) effect of reflux ratio given the 
CH3OH/NaOH feed flow ratio of 4. 
 
and 75 ˚C into the upper section of the reactive distillation 
column (D-501). Meanwhile, 54 g/h of CH3OH at 1 atm 
and 30 ˚C mixed with recycled CH3OH (478 g/h; stream 
507) was fed at 1 atm and 61 ̊ C (stream 505) into the lower 
section of D-501.  

D-501 was operated at 1 atm without condenser to 
minimize water contamination. The distillate from D-501 
(top product) was fed into the ordinary distillation column 
(D-502) via stream 506 to separate CH3OH  
Table 3. The optimal feed condition of NaOCH3 synthesis 
under scheme A. 
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Parameters Values 

NaOH solution feed rate (kg/h) 999.5 
CH3OH make-up feed rate (kg/h) 4,000 
NaOCH3 flow rate (kg/h) 675  

(43.55 wt% ) 
DIST-1   
Pressure (atm) 1 
Theoretical number of stages 15 
Condenser Partial-vapor 
Reflux ratio 0.001 
Bottom flow rate (kg/h) 1,550 
Feed stage location 14 
Energy consumption (GJ/h) 2,229.37 
 
 

 
 
Fig. 4 The schematic of NaOCH3 synthesis under scheme 
B. 
 
from water. The separated CH3OH (top product of D-502) 
was recycled via stream 507 [10]. The bottom product of 
D-501 was NaOCH3. 

The simulated reflux ratio, total number of stages, 
and feed stage location of D-502 were 1.3, 29, and 25th 
stage, respectively, given 1 atm pressure. As a result, the 
simulated total number of stages of D-501 was 20, 
consistent with [10].   

Table 4 tabulates the simulated feed and product 
conditions of D-501 and D-502 under scheme B. The 
simulation results were consistent with [10], with 
discrepancies between the water content in the distillate of 
D-502 (30 ppm for [10] and 4.1 ppm for the simulation) 
and the CH3OH content in the bottom product of D-502 
(1 for [10] and 0.2 wt% for the simulation). The water 
content was below the 0.1 wt% threshold, indicating no 
reversible reaction. 

Under scheme B, the simulation parameters were 
varied to determine the optimal NaOCH3 synthetic 
condition with 0.01 wt% water content, maximum 45 wt% 
NaOCH3, and lowest energy consumption. The 
simulation parameters were CH3OH/NaOH feed flow 
ratio, number of stages, bottom flow rate, and feed stage 
location. The CH3OH/NaOH feed flow ratio was varied 
between 1.2, 1.3, 1.4, 1.5, and 1.6; the number of stages 
between 5, 10, 15, 20, 25, and 30; the bottom flow rate 
between 1400, 1450, 1500, 1550, and 1650 kg/h; the feed  
Table 4. The simulated feed and product conditions of D-
501 and D-502 under scheme B in comparison with [10]. 

Results Pilot plant 
data[10] 

Simulation 
results 

Error 
(%) 

D-501    
Distillate 
temperature (˚C) 

75 75.4 0.53 

Distillate mass 
flow (g/h) 

498 498 0.00 

Product mass 
flow (g/h) 

61 61 0.00 

CH3OH feed 
temperature (˚C) 

61 61 0.00 

CH3OH feed 
mass flow rate 
(g/h) 

532 532.4 0.08 

Water content in 
product (ppm) 

60 24 60.00 

CH3OH in 
product (wt.%) 

70 70 0.00 

NaOCH3 in 
product (wt.%) 

30 30 0.00 

 
D-502 

   

Distillate mass 
flow (g/h) 

478 478 0.00 

Bottom mass 
flow (g/h) 

20 20 0.00 

Water content in 
distillate (ppm) 

30 4.1 86.33 

CH3OH content 
in bottom (wt.%) 

1 0.2 80.00 

 
Table 5 Initial operating condition of feed and distillation 
column (D-502) of NaOCH3 synthesis under scheme B. 
 

Parameters Values 
Pressure of process (atm) 1 
NaOH solution feed flow rate (kg/h) 999.5 
NaOH solution feed temperature (˚C) 75 
CH3OH make-up feed temperature (˚C) 30 
 
D-502 

 

theoretical stages 30 
Condenser Partial-

vapor 
Distillate to feed ratio 0.8471 
Reflux ratio 0.6456 
Feed stage location 20 

 
stage location between 5, 10, 15, 20, 21, 22, 23, and 24. 
Table 5 tabulates the initial operating condition of feed 
and distillation column (D-502) under scheme B. Under 
this scheme (Fig. 4), the CH3OH feed flow rate (stream 
505) was varied, given the NaOH feed flow rate (50 wt% 
aqueous solution) of 999.5 kg/h (stream 504). The 
operating condition of D-502, given 1 atm pressure, was 
of 0.6456 for the reflux ratio, 0.8471 for the distillate-to-
mass feed ratio, 30 for the total number of stages, and 20th 
stage for the feed location, NaOH solution feed 
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temperature of 75 ˚C, and CH3OH make-up feed 
temperature of 30 ˚C. 

Figs. 5 (a)-(f) illustrate the effect of number of 
stages (5-30) and bottom flow rate (1400-1600 kg/h) of 
D-501 of scheme B on the concentrations of NaOCH3 
and water, given the CH3OH/NaOH feed flow ratio of 
1.2 – 1.6. In Fig. 5 (a), the number of stages and the 
CH3OH/NaOH feed flow ratio (1.2 – 1.6) had no effect 
on the yield of NaOCH3. However, the bottom flow rate 
was inversely correlated with the NaOCH3 concentration. 
To maintain NaOCH3 in liquid phase, the maximum 
concentration of NaOCH3 in the product was 45 wt% [8]. 
In Fig. 5(a), the maximum NaOCH3 concentration was 
reached under the bottom flow rate of 1550 kg/h.   

Figs. 5 (b)-(f) show the effect of number of stages 
(5-30) and bottom flow rate (1400-1600 kg/h) of D-501 
of scheme B on the water content, given the 
CH3OH/NaOH feed flow ratios of 1.2, 1.3, 1.4, 1.5, and 
1.6. Overall, the water content increased with increase in 
the bottom flow rate. In addition, the water content in 
NaOCH3 should be lower than 0.1 wt% to minimize the 
reversible reaction [9]. 

In Figs. 5 (b)-(c), the water content exceeded 0.1 
wt%, rendering the CH3OH/NaOH feed flow ratios of 
1.2 and 1.3 non-ideal. In Figs. 5 (d)-(f), the water content 
was below 0.1 wt%, given the CH3OH/NaOH feed flow 
ratios of 1.4, 1.5, and 1.6 and the bottom flow rates 
between 1500-1600 kg/h. In this research, the 
CH3OH/NaOH feed flow ratio of 1.4 was adopted for 
scheme B due to the least CH3OH required. 

Figs. 6 (a)-(e) show the effect of number of stages 
(5-30) and bottom flow rate (1400-1600 kg/h) on total 
energy consumption of scheme B, given the 
CH3OH/NaOH feed flow ratios of 1.2, 1.3, 1.4, 1.5, and 
1.6. The energy consumption of D-501 (solid bar) and D-
502 (shaded bar) decreased as the bottom flow rate 
increased. 

Under scheme B, given the desirable end-product 
with 0.01 wt% water content and maximum 45 wt% 
NaOCH3, the lowest total energy consumption of 35.13 
GJ/h was achieved under the bottom flow rate of 1550 
kg/h, CH3OH/NaOH feed flow ratio of 1.4, and the 
number of stages of 25 for D-501 and D-502. 

In Fig. 7, given the bottom flow rate of 1550 kg/h, 
CH3OH/NaOH feed flow ratio of 1.4, and the number of 
stages of 25 for D-501, the 24th feed stage location 
exhibited the water content less than 0.1 wt%. Table 6 
summarizes the optimal feed and product conditions of 
NaOCH3 synthesis under scheme B. 
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(e) 

(f) 
 
Fig. 5. The effect of number of stages and bottom flow 
rate (1400-1600 kg/h) of D-501 of scheme B on the 
concentration of: (a) NaOCH3 (CH3OH/NaOH ratio = 
1.2 – 1.6), (b) water (CH3OH/NaOH ratio = 1.2), (c) 
water ( CH3OH/NaOH ratio = 1.3), (d) water 
(CH3OH/NaOH ratio = 1.4), (e) water (CH3OH/NaOH 
ratio = 1.5), (f) water (CH3OH/NaOH ratio = 1.6)) 
 
Table 6 The optimal feed and product conditions of 
NaOCH3 synthesis under scheme B. 
 

Parameters Values 
NaOH solution feed flow rate (kg/h) 999.5 
CH3OH make-up feed rate (kg/h) 1,400 
NaOCH3 production (kg/h) 675  

(43.55 wt.%) 
D-501  
pressure (atm) 1 
theoretical stages 25 
Condenser No condenser 
Bottom rate (kg/h) 1,550 
Feed stage location 1 (NaOH),  

24 (CH3OH) 
Energy consumption (GJ/h) 35.13 
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(e) 

                                       
 
Fig. 6. The effect of number of stages (5-30) and bottom 
flow rate (1400-1600 kg/h) on the energy consumption of 
scheme B under CH3OH/NaOH feed flow ratio of: (a) 
1.2, (b) 1.3, (c) 1.4, (d) 1.5, (e) 1.6 
 

  
Fig. 7. The effect of CH3OH feed stage location of D-501 
of scheme B on water content, given CH3OH/NaOH 
feed flow ratio of 1.4, bottom flow rate of 1,550 kg/h and 
the number of stage is 25. 
 
3.3 Simulation results under scheme C  

Fig. 8 illustrates the schematic of NaOCH3 
synthesis under Scheme C, and Table 7 tabulates the initial 
operating conditions of feed and pervaporation 
membrane (PERVAP) of NaOCH3 synthesis. The 
pervaporation membrane to separate CH3OH from water 
was of A-type zeolite membrane due to high permeate flux, 
separation factor, and PSI [26].   

Fig. 9 illustrates the effect of number of stages (5-
30) and bottom flow rate (1400-1600 kg/h) on NaOCH3 
concentration of D-501 under scheme C, given 
CH3OH/NaOH feed flow ratios of 1.2, 1.3, 1.4, 1.5, and 
1.6. The NaOCH3 concentration was independent of the 
number of stages and CH3OH/NaOH feed flow ratio. 
Meanwhile, the NaOCH3 concentration was inversely 
correlated with the bottom flow rate. To maintain 
NaOCH3 in liquid phase, the maximum concentration of  

 
 
Fig. 8. The schematic of NaOCH3 synthesis under scheme 
C 
 
Table 7 Initial operating conditions of feed and 
pervaporation membrane (PERVAP) of NaOCH3 
synthesis under scheme C. 
 

Parameters Values 
Pressure (atm) 1 
NaOH solution feed flow rate (kg/h) 999.5 
NaOH solution feed temperature (˚C) 75 
CH3OH make-up feed temperature (˚C) 30 
Type of membrane A-type zeolite 
Membrane area (m2) 3.76 
Temperature of pervaporation (˚C) 65 

 

  
Fig. 9. The effect of number of stages (5-30) and bottom 
flow rate (1400-1600 kg/h) on NaOCH3 concentration of 
D-501 under scheme C, given CH3OH/NaOH feed flow 
ratios of 1.2, 1.3, 1.4, 1.5, and 1.6 
 
 
NaOCH3 was 45 wt%. In Fig. 9, the NaOCH3 
concentrations exceeded the 45 wt% maximum threshold 
under the bottom flow rates of 1400 and 1450 kg/h. The 
NaOCH3 concentrations were below the maximum 
threshold for the bottom flow rates of 1500, 1550, and 
1600 kg/h.  

Figs. 10 (a)-(b) depict the effect of number of 
stages (5-30) and bottom flow rate (1400-1600 kg/h) of 
D-501 under scheme C on the water content and energy 
consumption, given CH3OH/NaOH feed flow ratio of 
1.2. Given 0.01 wt% water content and maximum 45 wt% 
NaOCH3, the CH3OH/NaOH feed flow ratio of 1.2 was 
non-ideal.  
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(a) 

(b) 
Fig. 10. The effect of number of stages (5-30) and bottom 
flow rate (1400-1600 kg/h) of D-501 under scheme C 
given CH3OH/NaOH feed flow ratio of 1.2: (a) water 
content, (b) energy consumption. 
 

Figs. 11 (a)-(b) show the effect of number of 
stages (5-30) and bottom flow rate (1400-1600 kg/h) of 
D-501 under scheme C on the water content and energy 
consumption, given CH3OH/NaOH feed flow ratio of 
1.3. Likewise, the CH3OH/NaOH feed flow ratio of 1.3 
was non-ideal, given 0.01 wt% water content and 
maximum 45 wt% NaOCH3. 

Figs. 12, 13, and 14 show the effect of number of 
stages (5-30) and bottom flow rate (1400-1600 kg/h) of 
D-501 under scheme C on the water content and energy 
consumption, given the CH3OH/NaOH feed flow ratios 
of 1.4, 1.5, and 1.6, respectively. Given 0.01 wt% water 
content and maximum 45 wt% NaOCH3, the lowest total 
energy consumption (34.25 GJ/h) of D-501 under scheme 
C was achieved under the CH3OH/NaOH feed flow ratio 
of 1.4, the bottom rate of 1550 kg/h, and the number of 
stages of 25 (Fig. 12 (b)). 

The initial condition of pervaporation of scheme 
C was based on [24], and the values were validated by 
ASPEN Plus and the percentage errors tabulated Table 8. 
The simulation results and the reference were in good 
agreement despite small discrepancies of 0.01 % and 0.27 % 
for the separation factor and PSI. 
 

 
(a) 

 
(b) 

Fig. 11. The effect of number of stages (5-30) and bottom 
flow rate (1400-1600 kg/h) of D-501 under scheme C 
given CH3OH/NaOH feed flow ratio of 1.3: (a) water 
content, (b) energy consumption. 

 
(a) 

 
(b) 

Fig. 12. The effect of number of stages (5-30) and bottom 
flow rate (1400-1600 kg/h) of D-501 under scheme C 
given CH3OH/NaOH feed flow ratio of 1.4: (a) water 
content, (b) energy consumption. 
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(a) 

 
(b) 

Fig. 13. The effect of number of stages (5-30) and bottom 
flow rate (1400-1600 kg/h) of D-501 under scheme C 
given CH3OH/NaOH feed flow ratio of 1.5: (a) water 
content, (b) energy consumption. 

 
(a) 

 
(b) 

Fig. 14. The effect of number of stages (5-30) and bottom 
flow rate (1400-1600 kg/h) of D-501 under scheme C 
given CH3OH/NaOH feed flow ratio of 1.6: (a) water 
content, (b) energy consumption. 

Table 8. Comparison between the reference [24] and 
validation results on the pervaporation membrane. 
 Reference 

data [24] 
Validation 

results 
Error (%) 

Type of 
membrane 

A-type 
zeolite 

A-type 
zeolite 

- 
 

Temperature of 
feed (oC) 

60 60 0 

Permeate 
pressure (mbar) 

7 7 0 

Membrane area 
(cm2) 

60 60 0 

Water feed 
(wt%) 

10.1 10 0.99 

Water permeate 
(wt%) 

99.91 99.91 0 

Permeate flux 
(kg/m2h) 

0.46 0.46 0 

Separation 
factor 

10000 9998.78 0.01 

PSI (kg/m2h) 4599.54 4611.81 0.27 
 

Under scheme C, given the CH3OH/NaOH feed 
flow ratio of 1.4, the bottom rate of 1550 kg/h, and the 
number of stages of 25 of D-501, the permeate flux was 
2.68 x 10-3 kg/m2h, PSI was 26.75 kg/m2h, and the 
separation factor was 9991 (eq. (7)) since only one single 
pervaporation membrane was deployed in the scheme.  

Figs. 15 (a)-(e) illustrate the effect of number of 
stages (5-30) and bottom flow rate (1400-1600 kg/h) of 
D-501 of scheme C on the permeate flux of pervaporation 
membrane, given the CH3OH/NaOH feed flow ratios of 
1.2, 1.3, 1.4, 1.5, and 1.6. The number of stages and 
bottom flow rate were positively correlated with the 
permeate flux. The permeate flux decreased under the 
CH3OH/NaOH feed flow ratios of 1.5 and 1.6. This 
could be attributed to lower water content as the 
CH3OH/NaOH feed flow ratio increased. 

Figs. 16 (a)-(e) illustrate the effect of number of 
stages (5-30) and bottom flow rate (1400-1600 kg/h) of 
D-501 of scheme C on PSI of pervaporation membrane, 
given the CH3OH/NaOH feed flow ratios of 1.2, 1.3, 1.4, 
1.5, and 1.6. The PSI was positively related to the permeate 
flux. Table 9 tabulates the optimal feed, D-501, and 
pervaporation conditions of NaOCH3 synthesis under 
scheme C. 
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

 

 
(e) 

Fig. 15. Effect of number of stages (5-30) and bottom flow 
rate (1400-1600 kg/h) of D-501 of scheme C on the 
permeate flux of pervaporation membrane under 
CH3OH/NaOH feed flow ratio of: a) 1.2, b) 1.3, c) 1.4, d) 
1.5, e) 1.6. 
 
3.4 Comparison between synthetic schemes 

Under scheme A, the optimal NaOCH3 synthetic 
condition (with 0.01 wt% water content, maximum 45 wt% 
NaOCH3 and lowest energy consumption) was of 
CH3OH/NaOH feed flow ratio of 4, the number of stages 
of 15, the bottom flow rate of 1550 kg/h, and the 14th 
feed stage location, with the NaOCH3 flow rate of 675 
kg/h. The total energy consumption under the optimal 
condition was 2229.37 GJ/h. The energy inefficiency was 
attributable to the reactor (Fig. 1). 

The optimal NaOCH3 synthesis condition under 
scheme B was of CH3OH/NaOH feed flow ratio of 1.4, 
the number of stages of 25, the bottom flow rate of 1550 
kg/h, and the 24th feed stage location, with the NaOCH3 
flow rate of 675 kg/h. The total energy consumption 
under the optimal condition was 35.13 GJ/h. The energy 
efficiency of scheme B was attributable to substituting the 
reactor with the reactive distillation column (D-501, Fig. 
4). 

Under scheme C, the optimal NaOCH3 synthetic 
condition was of CH3OH/NaOH feed flow ratio of 1.4, 
the number of stages of 25, the bottom flow rate of 1550 
kg/h, and the 24th feed stage location, with the NaOCH3 
flow rate of 675 kg/h. The total energy consumption 
under scheme C was 34.25 GJ/h. The energy 
consumption of scheme C was slightly lower than under 
scheme B as a result of switching from the distillation 
column (D-502) to the pervaporation membrane. 
Nonetheless, the implementation of the pervaporation 
membrane in place of the distillation column to separate 
CH3OH from water substantially lowered the capital cost 
of scheme C [30, 31], vis-à-vis scheme B. In essence, 
scheme C holds promising potential as an alternative for 
energy-efficient production of NaOCH3.  
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

Fig. 16. Effect of number of stages (5-30) and bottom flow 
rate (1400-1600 kg/h) of D-501 of scheme C on PSI of 
pervaporation membrane under CH3OH/NaOH feed 
flow ratio of: a) 1.2, b) 1.3, c) 1.4, d) 1.5, e) 1.6. 
 
Table 9. The optimal feed, D-501, and pervaporation 
conditions of NaOCH3 synthesis under scheme C. 
 

Parameters Values 
NaOH solution feed rate (kg/h) 999.5 
CH3OH make-up feed rate (kg/h) 1,400 
NaOCH3 production (kg/h) 675  

(43.55 wt.%) 
D-501  
pressure (atm) 1 
theoretical stages 25 
Condenser None 

condenser 
Bottom rate (kg/h) 1,550 
Feed stage location 24 
 
Pervaporation 

 

Type of membrane A-type zeolite 
Pressure (atm) 1 
Temperature of feed (TF, ˚C) 65 
Membrane area (m2) 3.76 
Water permeate (wt.%) 99.8 
Water flux (kg/m2h) 2.68 x 10-3 
Separation factor 9,991 
PSI (kg/m2h) 26.75 

 
 
4. Conclusion  

This research comparatively investigated the 
process simulation of NaOCH3 synthesis from CH3OH 
and NaOH under three synthetic schemes: schemes A, B, 
and C. Scheme A consisted of one equilibrium reactor and 
two distillation columns, scheme B one reactive distillation 
column and one distillation column, and scheme C one 
reactive distillation column and pervaporation membrane. 
Simulations were carried out by using ASPEN Plus. The 
simulation parameters included CH3OH/NaOH feed 
flow ratio (1.2-1.6), number of stages (5-30), bottom flow 
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rate (1400-1600 kg/h), and feed stage location (5, 10, 15, 
20, 21, 22, 23, and 24). The simulation parameters were 
varied to determine the optimal NaOCH3 synthetic 
condition with 0.01 wt% water content, maximum 45 wt% 
NaOCH3, and lowest total energy consumption. The 
results revealed that the optimal NaOCH3 synthetic 
condition under scheme A was CH3OH/NaOH feed flow 
ratio of 4, number of stages of 15, bottom flow rate of 
1550 kg/h, and feed stage location of 14, with the total 
energy consumption of 2229.37 GJ/h. Under scheme B, 
the corresponding values were 1.4, 25, 1550 kg/h, and 24, 
with the total energy consumption of 35.13 GJ/h. Under 
scheme C, the optimal NaOCH3 synthetic condition was 
CH3OH/NaOH feed flow ratio of 1.4, number of stages 
of 25, bottom flow rate of 1550 kg/h, and feed stage 
location of 24, with the total energy consumption under 
scheme C was 34.25 GJ/h. Scheme C holds great potential 
as an energy-efficient alternative for synthesis of NaOCH3. 
In subsequent research, the scope would be extended to 
incorporate the economic aspect of techno-economic 
assessment, in addition to the process simulation.  
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