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Abstract

Detecting changepoints in datasets with many variates is a data science challenge of increas-
ing importance. Motivated by the problem of detecting changes in the incidence of terrorism
from a global terrorism database, we propose a novel approach to multiple changepoint de-
tection in multivariate time series. Our method, which we call SUBSET, is a model-based
approach which uses a penalised likelihood to detect changes for a wide class of parametric
settings. We provide theory that guides the choice of penalties to use for SUBSET, and that
shows it has high power to detect changes regardless of whether only a few variates or many
variates change. Empirical results show that SUBSET out-performs many existing approaches
for detecting changes in mean in Gaussian data; additionally, unlike these alternative methods,
it can be easily extended to non-Gaussian settings such as are appropriate for modelling counts
of terrorist events.

Keywords: Binary Segmentation; Likelihood Ratio; Multivariate Changepoint Detection; Penalised
Cost Function; Wild Binary Segmentation

1 Introduction

The canonical, one-dimensional, changepoint analysis problem has been the focus of substantial
research effort for many years. Much initial effort was placed on developing methodology to detect
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changes in key statistical features, for example changes in mean (Hinkley, 1971), variance (Inclán
and Tiao, 1994), event rate (Yao, 1986) and distribution (Carlstein, 1988). More recently, due to the
large amount of data now routinely collected, significant focus has been placed on the development
of computationally efficient, multiple changepoint search methods. See Shi et al. (2017), Eichinger
and Kirch (2018), Anastasiou and Fryzlewicz (2019), Tickle et al. (2020) and Grundy et al. (2020)
for a selection of recent contributions in this area.

In parallel with these developments, there has been a growing adoption of changepoint methods
to real world data problems in social and medical settings (e.g. Carroll et al., 2019; Farahani and
Kazemzadeh, 2019; Salmasnia et al., 2019). Other recent substantive changepoint applications
include the maintenance of safe carbon dioxide levels in spacesuits (Bekdash et al., 2020); detecting
neuronal activity in calcium imaging data (Jewell et al., 2019); and assessing the effectiveness of
interventions to contain the spread of the COVID-19 pandemic (Dehning et al., 2020).

Our work is motivated by analysing the Global Terrorism Database (LaFree and Dugan, 2007).
This database provides a global historical record of terrorist incidents and is maintained by the
National Consortium for the Study of Terrorism and Responses to Terrorism at the University of
Maryland. Here, a terrorist event is considered to be an event ‘involving “threatened” or actual
use of illegal force and violence to attain a political, economic, religious or social goal through fear,
coercion or intimidation.’ We analyse jointly the counts of terrorist events across twelve global
regions.

This application raises two challenges that are common in modern applications. The first is the
need to analyse multivariate data, and detect changes that may affect only some of the variates.
The second is the need for methods that can detect changes when it is not appropriate to model
the data as a change in mean of Gaussian data – which has been the focus of most multivariate
changepoint methods to date (Wang and Samworth, 2018; Enikeeva and Harchaoui, 2019; Hahn
et al., 2020). Simple application of existing methods to these data are unreliable as they detect too
many changes; see Appendix B of Tickle (2020) for empirical confirmation of this.

The method we develop is based on likelihood ratio tests, and can be applied across a range of
modelling scenarios. This makes it stand out from most current competitors, designed to detect
change in mean in Gaussian data, and is important for our application where the data are in the
form of counts. In such a setting, it is natural to model this using a negative binominal model due
to substantial over-dispersion in the data relative to a Poisson model. Whilst not needed for our
application, the fact that our method combines likelihood ratio tests for a change on each variate
means that it can easily be applied to mixed data settings – where we may wish to use different
models for the different variates which may be of different types (e.g. a mix of continuous, count and
categorical data). For the case of a change-of-mean in Gaussian data, we analyse theoretically the
properties of our method, and show that it achieves similar asymptotic power to the best possible
for this class of models.

2 An Introduction to the Global Terrorism Database

Over the past fifty years, terror activity has seemingly transitioned from being a phenomenon
perpetuated by a small number of localised groups to an issue of international significance. One
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question we may ask is whether there have been specific points or periods of time in which changes
in the number of terrorist attacks occur, either regionally or worldwide. Such changes, if confined
to certain regions of the globe, may point to specific events which altered the probability of an
attack in a particular country or continental area. Alternatively, if a change is seen to affect
terrorism worldwide, one might potentially identify events that had a much more wide-ranging
scope. Identifying historically impactful events has benefits for future policy-makers, both national
and international, particularly in regions of the world where terrorism may be an especially acute
issue.

The Global Terrorism Database (Jensen, 2018) is a global historical record of terrorist incidents
maintained by the National Consortium for the Study of Terrorism and Responses to Terrorism at
the University of Maryland, and the database is copyrighted to the University of Maryland (2018).
The database is a compilation of terror events that have occurred worldwide since 1 January 1970.
The original platform for the database was the Pinkerton Global Intelligence Services who, from
1970 to 1997, employed a number of researchers to collate and record events from numerous domestic
and foreign reports. During this period, an event which came to the attention of the compilers was
valid for inclusion if it involved the “threatened or actual use of illegal force and violence to attain
a political, economic, religious or social goal through fear, coercion or intimidation” (LaFree, 2010).
In addition, any event known to have been perpetrated by a sovereign state was not included.

The Global Terrorism Database has been subject to several analyses in recent years. LaFree and
Dugan (2007), LaFree (2010) and LaFree et al. (2014) highlighted the higher incidence of terrorism
in Europe in the 1970s; a period of unusually high terrorist activity in Latin America between 1980
and 1997; and a more general note regarding the concentration of most incidents within geographic
space. Particular events or points in time that may have seen changes in terror activity were also a
significant theme of interest. On a global scale, LaFree (2010) notes that terrorism tripled between
1976 and 1979, with a doubling just in the final year of this period (LaFree and Dugan, 2007). One
of the principle findings of an analysis by Santifort et al. (2012) suggests that, by 2010, the variation
in the mode of terror attacks had declined significantly since 1970, with bombings, typically of non-
official, private entities or groups of people, becoming the preferred method of terrorists worldwide.
Other analyses of the Global Terrorism Database examine the relationship between terrorism and
a wide range of distinct global applications. These include investor sentiment, tourism levels in the
United Kingdom, and the worldwide cost of debt; see Drakos (2010), Mao (2019) and Procasky
and Ujah (2016), among others.

The database has also been used to analyse terrorism at a much more local level. For example,
LaFree (2010) discusses the activities of the Armenian Secret Army for the Liberation of Armenia
(ASALA). The link between government policy change and a change in the probability of a terrorist
attack has also been examined. For example, LaFree (2010) used the database to perform an
analysis on six policies enacted by the British government to attempt to reduce terror activity in
Northern Ireland. It was discovered that three of these policies in fact resulted in a significant
increase in terrorism, with only one leading to a reduction. Meanwhile, Raghavan et al. (2013)
focus on the activities of the Revolutionary Armed Forces of Colombia - People’s Army (FARC)
between 1998 and 2006. They conclude that, from the end of June 1998, funding from the United
States to combat the drug economy in Colombia had an impact in reducing FARC’s activities in
the short to medium term.

We use the Global Terrorism Database to provide event incidence in twelve regions: Australasia
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& Oceania, Central America & Caribbean, Central Asia, East Asia, Eastern Europe, Middle East
& North Africa, North America, South America, South Asia, Southeast Asia, Sub-Saharan Africa
and Western Europe. Given that these political terms may be somewhat fluid geographically, we
show this division pictorially in Figure 1. Note that these regions are as defined by the compilers
of the database. It would also be possible to carry out our later analysis of the database on a much
finer scale, for example, by country. However, given that many sovereign states have undergone
substantial border changes in the last fifty years, such an analysis would likely require a great deal
of care.

Figure 1: Definition of twelve regions used when analysing the global terrorism data set – each
region is denoted by a different colour. This map was created with the aid of the maps package of
Becker and Wilks (2018).

For each of the twelve regions, we aggregate all incidents for each month to produce one univariate
time series of counts for each region. Each of these is of length 564, one for each month between
January 1970 and December 2017 inclusive. Note that 1993 is not included, as that year’s data are
missing from the publicly-available copy of the database. The resulting incident count by region is
shown in Figure 2.

We can see from Figure 2 that there appear to be periods of time in which terrorism abruptly
increases or decreases in specific regions. Whilst the question of locating changepoints in the
database could be answered using univariate changepoint methods, we seek to analyse these series
jointly and thereby potentially identify subsets of series within which changes occur. Such a setting
is inherently more computationally complex, due to the rapid increase in possible changepoint
combinations that can occur in a high-dimensional setting. This is the challenge we seek to address,
proposing a novel computationally efficient approach to identify changepoints in multivariate data
sequences.
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Figure 2: Terrorism incident count per month for each of the 12 regions in Figure 1. Note that
the series’ colours match those of Figure 1: Australasia and Oceania (blue); Central America and
Caribbean (green); Central Asia (brown); East Asia (yellow); Eastern Europe (red); Middle East
and North Africa (black); North America (purple); South America (orange); South Asia (cyan);
Southeast Asia (pink); Sub-Saharan Africa (gold); and Western Europe (grey).

3 Background

Whilst detecting changes in univariate data sequences has a long history, there has been much
less work on methods for detecting potentially multiple changepoints in multivariate datasets.
Univariate approaches can be easily adapted to the multivariate setting if we are willing to assume
all variates change at each changepoint (e.g. Wessman, 1998). However, this may not be appropriate
in applications where some, but not all, variates are affected by each changepoint; or where it is
not known a priori whether a change will only affect a very small number or many of the variates.

Within the multivariate changepoint setting, the change in mean problem has to date received the
most substantial focus. In this setting, evidence for a change in a single series can, for example, be
quantified using CUSUM statistics – a weighted difference in the empirical mean before and after
the potential changepoint. The simplest ways of combining evidence across time series are to (i)
perform some form of averaging of the CUSUM statistics; or (ii) take the maximum value of the
CUSUM statistics. Naturally, the detection boundaries, i.e. how large a change in mean is needed
before the presence or absence of change can be determined with probability tending to 1, are very
different for approaches (i) and (ii), with the first being able to detect small changes that affect most
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variates, and the latter requiring at least one variate to change by a sizeable amount. Enikeeva and
Harchaoui (2019) investigate the detection boundary for a change in mean in a high-dimensional
asymptotic setting where the number of variates, d, the number of variates that change and the
number of observations per variate increase. They show that there are two regimes depending on
whether the number of variates that change increases faster than

√
d, or at or slower than a

√
d

rate. We call the former regime the dense change regime, and the latter the sparse change regime.
Informally, approach (i) works well in the dense regime, while (ii) works well in the sparse regime.

In recent years, a number of other approaches have been proposed that seek to strike a balance
between the (i) mean and (ii) max CUSUM-based approaches. For example, Cho and Fryzlewicz
(2015) and Cho (2016) sum only CUSUM statistics that exceed a certain threshold; meanwhile,
Wang and Samworth (2018) consider sparse projections of the data, which is equivalent to using
a weighted average of CUSUM statistics. These approaches can demonstrate strong empirical
performance, but neither has been shown theoretically to simultaneously work as well in both the
dense and sparse settings. For example, the method of Wang and Samworth (2018) was designed
for detecting sparse changes, and its theory establishes strong performance in precisely that setting.
It is the development of an approach that seeks to work well in both settings that we introduce
below. The one current method that has been shown to work well in both dense and sparse settings
is that of Enikeeva and Harchaoui (2019) which combines a test statistic based on combining all
CUSUM statistics with one based on the largest p statistics and scans over all choices of p.

To this end, suppose that the data sequence for each variate, (yi,j)
n
j=1 for i = 1, . . . , d, within the

dataset, y1:n, can be segmented by changepoints, which are often shared across variates within the
data. So for the global terrorism data yi,j corresponds to the count of terrorist events in region
i and time point j, and we have d = 12 and n = 564. We define the set of changepoints to be
points where at least one variate undergoes a change. Therefore, for each changepoint there is an
associated affected set of variates which undergo a change.

Formally, let 0 = τ0 < τ1 < . . . < τm < τm+1 = n be the changepoints, with corresponding
affected sets S1, . . . ,Sm. Note that it is possible for a given variate to be affected at more than one
changepoint, so these affected sets are allowed to overlap. We will assume a parametric model for
the data within a segment for each variate, and further that the segment parameter for this model
only changes at changepoints which affect that variate. To simplify the exposition, assume that
the data are conditionally independent given the segment parameters. In other words, we have

yi,j ∼ g(.|µi,k), (1)

for some family of densities g(.|.), where k = |{v : τv < j}|. Here, k denotes the segment associated
with time-point j, and µi,k is the associated segment parameter for series i. We have µi,k = µi,k+1

unless i ∈ Sk: the kth and (k + 1)th segment parameters of series i are identical unless the kth

change affects series i.

Our definition of the within-segment data-generating processes given above allows our method to
solve for a wide class of possible changepoint problems. For instance, the well-studied canonical
problem of Gaussian change in mean can be included by setting

yi,j ∼ N
(
µi,k, σ

2
i

)
,

where µi,k is the mean of the signal in the ith variate following the (k − 1)th changepoint which
affects variate i, and σ2

i is some (known) variance. However, for the Global Terrorism Database
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example discussed in Section 2, this classical problem setup is inappropriate. Given that this
particular application is comprised of count data across multiple regions, we can use a negative
binomial likelihood such that

P(yi,j = y) =

(
y + ri − 1

y

)
× (1− pi,k)yprii,k,

which we can refer to as

yi,j ∼ Neg-Bin(ri, pi,k), for τk−1 + 1 ≤ j ≤ τk.

Here, ri governs the amount of over-dispersion, relative to a model, in the ith variate. For a fixed
ri, pi,k then determines the mean of the ith variate following the (k − 1)th changepoint.

Whilst our aim is to jointly detect the number and location of all changepoints, as well as the
variates that are affected at each change, we first introduce and develop theory associated with the
analysis of our approach under the assumption that there is at most one changepoint. This will
subsequently be extended within a binary segmentation algorithm to detect multiple changepoints.

4 SUBSET

4.1 Detecting a Single Changepoint

We begin with a derivation of the test statistic used by SUBSET in the single change setting. The
log-likelihood ratio statistic for detecting a changepoint at time τ , affecting variates in set S, is

R(τ,S) = 2

[∑
i∈S

{
max
µ

τ∑
t=1

log g(yi,t|µ) + max
µ

n∑
t=τ+1

log g(yi,t|µ)−max
µ

n∑
t=1

log g(yi,t|µ)

}]
.

To simplify the notation, let C(yi,s:t) = −2 maxµ
∑t

j=s log g(yi,j |µ), and

Di,t = C(yi,1:n)− C(yi,1:t)− C(yi,t+1:n)

denote the contribution to the log-likelihood ratio statistic from series i if it is assumed to change
at time t. Then

R(τ,S) =
∑
i∈S

Di,τ .

Directly using the log-likelihood test statistic is complicated, due to the fact we do not know τ
or S. In addition, different choices for S will allow for different numbers of variates to change.
We therefore consider a penalised version of the test statistic, where the penalty depends on the
number of variates that change, |S|. We then maximise over possible choices of τ and S. That is,
we use maxt St as our test statistic where, for t = 1, . . . , n− 1,

St = max
S

{∑
i∈S

Di,t − Pen(|S|)

}
,

for some suitable penalty function Pen(·).
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For both theoretical and computational reasons (see Section 4.2 and Section C of the Supplementary
Material respectively), we suggest a piecewise linear penalty of the form

Pen(p) = min{β + αp,K},

for some suitable constants α, β and K. We then detect a change if maxt St > 0, with the location
at τ̂ = arg maxSt and the set of estimated affected variates is given by

arg max
S

{∑
i∈S

Di,τ̂ − Pen(|S|)

}
.

We choose a piecewise linear penalty as this makes the maximisation over S computationally
efficient. In particular, we can define D

′
i,t = max{Di,t − α, 0}, and then

St = max

{
d∑
i=1

D
′
i,t − β,

d∑
i=1

Di,t −K

}
.

The two terms in the maximisation above correspond to the two different linear regimes in the
penalty function. As we shall see the β+αp component of the penalty function, previously consid-
ered by Pickering (2016) as a means of penalising changes across both time and variates, determines
the test statistic’s behaviour for detecting sparse changes. Meanwhile, the constant term, K, is
needed to improve power for detecting dense changes. If ξ = arg maxt

∑d
i=1D

′
i,t − β and Sξ > 0,

then we say that we have detected a sparse change, with evidence for a change only in those variates
i such that D

′
i,ξ > 0. If, however, η = arg maxt

∑d
i=1Di,t −K and Sη > 0, then this is identified as

a dense change and all variates are labelled as affected.

4.2 Theory for a Change in Mean

To understand the behaviour of the test statistic for a single change, and obtain guidelines for
choosing the constants that define our penalty function, we study its theoretical properties for the
canonical change in mean problem with Gaussian noise and a common, known variance, σ2. This
means that Di,t is χ2

1-distributed when no changepoint is present. The results we present are also
useful for choosing the constants of the penalty function in cases where Di,t is based on a likelihood
ratio test for the change of a single parameter, when Di,t would be approximately χ2

1-distributed if
there is no change.

As we are considering just a single change, we will simplify notation so that µi,1 is the initial mean
of series i. If there is a change, µi,2 will be the mean after the change, and µi,1 = µi,2 if i /∈ S1.
Thus, the data-generating model is

Yi,j = εi,j +

{
µi,1 for 1 ≤ j ≤ τ,
µi,2 for τ + 1 ≤ j ≤ n,

for i ∈ {1, . . . , d} (2)

where the εi,j , for i = 1, . . . , d, and j = 1, . . . , n are a set of centered, independent and identically
distributed Gaussian random variables.
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For this particular problem, we have that

C (yi,s:t) =
1

σ2

t∑
j=s

(
yi,j −

1

t− s+ 1

t∑
k=s

yi,k

)2

,

such that

Di,t =
1

σ2

1

t

(
t∑

k=1

yi,k

)2

+
1

n− t

(
n∑

k=t+1

yi,k

)2

− 1

n

(
n∑
k=1

yi,k

)2
 .

We use these expressions to establish false positive and detection probability results in the single
change setting under Gaussian noise when maxt St is taken as the test statistic.

Our first theoretical contribution concerns the false positive rate of the chosen test statistic.

Theorem 4.1. Suppose we are in setting (2), and that in addition µi,1 = µi,2 ∀i and V ar (εi,j) = 1
∀i, j. Take α = 2 log d, β = (J + ε) log n and K = β + d+

√
2βd for some ε > 0; then

P
(

max
t
St > 0

)
≤ Cn1−J

2
−ε/2,

where C is an absolute constant bounded above for all d > 1.

Proof : See Section B of the Supplementary Material.

This result therefore provides guidance on suitable choices of the penalty for the Gaussian setting.
We note that if J ≥ 2 this will provide a test whose false positive rate will tend to 0 as n → ∞.
However the bound on the false positive rate ignores the strong positive correlation in St for different
values of t, and thus will be conservative. As such we suggest using simulation to choose β, and
the corresponding value of K. This can be done for a given value of n and d by simulating multiple
datasets with no change, and setting β to, e.g., the value which gives no detected changes for 95% of
simulated datasets. We note also that Theorem 4.1, under a scenario of no change, uses the marginal
χ2-distribution of Di,t. This suggests that setting α = 2 log d and using a simulation approach to
choose β (and hence K) would work similarly in other settings when the marginal distribution of
Di,t is approximately chi-squared with one degree of freedom. This would be possible, for example,
in the common scenario of detecting a change in a single parameter using a likelihood-ratio test.
Given these penalty choices, we can next state a result on the power of this procedure.

Theorem 4.2. Assume that we are again in setting (2) with σ2 = 1, and now we have that
µi,1 6= µi,2 whenever i ∈ S1 ⊆ {1, . . . , d}. Let ∆i := |µi,2 − µi,1|. Then for 2 > δ > 0 and
a = max{n, d}, we have that P (maxt St > 0) ≥ 1− (a)−δ, providing that, for KS1 := β + |S1|α

nθ (1− θ)
∑
i∈S1

(∆i)
2 ≥ min{VS , VD},

where VS := 4δ log a + KS1 − |S1| + 2
√
δ log a (4δ log a+ 2KS1 − |S1|), VD := 4δ log a + K − d +

2
√
δ log a (4δ log a+ 2K − d) and θ = τ

n .

Proof : See Section B of the Supplementary Material.

The two constants, VS and VD, correspond to the ability of our method to detect either a sparse
change or a dense change; and come from considering the event that our test statistic is positive for
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a penalty that is just α|S1|+β or just K respectively. It is by using a penalty that is the minimum
of these two that gives good performance across both sparse and dense change setting. To see this,
and to help understand the result, consider the behaviour of VS and VD in an asymptotic setting
where n and d increase, with d increasing at a polynomial rate in n, and the number of variates
that change increasing at a polynomial rate in d. In this case we have VS/(2|S1| log d) → 1 and
VD/
√
d log n→ c for some constant c. Thus we have adaption to sparse settings, where VS will be

smaller if |S1| = o(dγ) for some γ < 1/2, and dense settings where VD is smaller if |S1| is O(
√
d) or

larger.

4.3 Relationship to Other Multivariate Changepoint Tests

For the change in mean setting, it is possible to draw strong comparisons between our approach
and other multivariate changepoint tests, the main difference being in terms of how the methods
aggregate evidence for a change across different variates. These alternative approaches use the
CUSUM statistic for each variate within the dataset, defined, in the known σ2 case, as

Wi,t =
1

σ

√
t (n− t)

n

∣∣∣∣∣∣ 1

n− t

 n∑
j=t+1

yi,j

− 1

t

 t∑
j=1

yi,j

∣∣∣∣∣∣ ,
for i = 1, . . . , d and t = 1, . . . , n−1. Note in particular that Di,t = W 2

i,t. Therefore, for the Gaussian
change in mean setting, our test statistic can be expressed in terms of the CUSUM statistic as

St = max

{
d∑
i=1

max{W 2
i,t − α, 0} − β,

d∑
i=1

W 2
i,t −K

}
.

For comparison, three previously proposed test statistics, which we refer to herein as Mean (Groen
et al., 2013), Max (Groen et al., 2013) and Bin-Weight (Cho and Fryzlewicz, 2015) are, respec-
tively

S
(mean)
t =

1

d

d∑
i=1

Wi,t − β, S
(max)
t = max

i
Wi,t − β, S

(bin-weight)
t =

d∑
i=1

Wi,t1 {Wi,t > α} − β.

From the results in Enikeeva and Harchaoui (2019), we know that S
(mean)
t will have high power

for dense changes which affect most series, but lose power for sparse changes where few variates

change. By comparison, S
(max)
t will have higher power in the sparse case and lower power in

the dense case. These can be combined to produce a test with high power across both cases (see
Enikeeva and Harchaoui, 2019, though their proposed method combines different test statistics to
mean and max cusum). The Bin-Weight method is closest to the one that we propose, particularly
if we set α =

√
2 log d, which is equivalent to the threshold we use. Other than using CUSUM

statistics rather than their squares, there are two main differences between Bin-Weight and our
method. The first is that as Wi,t increases its contribution to St will jump from 0 to Wi,t when
it first exceeds the threshold α; by comparison our approach uses a soft-threshold of W 2

i,t, which
avoids such a jump and thus reduces the variability of the test statistic. Second, for a choice of
α =
√

2 log d, Bin-Weight will lose power in dense scenarios compared to our approach which caps
the overall penalty at K.
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4.4 Sparse and Ubiquitous Binary Segmentation in Efficient Time

We here formally introduce SUBSET (Sparse and Ubiquitous Binary Segmentation in Efficient
Time), the full procedure for the use of the test statistic maxt St given in Section 4.1. Given this
thresholded penalty approach, SUBSET is designed to detect both sparse and dense changes, the
latter of which are labelled by SUBSET as affecting all variates within the data.

In order to detect multiple changes within the data, SUBSET embeds the test for detecting a
single changepoint within Wild Binary Segmentation (Fryzlewicz, 2014). When implementing this
procedure, we recommend setting α = 2 log d, keeping the same relationship between β and K, and
then tuning β so that the wild binary segmentation procedure has an appropriate false positive
rate for a given n and d on data simulated with no change.

An issue with SUBSET is that while the estimates of τ̂ tend to be fairly reasonable, when estimating
multiple changes the estimates of Ŝ are prone to error due to masking from other changepoints.
This is especially true for variates for which there may be a particularly strong change at a nearby
time point. For sparse changes, we propose using a post-processing step where we individually
analyse data from each variate conditional on the set of estimated changes, τ̂ = (τ̂1, . . . , τ̂m̂).
When analysing a single variate, we only allow changes to occur within the set τ̂ . We detect the
changes by minimising the univariate version of our penalised cost, that is introducing a change in
a given variate if it reduces the cost by at least α. Formally, for variate i, we find

arg min
0≤m′≤m̂;{ξ1,...,ξm′ }⊆τ̂

m
′
+1∑

k=1

[
C
(
yi,(ξk−1+1):ξk

)
+ α

]
.

This can be done efficiently using dynamic programming. See, for example, Section 2 of Tickle
et al. (2020) for details.

Pseudo-code for the full SUBSET algorithm is provided in Section C of the Supplementary Material.

5 Simulations

We examine the properties of the SUBSET method against the CUSUM aggregation procedures
discussed in Section 4.3. In addition, we compare these methods against Inspect (Wang and
Samworth, 2018), a recent leading approach for detecting changes in mean under Gaussian noise
for high-dimensional series. To implement Inspect, we use code from the InspectChangepoint

package (Wang and Samworth, 2016).

All simulations were run in R using a Linux OS on a 2.3GHz Intel Xeon CPU. We examine multi-
variate series with pairwise independent Gaussian noise with variance 1 and count data generated
according to a negative binomial likelihood model under various different dispersion parameters.
For all scenarios considered, 200 repetitions were simulated. The threshold penalty for Inspect and
the β values for SUBSET and the CUSUM-based methods were computed using simulations from
the null model, such that the false alarm rate was fixed at 5%. For comparability with SUBSET,
the α value for Bin-Weight was taken to be

√
2 log n. For further justification of this choice, see

Wang and Samworth (2018).
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5.1 Gaussian Setting, At Most One Change in Mean

To check the power of the methods in the single change setting we increase ∆, the absolute change
in mean - for each variate in which a change occurs - from 0.01 to 1.00 in increments of 0.01, and
record the proportion of tests which yield a missed change in each case. We do this for n = d = 1000
and for densities of change corresponding to 0.5%, 1%, 5%, 10%, 50% and 100% of the variates
affected by the change.

Figure 3 shows the result of this simulation when the location of the change is at τ = 50, for
each of the densities of change, and for each of the methods under investigation. Qualitatively
similar results were observed for other settings; see, for example, Section B.4 of Tickle (2020). The
performance of different methods can be seen to depend on the proportion of series that change.
For changes which affect a high proportion of variates, the Mean method is best, though SUBSET
is very competitive. The other methods perform substantially worse, which is in keeping with the
theory for these methods, which suggests that they are powerful for sparse changes but lose power
for dense changes. By contrast, when the proportion of series that change is less than 1%, the Mean
method performs poorly. However SUBSET retains high power that is similar to or better than
the competing methods. This is in accordance with Theorem 4.2 which suggested that SUBSET
would have good properties across both sparse and dense change scenarios.

We remark that it is surprising to see Inspect show much lower power than Max, SUBSET and
Bin-Weight for the more sparse changes. We believe this is due to the default choice of tuning
parameter used when performing the sparse projection of the data within the Inspect procedure.
We found that increasing this tuning parameter, which leads to sparser projections, improves the
performance of Inspect in these cases; note, however, that doing this will reduce the power for the
cases where most series change.

We next compare the average location errors of the methods for three scenarios, corresponding to
a very sparse setting (0.5% density of the change, and a change magnitude of ∆ = 0.33), a sparse
setting (5% density and ∆ = 0.33) and a dense setting (50% density and ∆ = 0.1). We again
consider n = d = 1000, as in Figure 3, however we now have τ = 382. The results are shown in
Figure 4. For the two sparsest scenarios, we see that Inspect and SUBSET perform the best, with
peaks correctly centred at the true changepoint. For the densest scenario, SUBSET demonstrates
the best performance, with Mean a close competitor.

The ability of SUBSET to estimate which subset of variates undergoes a change is also of interest.
We examine the performance of SUBSET in determining the affected set in a setting with a small
number of time points (n = 400) and increasing number of variates (d = 200, 400, 800, 1600, 3200
and 6400). Given that the estimated affected set at a change is only returned by SUBSET if the
procedure determines that putative changepoint is sparse, we take a very sparse setting, |S|/d =
0.005. The results of this are shown in Figure 5, which indicates that SUBSET correctly identifies
the affected set in sparse settings for sufficiently large ∆. Figure 5 also indicates that SUBSET
very rarely includes unaffected variates in the estimated affected set, with far fewer than 1% of
unaffected variates being incorrectly labelled in the worst cases, typically for small ∆.
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Figure 3: Type II Error probability (in the single change setting) across a range of values for ∆ between
0.01 and 1 for each of the five methods under investigation for different subset densities of the changepoint,
namely (a) 100%; (b) 10%; (c) 5%; (d) 1%; and (e) 0.5%, keeping the temporal location of the changepoint
fixed at τ = 50 and n = d = 1000. Note that we aim to set the penalties for each method so that P(Type II
Error)→ 0.95 when ∆→ 0.

5.2 Gaussian Setting, Multiple Changes in Mean

We now compare methods for detecting multiple changepoints. We examine five scenarios, which we
label as A, B, C, D and E here, each with three changepoints present. In each case, the changepoints
may be found at times 600, 783 and 926. The only difference between scenarios is the size of each
affected set of variates at each change. Thus, the scenarios imply different affected sets depending
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Figure 4: Estimated locations of the change (in the single change setting) under each of the five methods
(Bin-Weight (black), Inspect (blue), Max (green), Mean (Orange) and SUBSET (red)) for (a) |S|/d = 0.005
and ∆ = 0.33; (b) |S|/d = 0.05 and ∆ = 0.33; and (c) |S|/d = 0.5 and ∆ = 0.1, keeping τ = 382 and
n = d = 1000 in each case. The plots give the estimated densities, obtained using the log-concave density
estimator of Cule et al. (2009), for the change locations based on 200 repetitions under standard Gaussian
noise.

on the value of d. The scenarios are summarised below for d = 1000. Note that we once again fix
σ2 = 1 in all cases.

• A: All three changes affect all variates.

• B: The first and third changes affect all variates; the second change affects 0.5% of variates.

• C: The first and third changes affect 0.5% of variates; the second change affects all variates.

• D: All changes affect 1% of variates.

• E: The first, second and third changes affect 0.5%, 1% and 5% of variates respectively.

Here, we restrict ourselves to examining the power of the methods. Note that we herein define
a ‘missed change’ as being a true changepoint for which the methods do not place an estimated
change within dlog ne points, while a ‘false alarm’ is classed as an estimated changepoint for which
no true changepoint is within dlog ne time points. Note that the choice of a log-tolerance is moti-
vated by classical theory on the localisation of changepoints in the univariate setting (Wang et al.,
2020). Each method was run within wild binary segmentation based on running each test on 1000
random intervals (except for Inspect, for which only 100 intervals were simulated due to the higher
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Figure 5: (a) The proportion of variates in affected set which are correctly identified as having been altered
at the changepoint by SUBSET. (b) The proportion of variates not in the affected set which are correctly
identified by SUBSET as having not been affected by the changepoint. The six scenarios (denoted from
darkest red to lightest red) are d = 200, 400, 800, 1600, 3200 and 6400, with n = 400 and |S|/d = 0.005 in
each case. Both plots are averages from 200 repetitions under standard Gaussian noise.

computational cost). The threshold used to detect changes was chosen such that for data with no
change, each method had a false positive rate of 5%.

Table 1 shows the average number of changes - across 200 repetitions (100 for Inspect, again for
computational reasons) - missed by each of the methods in each of the five scenarios for n = d = 1000
when ∆ = 1 for all variates which undergo a change at any changepoint. As can be seen from
Table 1, the best performing method in many scenarios was SUBSET, giving a low number of
missed changes and false alarms in each case. In other words SUBSET performs well in both sparse
and dense settings, even in cases with multiple changepoints. Only Inspect is competitive, with a
slightly lower average number of missed changes in scenarios B and D, at the expense of a higher
false alarm rate.

In order to suitably assess the performance of SUBSET in the relatively low-dimensional setting of
the Global Terrorism Database, we conclude this section by examining a smaller example. Given
that our treatment of the database involves converting the data to a 12-variate system, the following
simulations involve d = 12. We define scenarios A’ - D’ as analogues to scenarios A - D, in which

• A’: All three changes affect all variates.

• B’: The first and third changes affect all variates; the second change affects the first and
seventh variates.
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Average Number Missed Method
(Average False Alarms)

Scenario SUBSET Mean Max BW Inspect

A 0.00
(0.01)

0.00
(0.03)

0.09
(1.06)

0.00
(10.8)

0.00
(0.32)

B 0.01
(0.01)

0.99
(0.31)

0.25
(1.05)

0.99
(12.5)

0.00
(0.32)

C 0.01
(0.03)

1.98
(0.69)

0.40
(1.21)

1.99
(16.7)

0.41
(0.32)

D 0.10
(0.19)

2.50
(2.62)

0.48
(1.21)

2.97
(24.3)

0.05
(0.42)

E 0.01
(0.05)

1.76
(2.17)

0.43
(1.09)

2.79
(24.3)

0.06
(0.68)

Table 1: The average number of changes missed (and the average number of false alarms incurred) by each
of the methods with n = d = 1000 fixed in all cases and ∆ = 1 for any variate undergoing a change. Each of
the scenarios A, B, C, D and E has 3 changepoints, and the percentage of variates affected by each change in
each scenario is discussed at the beginning of Section 5.2. Bold entries show the best performing algorithm.

• C’: The first and third changes affect only the first and seventh variates; the second change
affects all variates.

• D’: All changes affect only the first and seventh variates.

In addition, we include a “surge” variant of each of these scenarios by adding two additional
changepoints, at τ = 280 and τ = 320, which affect only the third variate. These two changes
collectively form an epidemic change, so that the third variate returns to its original signal value.

Table 2 shows the average number of missed changes and the average number of false alarms under
200 repetitions for each of the methods discussed, for ∆i = 1 at each changepoint - with ∆3 = 5
at the surge changepoints, if present - keeping σ2 = 1 throughout. Once again, n = 1000, and the
definitions of missed change and false alarm are as before, as are the constructions of the penalty
values for each procedure.

We observe from Table 2 that all methods (with the possible exception of Max) do fractionally
worse in the presence of the “surge” segment. However performance remains roughly consistent.
In the case of SUBSET, we see that both the average number of missed changes and the average
number of false alarms incurred remain very low, with only Inspect being a consistent competitor
across all scenarios.

5.3 Negative Binomial Setting

Finally, motivated by problem of detecting changes in the global terrorism data, we consider de-
tecting changes in count data. To allow for over-dispersion relative to a Poisson model, we assume
that each data point is the realisation of a negative binomial random variables. Formally, we have

yi,j ∼ Neg-Bin (ri, pi,k) , for τk−1 + 1 ≤ j ≤ τk (3)
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Average Number Missed Method
(Average False Alarms)

Scenario SUBSET Mean Max BW Inspect

A’, Surge 0.01
(0.10)

0.00
(0.27)

0.18
(0.32)

0.01
(0.07)

0.01
(0.10)

A’, No Surge 0.01
(0.02)

0.00
(0.01)

0.19
(0.26)

0.01
(0.04)

0.01
(0.10)

B’, Surge 0.06
(0.15)

0.38
(0.67)

0.24
(0.36)

0.06
(0.13)

0.06
(0.13)

B’, No Surge 0.06
(0.08)

0.38
(0.41)

0.24
(0.30)

0.07
(0.10)

0.06
(0.13)

C’, Surge 0.17
(0.21)

0.89
(0.99)

0.30
(0.33)

0.27
(0.27)

0.14
(0.18)

C’, No Surge 0.09
(0.10)

0.73
(0.57)

0.31
(0.35)

0.24
(0.20)

0.13
(0.18)

D’, Surge 0.22
(0.26)

1.27
(1.38)

0.37
(0.40)

0.32
(0.32)

0.20
(0.23)

D’, No Surge 0.14
(0.16)

1.10
(0.95)

0.38
(0.41)

0.28
(0.25)

0.19
(0.22)

Table 2: The average number of changes missed (and the average number of false alarms incurred) by each
of the methods with n = 1000 fixed in all cases. Each of the scenarios A’ - D’ are as detailed above. If a
surge a present, there are two additional sparse changes positioned close together which collectively have no
impact on the mean. Bold entries show the best performing algorithm with respect to each measure.
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Scenario A’ B’ C’ D’
Surge No Surge Surge No Surge Surge No Surge Surge No Surge

Over-Dispersion Average Number Missed
(Average False Alarms)

r = 3 0.07
(0.09)

0.06
(0.08)

0.48
(0.24)

0.52
(0.24)

1.04
(0.35)

0.96
(0.36)

1.58
(0.79)

1.59
(0.79)

r = 20 0.00
(0.00)

0.00
(0.00)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.01
(0.01)

0.04
(0.04)

0.04
(0.05)

r = 100 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

Table 3: The average number of changes missed, and the average number of false alarms incurred, by
SUBSET with n = 1000 fixed in all cases, and ∆p = 0.1. Each of the scenarios is detailed in Section 5.2,
and a surge corresponds to a short period with a low p in the third variate only.

for a common unknown over-dispersion parameter, ri and some sequence, (pi,k)
m+1
k=1 , of unknown

success probabilities.

At the time of writing, we believe that our method is the only one which naturally extends to such a
setting, as we can re-define the likelihood ratio test statistic that our procedure is based on so that
it relates to the negative binomial model we are fitting. In particular, we use the likelihood ratio
test statistic for a change in success probability, assuming a common over-dispersion parameter,
with the over-dispersion parameter estimated by a methods of moments estimator (Savani and
Zhigljavsky, 2006). This test is a natural one for detecting changes in the mean of the data. Note
that we use a method of moments estimator, rather than the maximum likelihood estimator, given
the difficulty of computing the latter to appropriate precision in efficient time under a negative
binomial model.

We evaluate the performance of SUBSET for scenarios similar to the low-dimensional examples
discussed in Section 5.2. In the examples here, we take a change in probability of 0.1 at each
variate which is affected at each changepoint. We take three different over-dispersion parameters of
r = 3, 20 and 100, to give a total of twenty-four different experiments, with half of the experiments
including a surge at the same location as in the Gaussian example, in which there is an epidemic
change of size p = 0.1 for the third variate only. The results are shown in Table 3.

We see from Table 3 that SUBSET consistently performs well in the small d settings, with per-
formance improving for larger values of the over-dispersion parameter r and fewer sparse changes
present. Note that in the low r setting, SUBSET misses a significant proportion of sparse changes
if most of the changes are sparse. This suggests that, for those periods of time and geographical re-
gions where the number of terrorist incidents is low, there is a non-trivial probability that SUBSET
will fail to detect changes in the latent probability of a terrorist attack.

6 Detecting Changes in Global Terrorism

We now return to the Global Terrorism Database, and apply SUBSET to detect changes in the
recorded incidence of terrorism events. Of particular interest is whether our method can detect
geographically-localised changes, such as those that have previously been noted in the discussion
in Section 2, as well as changes that affect all series, for example due to changes in how events are
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recorded in the database.

One approach to modelling the terrorism count data might be to adopt a Poisson likelihood, such
that a changepoint corresponds to an alteration in the rate parameter. However, we found that
the data poorly conformed to a Poisson, due to a high degree of over-dispersion, and the use of a
Poisson-based segment cost function led to SUBSET placing a very large number of changepoints.
We therefore model the data for each series as realisations from a negative binomial with changing
‘success’ probability parameter, and apply SUBSET as per the study in Section 5.3.

Figure 6 displays the output of our analysis for the Middle East and North Africa, North America
and Western Europe regions, highlighting the dates of the changes which affect these regions. For
a fuller picture, with all twelve regions displayed, please see Section D.1 of the Supplementary
Material.

Some notable features are apparent. For example, one of the very few dense changes located by
SUBSET (in January 1998) corresponds to an alteration in the data collection method for all
regions. As noted in Section 2, between 1970 and 1997, the Pinkerton Global Intelligence Services
collated the information for the database from international reports in effectively ‘real-time’. From
the beginning of 1998, events were only added to the database retrospectively by the Study of
Terrorism and Responses to Terrorism and the Center for Terrorism and Intelligence Studies. In
addition, the definition of a terrorist event was refined into a set of six criteria, with an event having
to satisfy at least five of the criteria to be included in the database. The overall effect, however,
was an expansion in the definition of what constitutes a terrorist action. In this context, a dense
changepoint is unsurprising. We remark that the Middle East and North Africa region is currently
one of the few regions which is not labelled as affected by the dense change at the beginning of
1998. This is due to the post-processing step within SUBSET.

The other changepoints which affect more than one or two of the series in our analysis are con-
centrated at the end of the 1970s. This again conforms to the general picture discussed by LaFree
and Dugan (2007) and LaFree (2010) and highlighted in Section 2. Eight of the twelve regions are
affected by changepoints between 1975 and 1978, with Central America and the Caribbean and
Western Europe particularly hard-hit by the increase in terrorism during this time period. In the
case of Western Europe, as discussed in Section 2, the change seen in February 1975 appears to
be due to a change of British government policy in Northern Ireland. One possible policy (which
aligns exactly with the changepoint) is the truce between the Provisional IRA and the British
Army, which led to an increase in sectarian violence and subsequent retaliations; see, for example,
Craig (2014) and White (2010). We remark that the dense changepoint in 1998 also aligns closely
to the Good Friday Agreement. Meanwhile, the changes in Central America during the same time
period seemingly can be explained by the appearance of revolutionary groups in the late 1970s.
The activities of these groups waned drastically as countries in the region democratised into the
1990s, a process often referred to in the Central American context as Democratic Consolidation;
see, for example, Berntzen (1993).

Otherwise, as expected, most of the estimated changes are sparse. This corresponds to the com-
mentary found in, for example, LaFree et al. (2014), which asserts that most causes of terrorism
remain localised. For instance, the change in the Middle East and North Africa in early 2013 ap-
pears to correspond to the beginning of the so-called ‘Arab Winter’ (King, 2020; Mihaylov, 2017),
a term which is used to describe the still ongoing re-emergence of significant levels of authoritar-
ianism and extremism following the Arab Spring. Other changes of interest in the series include
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Figure 6: Terrorism incident count per month for the Middle East and North Africa (top), North America
(middle) and Western Europe (bottom) from January 1970 to December 2017. Changes found by the
SUBSET method using a negative binomial cost function are overlaid as dashed vertical lines.

those placed in September 1978 and March 2005. We note that the former date aligns with the
signing of the Camp David Accords. While the Accords did much to stabilise relations between
Israel and Egypt, tensions were also engendered between Egypt and other Arab nations, as well
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as between the Egyptian government and their people (Bani-Salamah et al., 2012; Quandt, 1986,
1988). Indeed, President Anwar Sadat was himself assassinated in 1981. The latter date detected
by SUBSET is around one year before the conclusion of the insurgency in Iraq which degenerated
into sectarian violence in February 2006.

Our analysis of the Global Terrorism Database fundamentally shows that the assertion that ter-
rorist activity remains localised is broadly correct. By distinguishing between sparse and dense
changepoints, SUBSET is able to confirm that most “dense” changepoints in the context of global
terror levels in fact match up to changes in data collection procedures, as well as the fluidity in the
definition of terrorism itself. By contrast, the sparse changes found by SUBSET appear to align
with political events of particular significance in regions of greater tension.
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procedure with application to global terrorism incidence

Supplementary Material

A Preliminary Lemmas

In this section, we establish several lemmas required to prove the central results of the main article
(please see Section B for the main proofs). Our general approach with this section is to establish the
stated results in either the sparse or the dense setting, and then combine these results appropriately
in Section B. Throughout, we repeatedly use the following two lemmas:

Lemma A.1 (Laurent and Massart (2000)). Suppose G ∼ χ2
k. Then for any x > 0

P
(
G ≥ k + 2

√
xk + 2x

)
≤ exp (−x) .

Lemma A.2 (Birgé (2001)). Suppose H ∼ χ2
k(ν). Then for any y > 0

P
(
H ≥ k + ν − 2

√
(k + 2ν)y

)
≥ 1− exp(−y),

and
P
(
H ≥ k + ν + 2

√
(k + 2ν)y + 2y

)
≤ exp(−y).

We now give two results on the Type I error of the SUBSET procedure. Lemma A.3 gives a bound
on the Type I error in the sparse setting, under particular choices for the penalties α and β, and
Lemma A.4 gives an equivalent result in the dense setting, under an additional choice for the dense
penalty K.

Lemma A.3. Suppose we are in the same setting as for Theorem 4.1 of the main article. Let
D
′
i,t, α and β be as defined in Section 4 of the main article. Define S1,t =

∑d
i=1D

′
i,t − β. Let

√
β =

√
2d

Γ( 1
2
,α
2 )

Γ( 1
2)

+ C
√

log n for some constant C, then

P
(

max
t
S1,t > 0

)
≤ n1−C

2

2 exp

(
(1 + ϑ)2

4ϑ

d

exp
(
α
2

)(1 + α)−
1
2

)
, some ϑ,

providing that
γ
(

1
2 ,

α
2

)
Γ
(

1
2

) ≥ ϑ > 0, (4)

and

β > 2d
Γ
(

1
2 ,

α
2

)
Γ
(

1
2

) . (5)

Lemma A.4. Suppose again that we are in the same setting as for Theorem 4.1 of the main article.
Let Di,t and K be defined as in Section 4 of the main article. Define S2,t =

∑d
i=1Di,t−K. Setting

β = (J + ε) log n, α = 2 log d and K = d+
√

2βd+ β gives that

P
(

max
t
S2,t > 0

)
≤ n1− (J+ε)

2 .
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Proof of Lemma A.3: Fix τ . Note if f
D
′
i,τ

(x) is the density function for D
′
i,τ then it is straight-

forward to show that for x > 0, d log f
D
′
i,τ

(x)/dx < −1
2 ; therefore, D

′
i,τ is stochastically dominated

by Ni,τ , where

Ni,τ =

{
0 w.p. pα

Exp
(

1
2

)
w.p. 1− pα,

such that pα = P
(
D
′
i,τ = 0

)
=

γ( 1
2
,α
2 )

Γ( 1
2)

. We define for convenience qα = 1− pα =
Γ( 1

2
,α
2 )

Γ( 1
2)

.

Let Aτ =
∑d

i=1Ni,τ ; then the moment generating function of Aτ is

mAτ (λ) =

(
pα +

qα
1− 2λ

)d
.

We seek the Cramer transform, ψ∗Aτ (r), of Aτ , such that

ψ∗Aτ (r) = sup
λ≥0

{
λr − d log

(
pα +

qα
1− 2λ

)}
;

for λ < 1
2 the supremum is achieved close to λ

′
= 1

2pα
− 1

pα

√
dqα
2r , particularly for large d, and we

can bound the Cramer transform by the value of the argument at λ′. Thus we have

P (Aτ ≥ β) ≤ exp
(
−ψ∗Aτ (β)

)
≤ exp

(
−

(
1

2pα
− 1

pα

√
dqα
2β

)
β

)(
pα

1−
√
βqα2d

)d

≤ exp

− 1

2pα

(√
β − (1 + pα)

√
dqα
2

)2
 exp

(
(1 + pα)2dqα

4pα
+ d log pα

)

≤ exp

(
(1 + ϑ)2

4ϑ
Q

)
exp

(
−1

2

(√
β −

√
2Q
)2
)
,

forQ = dqα, where the penultimate line follows from considering F such that

(
1/pα − 1

pα

√
βqα
2d

)−d
≤

exp(
√
βF ) and performing a Taylor Series expansion, and the final line follows from conditions (4)

and (5).

Let
√
β =
√

2Q+C
√

log n, for some C. We now use the fact that Γ(v,w)
Γ(v) ≤ e

−w (1 + w
v

)v−1
(which

can be shown using Jensen’s Inequality), to assert that qα ≤ e−α/2(1 + α)−1/2, and that therefore

P (Aτ ≥ β) ≤ n−
C2

2 exp

(
(1 + ϑ)2

4ϑ

d

exp
(
α
2

) (1 + α)−
1
2

)
;

performing a Bonferroni correction for the position of τ in the data then gives the stated result. �

Proof of Lemma A.4: In the scenario where there is no true change, the difference in cost
between selecting the point τ as a change (with affected subset S = {1, . . . , d}) and simply finding
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the (correct) null model is

Diff = RSS (y1:n; ∅)− RSS (y1:n; τ ;S)−K
:= W −K,

where here we use the notation RSS(z; ξ; T ) to denote the residual sum of squares of the vector
z enforcing a changepoint at time ξ with affected set T . Note that W ∼ χ2

d. By Lemma A.1, to
establish the result we require K and x such that

K = d+ 2
√
xd+ 2x

exp (−x) = n−
J
2
−ε/2,

giving x = (J + ε) /2 log n = β/2, and consequently K = d+
√

2βd+ β as required. �

We later use these lemmas to establish Theorem 4.1. Before this, we give further results which are
needed in establishing the other result of the main article.

Lemma A.5. Assume that we are in the same setting as for Lemma A.3, except now we have
that µi,1 6= µi,2 whenever i ∈ S ⊆ {1, . . . , d}. For i ∈ S, let ∆i := |µi,2 − µi,1|. Then for δ > 0
and a = max {n, d} a sparse changepoint will be detected by SUBSET with probability greater than
1− (a)−δ, providing that

∑
i∈S

(∆i)
2 ≥

4δ log a+ β + |S| (α− 1) + 2
√
δ log a ((2α− 1)|S|+ 2β + 4δ log a)

nθ (1− θ)
,

where here we have θ = τ
n is fixed strictly between 0 and 1.

Lemma A.6. Assume that we are in the same setting as for Lemma A.5, except with the dense
penalty regime. Then, again with probability greater than 1−a−δ, for 2 > δ > 0 and a = max{n, d},
providing that

d∑
i=1

(∆i)
2 ≥

4δ log a+K − d+ 2
√
δ log a (4δ log a+ 2K − d)

nθ (1− θ)
,

a changepoint will be detected in the dense setting.

Proof of Lemma A.5: Suppose there is a true change at location τ which affects a non-empty,
sparse subset S ⊂ {1, . . . , d} of variates, such that the magnitude of change in variate i is ∆i. We
compare the cost of fitting no change in such a scenario against the cost of fitting the truth; i.e. let

Diff :=
∑
i∈S

Di,τ − β − |S|α,

where Di,τ is as defined in the main article. Note that Di,τ ∼ χ2
1

(
nθ (1− θ) (∆i)

2
)
, so

Diff + β + |S|α ∼ χ2
|S|

(
nθ (1− θ)

∑
i∈S

(∆i)
2

)
.

Therefore, by Lemma A.2, letting γ = nθ(1− θ)
∑

i∈S (∆i)
2

P
(

Diff + β + |S|α ≥ |S|+ γ − 2
√

(|S|+ 2γ) y
)
> 1− exp(−y).
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Note that if Diff > 0 then a changepoint will be detected. Therefore we require that

γ ≥ 4y + β + |S|(α− 1) +
√

4y ((2α− 1)|S|+ 2β + 4y).

We may set y = δ log a, for a = max{n, d}, to give that P (Diff > 0) > 1− a−δ, providing that

∑
i∈S

(∆i)
2 ≥

4δ log a+ β + |S|(α− 1) + 2
√
δ log a ((2α− 1)|S|+ 2β + 4δ log a)

nθ (1− θ)
,

as required. �

Proof of Lemma A.6: When comparing a fit at the true location τ = θn under a total penalty
of K to the null fit, the difference in cost (in favour of the the non-null fit) is distributed as
a non-central chi-squared distribution with d degrees of freedom and non-centrality parameter
nθ (1− θ)

∑d
i=1 (∆i)

2. By Lemma A.2 and the definition of K, we therefore see that setting ν −
2
√
y
√
d+ 2ν ≥ 2

√
dx+ 2x for ν = nθ (1− θ)

∑n
i=1 (∆i)

2 gives that P
(
χ2
d (ν) > K

)
≥ 1− exp (−y).

Resolving the inequality ν − 2
√
y
√
d+ 2ν ≥ 2

√
dx+ 2x gives that

ν ≥ 4y + 2x+ 2
√
xd+ 2

√
y

(
4y +

(√
4x+

√
d
)2
)

; (6)

as x = β/2, and setting y = δ log a, (6) becomes

d∑
i=1

(∆i)
2 ≥

4δ log a+K − d+ 2
√
δ log a (4δ log a+ 2K − d)

nθ (1− θ)
,

as required. �

With these lemmas, we are now in a position to prove the results of the main article.

B Proofs of Main Results

In this section, we combine the preliminary results of Section A to give proofs of the results stated
in the main article.

Proof of Theorem 4.1: From Lemma A.3, letting g (n, d) = d and C =
√
J + %, some % > 0,

gives that α = 2 log d and
√
β =

√
2d

Γ( 1
2
,log d)

Γ( 1
2)

+
√
J + %

√
log n, so that in the sparse setting

P
(

max
t
S1,t > 0

)
≤ n1−J

2
−%/2 exp

(
(1 + ϑ)2

4ϑ

1√
1 + 2 log d

)
,

where here
γ( 1

2
,α
2 )

Γ( 1
2)
≥ ϑ > 0.

28



As we have Γ(s,x)
Γ(s) ≤ e

−x (1 + x
s

)s−1
for 0 < s < 1, we have that

ϑ ≤ 1− 1

d (1 + log d)
1
2

so that, for example, by taking d = 2, we may bound exp
(

(1+ϑ)2

4ϑ
1√

1+2 log d

)
above by an absolute

constant ∀d ≥ 2. For maxt S2,t, we use Lemma A.4, and the result for SUBSET in both settings
follows as St = maxt {S1,t, S2,t}. �

Proof of Theorem 4.2: In the sparse setting, we may directly apply Lemma A.5, while in the
dense setting, we may directly apply Lemma A.6. Note that the condition in Lemma A.5 resolves
to give the required statement by setting KS = β + |S|α. �

C SUBSET Pseudo-Code, Post-Processing and Computational Dis-
cussion

Algorithm 1 gives the pseudo-code of the SUBSET procedure without the post-processing step.

As discussed in Section 4.4 of the main article, a post-processing step is required in the SUBSET
procedure to ensure that masking between different changepoints present in the data do not cause
misspecification in the estimates of the affected sets at each changepoint. We detail this post-
processing procedure in Algorithm 2.

Data: A multivariate dataset, y1:n; an α and C (.) as for Algorithm 1 of the main article; a
set of candidates returned by Algorithm 1 of the main article,
0 = ξ0 < ξ1 < . . . < ξq < ξq+1 = n.

Result: An estimated set of changepoints τ̂1, . . . , τ̂m̂ and corresponding estimated affected
sets Ŝ1, . . . , Ŝm̂.

Step 0: Set Ŝ1 = . . . = Ŝq = ∅, τ̂ = NULL;
for i ∈ {1, . . . , d} do

F = (−α, 0, . . . , 0);
for j ∈ {1, . . . , q + 1} do

F [j + 1] = min
1≤k≤j

[
F [k] + C

(
yi,ξk−1:ξj

)
+ α

]
;

r = arg min
1≤k≤j

[
F [k] + C

(
yi,ξk−1:ξj

)
+ α

]
;

Ŝr−1 = (Ŝr−1, {i})
end

end
for j ∈ {1, . . . , q} do

if Ŝj 6= ∅ then
τ̂ = (τ̂ , ξj)

end

end

Algorithm 2: Post-processing step for the SUBSET procedure.

Note that this procedure, which closely parallels the Optimal Partitioning of Jackson et al. (2005),
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Data: A multivariate dataset, (yi,j)i=1,...,d,j=1,...,n; variate penalty, α; changepoint penalty

function, β; threshold penalty function, K; segment cost function, C (.); an interval number,
M ; a sort function with respect to vector v, ρv (.).

Result: An estimated set of changepoints τ̂1, . . . , τ̂m̂ and corresponding estimated affected sets
Ŝ1, . . . , Ŝm̂.

Step 0: Set l0 = 1, u0 = n, τ̂ = NULL, Ŝ = NULL. for j ∈ {1, . . . ,M} do
rj ∼ U {1, . . . , n}, sj ∼ U {1, . . . , n}, (lj , uj) = (min{rj , sj},max{rj , sj})

end
Step 1: for j ∈ {0, . . . ,M} do

if uj − lj > 1, lj ≥ l0, uj ≤ u0 then
for t ∈ {lj , . . . , uj} do

S1,t =
∑d
i=1 max

{
C
(
yi,lj :uj

)
− C

(
yi,lj :t

)
− C

(
yi,(t+1):uj

)
− α, 0

}
S2,t =

∑d
i=1

{
C
(
yi,lj :uj

)
− C

(
yi,lj :t

)
− C

(
yi,(t+1):uj

)}
St = max {S1,t − β, S2,t −K}

end
if maxt St > 0 then

qj = arg maxSt, Tqj = maxSt
if Sqj = S1,qj − β then
Tqj =

{
i : C

(
yi,lj :uj

)
− C

(
yi,lj :qj

)
− C

(
yi,(qj+1):uj

)
− α > 0

}
else
Tqj = {1, . . . , d}

end

else(
qj , Tqj , Tqj

)
= (NULL, 0, ∅)

end

else(
qj , T jq , Tqj

)
= (NULL, 0, ∅)

end

end

Step 2: Set q =
(
q0, q1, . . . , qM

)
if ||q||0 ≥ 1 then

γ = arg maxj∈{1,...,M+1} Tqj , η = qγ , U = Tη, τ̂ = (τ̂ , η), Ŝ =
(
Ŝ,U

)
τ̂ = ρτ̂ (τ̂ ), Ŝ = ρτ̂

(
Ŝ
)

Return to Step 1 with l0 = l0 and u0 = η, and return to Step 1 with l0 = η + 1 and u0 = u0.
else

If there are no further ‘active’ (l0, u0) intervals, then return τ̂ , Ŝ.
end

Algorithm 1: SUBSET (without post-processing).
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has complexity of O
(
q2d
)
, where q is the number of candidate changepoint locations returned by

SUBSET. Indeed, employing a pruning step as per the PELT procedure of Killick et al. (2012)
results in an expected cost of O (qd). As shown in Tickle et al. (2020), this can be improved
further to a worst-case cost of O (qd) using parallelisation. Therefore, the worst-case computational
complexity of the post-processing step is O (nd).

Given that the SUBSET procedure employs a hybrid of a Wild Binary Segmentation approach, sim-
ulating M intervals at each stage, the worst-case computational cost of SUBSET is not dominated
by the post-processing step, and is O (Mdn log n).

D Additional Material on the Analysis of the Global Terrorism
Database

After running SUBSET through the time series, the estimated changepoints and the corresponding
affected sets of regions were computed. These are shown in Table 4. For an alternative visual-
isation, with the estimated changes for each region superimposed over the raw count data, see
Figure 7. By comparison, Figure 8 shows the results of applying a univariate method (in this case
the minimisation of the same penalised univariate negative binomial cost function using dynamic
programming) to each series individually.

Several salient features of the dataset are revealed by this analysis. Firstly, we note that there are
many similarities between the changes found by the univariate method and SUBSET: for several of
the series (for example, Western Europe), the same number of changepoints are found, with broadly
the same change locations. However, in general, we see that SUBSET is more parsimonious. In
addition, by its nature, changepoints which occur in different series at the same time are more
readily identified by SUBSET. For example, the most dense changepoint (following post-processing)
located using SUBSET is that of January 1998, a month corresponding to a change in the data
collection methods for the GTD for the “GTD2” phase.

Other points of interest found by SUBSET include several “staggered” changepoints at the end of
the 1980s and the beginning of the 1990s, which appear to correspond to the end of the Cold War.
These findings are intuitive in the sense that many countries formerly in the Soviet sphere began
publishing incidents in media outlets available to the investigators compiling the GTD. More recent
changepoints seem to align to significant events in, for example, the Arab Spring uprising and the
conflict in Ukraine.
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Dates Regions

Sep 1971 E.Eu, N.Am, W.Eu
Feb 1975 C.Am & C, M.E. & N.Af, SS.Af, W.Eu
Dec 1977 C.Am & C, E.As, S.Am, SE.As
Sep 1978 C.Am & C, E.As, M.E. & N.Af, S.As, SS.Af
Apr 1980 N.Am, S.Am, W.Eu
Mar 1984 Au & Oc, S.As, SE.As
Jan 1988 E.As, E.Eu, S.As, SS.Af
Mar 1990 E.Eu, M.E. & N.Af
Jan 1991 C.As
Feb 1992 C.Am & C
Jul 1994 N.Am, S.Am
May 1995 M.E. & N.Af
Apr 1996 E.Eu
Jan 1998 Au & Oc, C.Am & C, E.As, N.Am, S.Am, S.As, SS.Af, W.Eu
Mar 1999 C.As
Aug 2003 E.Eu, S.Am, W.Eu
Mar 2005 M.E. & N.Af, S.As, SE.As
Jun 2007 SS.Af
Apr 2008 E.Eu, S.Am
Jul 2011 S.As, SS.Af
Mar 2012 W.Eu
Jan 2013 E.As, M.E. & N.Af, SE.As
Jan 2014 Au & Oc, E.Eu
Sep 2015 E.As, E.Eu, N.Am

Table 4: Changepoints found within the count data of terrorist incidents per month using the
SUBSET procedure. The regions column corresponds to those areas which are said to be affected
by the corresponding changepoint.
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Figure 7: Incident count for each region between 1970 and 2017 with changes found by the SUBSET
method overlaid as red vertical lines.

D.1 SUBSET and the Global Terrorism Database

We now seek to verify the robustness of our findings after applying SUBSET to the Global Terrorism
Database. The most fundamental assumption made by the SUBSET procedure in undertaking this
analysis is that each series corresponding to a given global region has broadly stationary residuals,
with no or low correlation with other regions, up to the location of the changepoints.

Using the changepoint model returned to us by SUBSET in Table 4, we calculate the Pearson
residuals for each geographical region. For each pair or regions we then calculated the correlation
between these residuals, with the results shown in Figure 9. The mean correlation between a pair
of regions is 0.063 to three decimal places.
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Figure 8: Incident count for each region between 1970 and 2017 with changes for individual series
found by a univariate method overlaid as red vertical lines.
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Histogram of Correlations between Regions
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Figure 9: Histogram of correlations between residuals in different regions, corrected for changepoints
located in each series in each case.
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