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Abstract. In-network content caching allows content to be located towards the 
edge of the network, closer to users. This approach addresses the challenge of 
exponentially increasing video traffic. We consider OpenCache: an open-
source, highly configurable, efficient and transparent in-network caching that 
leverages Software Defined Networking (SDN) to benefit last mile 
environments. However, due to its reliance on a centralised OpenCache 
controller and SDN controller, it suffers from three issues: scalability, reliability 
and high availability. In this work, we build on and extend the capabilities of 
OpenCache as a caching solution by leveraging Network Functions 
Virtualisation (NFV) and using a distributed SDN controller. We discuss the 
architectural design and technology decisions for the caching platform 
distribution including the functional components and highlight the role of 
virtualising, orchestrating and managing the key processes of caching content 
and control functions. Our target is to design an open-source, distributed in-
network caching platform that is highly available, reliable and with automated 
elasticity to enable serving the increasing VoD traffic quickly and efficiently. 

Keywords: Video-on-demand (VoD), software defined networking (SDN), 
network functions virtualisation (NFV), open network operating system 
(ONOS), open source MANO (OSM), distributed in-network caching, 
opencache. 

1   Introduction 

Internet video traffic is predicted to increase to 82% of all consumer Internet traffic 
by 2021 [1]. End users expect the best possible quality in the video streaming 
experience. At the same time, high definition (HD) video streaming will continue to 
move to Ultra HD and 3D. Trying to meet the growing demand for Video on Demand 
(VoD) service, where individuals can retrieve previously recorded content at a time 
after it was initially broadcast or made available, and the increasing popularity of HD 
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content, adds a huge burden on the underlying network infrastructure, it has to 
provision delivery throughput in the order of tens of Mbps for just one stream. 
Currently, VoD requests are handled individually, using a unicast content delivery 
paradigm. This means naively ignoring the duplicate independent flow requests for 
the same content from different users at different times. Hence, a very large amount 
of identical contents is delivered on the same network segments repeatedly [2]. 
In order to address this problem, in-network caching service came up, which caches 
the contents locally in the edge networks very close to the end-users. In-network 
caching has been proved to be an efficient solution to improve the efficiency of 
network utilisation and the data retrieval performance.  
The new paradigms of Software Defined Networks (SDN) [3] and Network Functions 
Virtualisation (NFV) [4] have recently redefined the vision of designing, deploying 
and managing networking services. Combined together, they provide network 
managers with a complete, programmatic and flexible control of a dynamic view of 
the network. These paradigms are discussed in Section II. Telecommunications 
providers and over-the-top (OTT) content providers have taken a great interest in 
leveraging on these technologies. In this context, this paper builds on and extends the 
OpenCache capabilities [2], [5] as a distributed SDN/NFV based in-network caching 
as a service (CaaS), focusing on the emerging capabilities of distributed SDN and the 
support of NFV. Our target is to design and implement a distributed in-network 
caching platform that is highly available, reliable and automatically elastic.  
The remainder of the paper is organised as follows. Section II presents the 
background necessary to extend OpenCache as a distributed SDN/NFV based caching 
solution, whilst related work is presented in Section III. Section IV introduces design 
objectives, whereas the distributed OpenCache proposed architecture is described in 
Section V. Features of the proposed architecture are described in Section VI, and 
finally, Section VII concludes the paper and future work. 

2   Background Information 

2.1   Software Defined Networking 
 
Software Defined Networking (SDN) is a very promising networking paradigm that 
facilitates decoupling the control plane in a network from the data plane and provides 
logical centralisation of network control, management and programmability. External 
applications (i.e. OpenCache) are provided centralised network perspective and status, 
and the means to programmatically manage and control the forwarding devices 
functionalities through the SDN controller based on the application profile and user 
demands quickly and cohesively.  
 
Distributed Software Defined Networking. The standard centralised approach for 
SDN is based on a single controller managing all forwarding devices. However, this 
leads to a single point of failure and poses severe limitations to network scalability 
and reliability. Moreover, it may get over-loaded with large number of devices to 
handle, which disrupts the network functionality. Finally, in geographically large 



networks, forwarding devices can be physically very far from the controller. This 
induces large latency in flow modifications due to the propagation delays.  
Distributed SDN controllers overcome all of the above limitations [6]. Multiple 
instances of the controller manage the whole network jointly. The network is divided 
into different sub-domains, each is under the control of one controller instance. 
Distribution of the control functionality increases scalability and improves the 
reliability of the control plane. Furthermore, large networks that suffer from the big 
distance between the controller and the network devices can be handled, because the 
device control is distributed and can be balanced among the controllers, thus 
improving the controller reactivity. 
 
Consistency Mechanisms for Distributed SDN. The main challenge of distributed 
SDN controllers is to guarantee a logical centralised global view of the network state. 
The same global network view must be known at each controller to make correct 
decisions. This behaviour should be transparent to the application layer, and requires 
keeping all the shared data structures synchronised through some consistency 
mechanisms. Some of the main consistency mechanisms that have a direct application 
in SDN networks are eventual consistency and strong consistency [6]. Eventual 
consistency provides a weak form of consistency. This implies that for some time, 
some controllers may read values different from the actual updated ones; but 
eventually after some time, all the controllers will have the updated values. In return, 
this mechanism is employed for superior read/write performance and high 
availability. On the other hand, strong consistency mechanism ensures that when a 
controller updates some data, then no other controller is allowed to read this specific 
data until it gets updated at all (or most of) the other controllers. This implies that 
each controller reads always the most updated version of a data. This mechanism is 
employed in systems that prioritise consistency over high availability. 
 
Design Choices for Distributed SDN. There are two main design choices for 
distributed SDN controllers, namely, hierarchical and flat models [6]. Each model 
distributes the network information among controllers differently. In hierarchical 
model, one (or some) controllers in the cluster have the whole up-to-date global 
network state. This model has hierarchical controls that run from top to bottom among 
controllers. The bottom of the hierarchy contains local controllers that maintain the 
switches in each sub-domain and keep only their respective local network state. 
Meanwhile, the top of the hierarchy contains the root controllers that manage the 
coordination between local controllers. Therefore, local controllers must first query 
network information from the root controllers before they can execute any inter-
domain operation. From the coordination perspective, the number of root controllers 
should be kept minimal; hence, this model tends to be more consistent since fewer 
controllers maintain the global network state. However, this also means that fewer 
backup controllers are available to take over the failed controller. Additionally, SDN 
controllers in this model are divided into two roles (root and local) with different 
capabilities. Due to this difference, the local controller may not be able to take over 
the root controller and vice versa.  
On the other hand, in the flat model, all of the controllers in the cluster are peers and 
have the same privileges and maintain the whole global network state. All of them can 



contact and notify each other directly to construct the global network state. Therefore, 
the flat model is easier to maintain. It has a robust failover mechanism; any controller 
in the cluster can simply take over a failed controller because they are all peers. 
Finally, it ensures fast access to the global topology stored at each controller. 
However, a main issue of this model is the overhead of the all-to-all communications 
between controllers to share the global state. 
The survey in [6] compares between hierarchical and flat models. The hierarchical 
model is more scalable and efficient due to maintaing and synchronising the global 
network state between root controllers only. However, flat model provides a straight 
forward failover mechanism and robustness due to the similar roles of the controllers 
and direct communication between them. Additionally, high performance systems can 
benefit from the flat model, since a global network view is stored locally at each 
controller. 
Two most popular distributed SDN controllers are Open Network Operating System 
(ONOS) [7] and OpenDaylight [8]. ONOS is principally designed for 
telecommunications companies, service providers and carrier networks. It is designed 
to support hybrid networks with a focus on scalability, high availability and 
performance. On the other hand, OpenDaylight is primarily designed for datacenters 
with the capability to support many southbound interfaces that are facing the data 
plane devices to bring legacy network and next generation network together. 
 
Open Networking Operating System (ONOS). Open Networking Operating System 
(ONOS), is a distributed SDN controller that adopts the flat model to achieve a 
logically centralised SDN controller through a replicated state machine model. ONOS 
allows achieving high throughput, low latency, scalability, fault-tolerance and high 
availability. Each ONOS controller in the cluster is responsible of managing the 
switches under its sub-domain, and updating their state on the distributed data stores. 
For reliability reasons, each switch can connect to multiple ONOS controllers, but 
only one will be its master, whereas, the other controllers are standby. The master 
controller has full control over the switch it masters in terms of read/write capabilities 
on the switch forwarding tables. However, the standby controllers only have read 
capabilities on the switches connected to them and could become the new master of 
the switch in case the main master has failed. 
Applications on top of ONOS, can view the whole network topology and may 
read/update the network view to decide on forwarding policies. We mention that there 
are many releases for ONOS. Each one of them provides some new features. 
 
Distributed stores and consistency protocols in ONOS. The distributed data stores 
implement the distributed databases in ONOS. The main ones are the following:  
Mastership store which keeps the mapping between each switch to its master 
controller and it is managed by a strongly consistent protocol, using RAFT consensus 
algorithm [9], A RAFT implementation requires a cluster of nodes (i.e. controllers) 
each having a database (i.e. mastership data store) which is replicated in all nodes. 
There has to be a leader of the cluster for coordinating the consistency between the 
nodes, which is responsible for receiving update requests from all the nodes and then 
relaying database updates to the other nodes. Once the majority of the follower nodes 
have acknowledged the update, this is actually committed. In the case of network 



partitions, only the side with the majority of the nodes will be able to update the 
database, hence avoiding conflicting updates in two different network partitions. In 
ONOS, for scalability issues, multiple instances of RAFT algorithm run 
simultaneously. This implies that the data stores are actually partitioned (sharded) into 
different parts, each of them managed by a different RAFT instance.  
The other main distributed data store is the Network topology store, which describes 
the network topology in terms of switches, links and hosts. It is managed in an 
eventually consistent protocol called anti-entropy, which is based on a simple gossip 
algorithm in which each controller picks at random another controller in the cluster at 
fixed intervals (usually 3-5 seconds), and then sends a message to compare their 
respective topology views. If a controller is aware of newer information that the other 
controller does not have yet, then they exchange that information to update their 
stores. This ensures that all the controllers achieve consensus on the network 
topology, according to an eventually consistent model. This approach quickly detects 
and synchronises a controller that has a slightly drifted state. Moreover, it quickly 
synchronises a new controller that joins the cluster with the rest.  
 
2.2   Network Functions Virtualisation 
 
Network Functions Virtualisation (NFV) is fundamentally changing how network 
services are deployed and managed by providing flexibility, agile service delivery, 
auto-scalability and optimal resource usage. These services are provided over the 
same common infrastructure. The European Telecommunications Standards Institute 
(ETSI) has defined a framework for Network Functions Virtualisation and 
Management and Orchestration Architectures (MANO) [10]. These open-source 
architectures are broadly defined to allow development, extension and testing in 
proprietary ways. Section V explains how OpenCache is mapped to this framework.  
 
The ETSI MANO functional blocks are explained below: 
• VNF: is a functional block representing the Virtualised Network Function 

implemented on commodity hardware.  
• Operation/Business Support System (OSS/BSS): includes collection of operation 

and business applications for operators and service providers that are used to 
provision and operate their network services. This block is not tightly integrated 
into the NFV architectural framework but is expected to work in coordination 
with it. 

• VNF Manager (VNFM): configures and manages single or multiple VNFs’ 
lifecycle (i.e. instantiate, update, query, scale up/down, terminate) on its domain. 
It is responsible for Fault, Configuration, Accounting, Performance and Security 
Management (FCAPS) for the virtual part of the VNF. 

• Network Functions Virtualisation Infrastructure (NFVI): consists of both virtual 
and physical hardware (e.g. compute, storage, and networking) and software 
(e.g. hypervisors) components. Together they provide the infrastructure VNF 
resources.  



• Virtualised Infrastructure Manager (VIM): controls and manages the NFVI 
resources that are usually within one operator's infrastructure domain. There 
may be multiple VIMs in an NFV architecture. 

• Element Management (EM): is not part of the MANO, however it has an 
important role to play. It is responsible for VNFs (FCAPS). The EM collaborates 
with the VNFM to perform those functions. EM is responsible for the FCAPS 
for the functional part of the VNF opposed to VNFM, which also manages the 
FCAPS of the VNF but only for the virtual part (e.g. reporting an issue with 
spinning up a VNF). 

• Network Function Virtualisation Orchestrator (NFVO): has two primary goals; 
the first goal is to manage and coordinate NFVI resources across multiple VIMs. 
The second goal is to manage and coordinate the lifecycle of network services 
(i.e. create, update, query, delete) across multiple VNFMs. NFVO achieves its 
first goal by a sub component called resource orchestrator (RO), which is 
responsible of the coordination, authorisation, allocation and de-allocation of 
NFVI resources by communicating with the VIMs through their north bound 
APIs. To achieve the second goal of the NFVO, it uses a sub component called 
the Network Service Orchestrator (NSO), which creates end-to-end service 
between different VNFs that may be managed by possibly different VNFMs and 
coordinates groups of VNF instances that jointly realise more complex network 
functions (also called VNF Forwarding Graphs). 

Authors in [11] compare between several NFV MANO projects. However, OSM [12], 
is an open source NFV MANO platform that is considered as the reference 
implementation for the NFV MANO since it is hosted by ETSI and aligned with its 
information models to meet the requirements of production NFV.  

3   Related Work 

OTT content providers (e.g. Youtube) rely on Content Delivery Networks (CDN) for 
content delivery, which provide a series of large number of cache server mirrors with 
global coverage, in order to push content to the edges of the Internet to ensure low 
latency. However, CDNs do not reduce the bandwidth utilisation on edge networks, as 
multiple duplicate flows of the same request will be created and traverse the external 
link to reach to the CDN. Recent reports [1] show that 77 % of all Internet video 
traffic will cross CDNs by 2021, compared to 67 % in 2016; this traffic can be 
reduced by deploying in-network caching. Therefore, OTT providers have started to 
deploy and remotely manage edge caching servers in telecommunication operators’ 
networks [13]. Indeed, deploying in-network caching service that is more flexible, 
configurable and located closer to the end-users, would complement CDNs and truly 
benefit edge networks by reducing the external bandwidth and the load from the 
CDNs, and increasing the QoS for the end-users. 
OpenCache [2, 5] is an open-source, highly configurable, efficient and transparent in-
network HTTP caching service that leverages SDN technology, and supports the 
ETSI NFV MANO framework. It aims to improve the VoD distribution efficiency, 
network utilisation and increase the Quality of Experience (QoE) for the end-user, by 
caching video assets as close to the end-user as possible. OpenCache has three entities 



namely, OpenCache Controller (OCC), OpenCache Node (OCN) and a key-value 
store. Network operators and service providers can program the desired caching 
behaviour on the OCC which communicates with the SDN controller and OCNs via a 
JSON-RPC interface. OCC instructs the SDN controller to add the matching 
redirecting rules for the cacheable content in the flow tables of the switches to redirect 
the user's packets appropriately to the closest OCN. OCN caches video content, so 
when it receives a request for accessing the cached video from a user, it delivers the 
video content to the user directly if there is a cache-hit; otherwise, the OCN requests 
the video from the original VoD server. The key-value store acts as a database, which 
records the metadata and caching state of user requests and video content. As a result 
of caching the contents very close to the user, the following benefits arise: the 
external link usage gets reduced 100%; it helps also in reducing the load from the 
VoD content provider and all transient networks along the path to the end-user. 
Additionally, end-users can experience higher QoE [2].  
The in-network SDN based solutions presented in [2], [5], [14], [15], [16] lack for 
scalability, high availability, reliability and elasticity of the caching control plane due 
to relying on a centralised cache controller that would not be able to scale with the 
increasing VoD requests. It is a single point of failure that would disrupt the caching 
service if it fails and negatively reflect on the service availability. The work in [15], 
additionally doesn’t leverage the NFV capabilities. 

4   Design Objectives 

Our objective is to extend the current OpenCache design [2], [5] to overcome the 
limitations mentioned above. We will present a distributed in-network caching 
architecture with multiple OCCs that are physically distributed but logically 
centralised by leveraging distributed SDN controllers to achieve high availability, 
elasticity and reliability even under heavy VoD requests. Moreover, this architecture 
is associated with NFV MANO platform, where caching functions become software 
applications (VNFs) leading to flexibility and agile service delivery. We choose 
ONOS as the distributed SDN controller because it is designed to provide high 
performance, high availability, reliability and scalability. These features are important 
to meet the exponentially growing VoD requests. On the other hand, we choose OSM 
as the NFV MANO because it is hosted by ETSI and considered as the reference 
implementation for the NFV MANO that meets the requirements of production NFV. 
Therefore, we expect that the proposed architecture provides support for high 
availability, reliability, elasticity and automation of end-to-end cache service delivery.  

5   Distributed OpenCache Proposed Architecture 

Considering the aforementioned objectives described above, first, we will describe 
how OpenCache is associated with the NFV MANO framework. Then, we will 
present the distributed OpenCache architecture.  
Fig. 1. identifies how the functional components of the ETSI NFV framework are 
adapted for OpenCache as detailed as follows.  



OpenCache main functional blocks are represented as VNFs, which are the Virtual 
OpenCache Controller (vOCC), Virtual OpenCache Node (vOCN), Virtual Backup 
Store and Virtual Load Balancer. VOCC has the main role in the functional lifecycle 
management and orchestration of the vOCNs because it has all of the required details 
of the caching process. It is responsible for controlling, querying, dynamically 
configuring and automatically scaling up/down the vOCNs.  However, vOCC 
delegates the heavy lifting of creation and deletion of the VNFs to the VNFM. The 
aforementioned VNFs constitute a VNF forwarding graph that is created, coordinated 
and managed by the NFVO based on the network operator policies. It manages the 
lifecycle of the NFVI corresponding resources (possibly across multiple VIMs). Then 
the VNFM instantiates the services with respect to the policies that define the VNF 
graph.    

 
 

Fig. 1. OpenCache mapped to ETSI NFV framework 

The proposed distributed OpenCache architecture that leverages SDN/NFV and 
constituent layers are illustrated in Fig. 2. 
 
The top of this architecture is the application layer. It is responsible for defining the 
behaviour of the caches. This is where third-party developers will interact with the 
whole deployment through the controller API. This ensures a separation between 
OpenCache functionality and the cache behaviour. 

 
 



 

Fig. 2. OpenCache architecture 
 
 
Then there is the orchestration and network control layer that is responsible for 
orchestrating the service and network redirection layers, and manages the underlying 
network. It includes the NFV MANO (i.e. OSM) and the SDN controllers (i.e. 
ONOS).  
 
Below the application layer, is the service layer; this is where the core functionality of 
OpenCache lies. It contains two sub layers namely, caching control layer and caching 
layer. The caching control layer consists of multiple physically distributed but 
logically centralised controllers. It is responsible for the behaviour of all of its 
connected caching nodes. Furthermore, the caching controllers interact with the NFV 
MANO and SDN controllers, in order to provide flexible resource allocation and 
network forwarding. On the other hand, the caching layer typically consists of a 
number of caching services, running across multiple distributed cache nodes, which 
directly serve content in response to user requests. Caching node can host multiple 
services simultaneously, each of which is responsible for delivering a unique set of 
content to the client. OpenCache controllers and nodes can run on dedicated physical 
resources, or virtualised ones that are managed by the aforementioned NFV MANO.  
 
Elasticity of services and resource consumption is critical. Therefore, there is a 
monitoring and load balancing entity for the caching control and the caching layer. 
This entity is responsible for monitoring the services and resources periodically and 
taking actions based on some thresholds and criteria in order to scale them up/down. 
If the monitoring and load balancing entity needs to add or remove resources, then it 
communicates with the MANO.  



Reliability is a key feature too, so there is a backup server that is used by the caching 
control layer and the caching layer. The backup server stores the whole caching meta-
data, state and topology, it periodically refreshes them so that any needed information 
could be restored back from this backup server. This server also needs to be backed 
up for more reliability. It provides additional reliability besides the reliability and 
failover mechanisms provided by ONOS.  
 
The final and lowest layer is the network redirection layer. It redirects user requests 
for content towards the suitable caching nodes instead of the original VoD server. 
This is managed and modified by the SDN controller.  
 
To achieve our proposed objectives mentioned in Section IV, OCCs and OCNs rely on 
the distributed SDN controller ONOS.  They are implemented as ONOS applications 
to leverage its capabilities offered as follows: 

 
•  Mapping between OCCs and OCNs is based on the mastership mapping 

between ONOS controllers and the switches that connect these OCNs as 
illustrated in Fig. 3. Each switch is controlled by a single master ONOS 
controller and can be connected to other standby controllers that can takeover 
if the master fails. Fig. 3, illustrates a scenario of 3 ONOS controllers that have 
OCC running on top, and there are 4 switches connected to these controllers. 
The solid line depicts that a switch is mastered by the connected controller, 
whereas the dashed line depicts that a switch is connected to standby 
controllers. OCC is an ONOS application that is aware of the switches 
mastered by the hosting ONOS controller.  Therefore, it controls the OCNs 
connected to these switches. According to the scenario in Fig. 3., OCC (A) 
controls OCN 1, 2 and 3. OCC (B) controls OCN 4 and OCC (C) controls 
OCN 5. When the mastership relation changes either due to failover 
mechanism or load balancing, this reflects on the mapping between the OCC 
and OCNs as shown in Fig. 4. In this scenario, OCC (A) fails, so switch 1 and 
switch 2 fall back to the corresponding standby controllers, which will be their 
new masters. 
 

• Fault-tolerance is one of the main features of ONOS. Once an ONOS controller 
failure is detected, then a new backup controller is selected which has a 
running OpenCache application to resume the work of the failed one. 
 

• Accessing the global network state locally which is built by ONOS. 
 

• Distributed primitives for managing distributed state are offered for ONOS 
application developers which enable creating different instances to manage 
their application state. They provide high availability, scalability and durability 
by offering strong and eventual consistencies.  
 

 



• Leveraging the clustering capability that enables defining and grouping multiple 
ONOS instances in a cluster which are aware of the others and can 
communicate with them directly. Additionally, when an application is 
activated in one instance, this reflects on all other instances in the cluster 
automatically. This gives a great benefit of separating the caching control layer 
and the caching layer into two separate clusters, each with its own 
functionalities. 

 
Fig. 3. Mapping OCCs to OCNs depends on masterships between ONOS controllers and 
switches 
 
 
 
 
 
 
 
 
 

Fig. 4. Mastership changes due to ONOS controller failure or load balancing is reflected on 
the mapping between OCCs and OCNs 

 



6   Features of the Proposed System  

The synchronisation in this distributed architecture is achieved by sharing two types 
of data representations, namely, caching view and caching control state. 
Caching view is a representation that depicts essential information about the existing 
OCCs, OCNs, mapping between them and a list of the services stored at each OCN. 
This information is important to be correct and consistent between all OCCs because 
it will be exposed to third-party application layer on top of them. So, it should be 
strongly consisted between OCCs to give these applications more freedom to connect 
to any OCC.  
On the other hand, Caching control state is a detailed representation that contains all 
of the information related to caching control such as the user requests, responses, 
notifications, connected OCNs, contents ... etc. This caching control state is different 
at each OCC based on its sub-domain. The caching control state is eventually 
consistent between the OCC and its backups and uses the anti-entropy protocol for 
synchronisation. Likewise, OCNs need to synchronise their own caching states that 
contain all of the caching nodes related details.    
The distributed architecture would have the following features: 
 
6.1   Reliability 
 
The flat model has an advantage in terms of robust failover mechanism because all 
OCCs have the same role and privileges, so any OCC in the cluster can simply take 
over a failed peer. Each OCC maintains its own caching control state based on its 
connections to OCNs. It has to periodically share its caching control state with its 
backup before the failure actually happens. In order to reduce the resource 
consumption (i.e. bandwidth, compute and storage), a single backup controller at least 
would be selected to share the caching state with. However, the degree of reliability 
(number of backup controllers) that share the caching state can be tuned based on the 
available resources. If ONOS did not fall back to the intended and expected backup 
controller(s) when a failure happens, this means that the new selected backup 
controller doesn’t have a copy of the caching state of the failed controller, and it 
needs to retrieve this information from the dedicated backup server. Therefore, each 
controller sends a copy of its caching state to its backup controllers and another copy 
to the backup server too. This is shared in an eventually consistent fashion with anti-
entropy synchronisation. Similarly, OCNs share their caching states with their 
backups. However, the backup nodes selection priority is based on the closeness to 
the node itself. OCNs also share the actual cached content.  
 
6.2   Automated Elasticity 
 
A monitoring and load balancing service is responsible for monitoring all of the 
OCCs without involving a man in the middle. It takes actions of load balancing if 
some thresholds (i.e. CPU, requests throughput) have been exceeded which indicate 
overloaded resource consumption. Load balancer will migrate caching nodes 
afterwards. If all backup controllers cannot handle the overload, then the load 
balancer needs to ask the VNFM to add a new vOCC to the caching control layer. The 



new controller synchronises with other controllers by getting a copy of the global 
caching view and the caching control state of the nodes that will be migrated to it 
from the backup server. Additionally, monitoring and load balancing service is 
responsible for scaling down the control plane. So, when the controllers are 
underutilised, then it asks the VNFM to remove some controllers to reduce resource 
consumption.   Similarly, caching nodes have the same elasticity feature but with the 
consideration of the original cache placement.  
 
6.3   High Availability 
 
The flat model redundancy offered by ONOS and the backup servers provide 
reliability and robustness that reduces the service disruption time in case of failures. 
Moreover, the load balancer collaborates with the VNFM to balance the load between 
the available resources and add/remove them as necessary to try avoiding service 
disruption due to overloaded resources. All of this lead to a highly available service. 
Additionally, since all OCCs are peers, then applications have the freedom to connect 
to any OCC.  

7   Conclusion and Future Work 

In this work, we proposed a distributed SDN/NFV based in-network content caching 
architecture as an extension to OpenCache, to overcome the main issues that it suffers 
from: scalability, reliability and high availability. We discussed the architectural 
design and technology decisions that we made for the caching platform distribution 
and functional components. We highlighted the role of the distributed SDN and NFV 
in virtualising, orchestrating and managing the key processes and control functions. 
Further, we presented the features of our platform design. The proposed platform is an 
open-source, distributed in-network caching that is expected to be highly available, 
reliable and with automated elasticity to enable serving the increasing VoD traffic 
quickly and efficiently. This work is still in the initial stages and under development, 
so in our future work, we plan to analyse the performance and measure the gains of 
the distributed platform opposed to the original non-distributed OpenCache. Several 
features would be examined and different QoE metrics would be evaluated. For 
example, the scalability of the distributed architecture would be measured by the 
increase in the VoD requests throughput. Whereas the effect of the failover 
mechanism would be measured by the response latency and buffer occupancy at the 
client side. Additionally, the placement of the OCCs and OCNs could be examined to 
measure its impact on the response latency and bitrate.   
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