February 2, 2008 7:25 WSPC/INSTRUCTION FILE meson-dsj

International Journal of Modern Physics A
© World Scientific Publishing Company

Understanding open-charm mesons

J. Vijande^{1,2}, F. Fernández¹, A. Valcarce¹.

¹ Grupo de Física Nuclear and IUFFyM, Universidad de Salamanca, E-37008 Salamanca, Spain
² Dpto. de Física Teórica and IFIC, Universidad de Valencia - CSIC, E-46100 Burjassot,
Valencia, Spain

We present a theoretical framework that accounts for the new D_J and D_{sJ} mesons measured in the open-charm sector. These resonances are properly described if considered as a mixture of conventional P-wave quark-antiquark states and four-quark components. The narrowest states are basically P-wave quark-antiquark mesons, while the dominantly four-quark states are shifted above the corresponding two-meson threshold. We study the electromagnetic decay widths as basic tools to scrutiny their nature.

During the last few years, heavy meson spectroscopy is living a continuous excitation due to the discovery of several new charmed mesons. Three years ago BABAR Collaboration reported the observation of a charm-strange state, the $D_{sJ}^*(2317)^1$, that was later on confirmed by CLEO² and Belle Collaborations³. Besides, BABAR had also pointed out to the existence of another charm-strange meson, the $D_{sJ}(2460)^1$. This resonance was measured by CLEO² and confirmed by Belle³. Belle results are consistent with the assignments of $J^P = 0^+$ for the $D_{sJ}^*(2317)$ and $J^P = 1^+$ for the $D_{sJ}(2460)$. However, although these states are well established, they present unexpected properties quite different from those predicted by quark potential models. If they would correspond to standard P-wave mesons made of a charm quark, c, and a strange antiquark, \bar{s} , their masses would be larger, around 2.48 GeV for the $D_{sJ}^*(2317)$ and 2.55 GeV for the $D_{sJ}(2460)$. They would be therefore above the DK and D^*K thresholds, respectively, being broad resonances. However the states observed by BABAR and CLEO are very narrow, $\Gamma < 4.6$ MeV for the $D_{sJ}^*(2317)$ and $\Gamma < 5.5$ MeV for the $D_{sJ}(2460)$.

The intriguing situation of the charm-strange mesons has been translated to the nonstrange sector with the Belle observation⁴ of a nonstrange broad scalar resonance, D_0^* , with a mass of $2308 \pm 17 \pm 15 \pm 28 \text{ MeV/c}^2$ and a width $\Gamma = 276 \pm 21 \pm 18 \pm 60 \text{ MeV}$. A state with similar properties has been suggested by FOCUS Collaboration at Fermilab⁵ during the measurement of masses and widths of excited charm mesons D_2^* . This state generates for the open-charm nonstrange mesons a very similar problem to the one arising in the strange sector with the $D_{sJ}^*(2317)$. If the $D_0^*(2308)$ would correspond to a standard P-wave meson made of a charm

^{*}E-mail address: javier.vijande@uv.es

2 J. Vijande

Table 1. $c\overline{s}$ and $c\overline{n}$ masses (QM), in MeV. Experimental data (Exp.) are taken from Ref.⁹, except for the state denoted by a dagger that has been taken from Ref.⁴.

$nL J^P$	State	$QM(c\overline{s})$	Exp.	State	$QM(c\overline{n})$	Exp.
$1S \ 0^{-}$	D_s	1981	1968.5 ± 0.6	D	1883	1867.7 ± 0.5
$1S \ 1^{-}$	D_s^*	2112	2112.4 ± 0.7	D^*	2010	2008.9 ± 0.5
$1P \ 0^{+}$	$D_{s,I}^*(2317)$	2489	2317.4 ± 0.9	$D_0^*(2308)$	2465	$2308\pm17\pm15\pm28^{\dagger}$
$1P \ 1^{+}$	$D_{sJ}(2460)$	2578	2459.3 ± 1.3	$D_1(2420)$	2450	2422.2 ± 1.8
$1P \ 1^{+}$	$D_{s1}(2536)$	2543	2535.3 ± 0.6	$D_1^0(2430)$	2546	$2427 \pm 26 \pm 25$
$1P \ 2^{+}$	$D_{s2}(2573)$	2582	$2572.4{\pm}1.5$	$D_2^*(2460)$	2496	2459 ± 4

quark, c, and a light antiquark, \overline{n} , its mass would have to be larger, around 2.46 GeV. In this case, the quark potential models prediction and the measured resonance are both above the $D\pi$ threshold, the large width observed being expected although not its low mass.

The difficulties to identify the D_J and D_{sJ} states with conventional $c\overline{n}$ mesons are rather similar to those appearing in the light-scalar meson sector⁶ and may be indicating that other configurations are playing a role. $q\overline{q}$ states are more easily identified with physical hadrons when virtual quark loops are not important. This is the case of the pseudoscalar and vector mesons, mainly due to the P-wave nature of this hadronic dressing. On the contrary, in the scalar sector is the $q\overline{q}$ pair the one in a P-wave state, whereas quark loops may be in a S-wave. In this case the intermediate hadronic states that are created may play a crucial role in the composition of the resonance, in other words unquenching is important. This has been shown to be relevant for the proper description of the low-lying scalar mesons⁷.

In this work we have explored the same ideas for the understanding of the properties of the D_J and D_{sJ} meson states. In non-relativistic quark models the wave function of a zero baryon number (B=0) hadron may be written as $|{\bf B}=0\rangle=\Omega_1\,|q\bar{q}\rangle+\Omega_2\,|qq\bar{q}\bar{q}\rangle+...$ where q stands for quark degrees of freedom and the coefficients Ω_i take into account the mixing of four- and two-quark states. The hamiltonian considering the mixing between both configurations could be described using the 3P_0 model, however, since this model depends on the vertex parameter, we prefer in a first approximation to parametrize this coefficient by looking to the quark pair that is annihilated and not to the spectator quarks that will form the final $q\bar{q}$ state. Therefore we have taken $V_{q\bar{q}\to qq\bar{q}\bar{q}}=\gamma$. Further details about the formalism and the constituent quark model used are given in Refs. ^{7,8}.

A thoroughly study of the full meson spectra has been presented in Ref.⁸. The results for the open-charm mesons are resumed in Table 1. It can be seen how the open-charm states are easily identified with standard $c\overline{n}$ mesons except for the cases of the $D_{sJ}^*(2317)$, the $D_{sJ}(2460)$, and the $D_0^*(2308)$. This is a common behavior of almost all quark potential model calculations¹⁰. In a similar manner, quenched lattice NRQCD predicts for the $D_{sJ}^*(2317)$ a mass of 2.44 GeV¹¹, while using relativistic charm quarks the mass obtained is 2.47 GeV¹². Unquenched lattice QCD calculations of $c\overline{s}$ states do not find a window for the $D_{sJ}^*(2317)^6$, supporting the difficulty of a P-wave $c\overline{s}$ interpretation.

Table 2. Probabilities (P), in %, of the wave function components and masses (QM), in MeV, of the open-charm mesons once the mixing between $q\bar{q}$ and $qq\bar{q}\bar{q}$ configurations is considered. Experimental data are taken from Ref.⁹ except for the state denoted by a dagger that has been taken from Ref.⁴.

I = 0					I = 1/2	
$J^{P} = 0^{+}$		$J^P = 1^+$			$J^P = 0^+$	
QM	2339	QM	2421	2555	QM	2241
Exp.	2317.4 ± 0.9	Exp.	2459.3 ± 1.3	2535.3 ± 0.6	Exp.	$2308\pm17\pm15\pm28^{\dagger}$
$P(cn\bar{s}\bar{n})$	28	$P(cn\bar{s}\bar{n})$	25	~ 1	$P(cn\bar{n}\bar{n})$	46
$P(c\bar{s}_{1^3P})$	71	$P(c\bar{s}_{1^1P})$	74	~ 1	$P(c\bar{n}_{1P})$	53
$P(c\bar{s}_{2^3P})$	~ 1	$P(c\bar{s}_{1^3P})$	~ 1	98	$P(c\bar{n}_{2P})$	~ 1

Using for the qq interaction the parametrization of Ref.⁷, the results obtained for the $cn\bar{s}\bar{n}$ configuration are 2731 and 2699 MeV for the $J^P=0^+$ with I=0 and I=1, and 2841 and 2793 MeV for the $J^P=1^+$ with I=0 and I=1. For the $cn\bar{n}\bar{n}$ configuration with I=1/2 the energy is 2505 MeV. The I=1 and I=0 states are far above the corresponding strong decaying thresholds and therefore should be broad, what rules out a pure four-quark interpretation of the new open-charm mesons.

As outlined above, for P-wave mesons the hadronic dressing is in a S-wave, thus physical states may correspond to a mixing of two- and four-body configurations. In the isoscalar sector, the $cn\bar{s}\bar{n}$ and $c\bar{s}$ states get mixed, as it happens with $cn\bar{n}\bar{n}$ and $c\bar{n}$ for the I=1/2 case. The parameter γ has been fixed to reproduce the mass of the $D_{sJ}^*(2317)$ meson, $\gamma=240$ MeV. The results obtained are shown in Table 2. Let us first analyze the nonstrange sector. The 3P_0 $c\bar{n}$ pair and the $cn\bar{n}\bar{n}$ have a mass of 2465 MeV and 2505 MeV, respectively. Once the mixing is considered one obtains a state at 2241 MeV with 46% of four-quark component and 53% of $c\bar{n}$ pair. The lowest state, representing the $D_0^*(2308)$, is above the isospin preserving threshold $D\pi$, being broad as observed experimentally. The mixed configuration compares much better with the experimental data than the pure $c\bar{n}$ state. The orthogonal state appears higher in energy, at 2713 MeV, with and important four-quark component.

Concerning the strange sector, the $D_{sJ}^*(2317)$ and the $D_{sJ}(2460)$ are dominantly $c\bar{s}$ $J=0^+$ and $J=1^+$ states, respectively, with almost 30% of four-quark component. Such component is responsible for the shift of the mass of the unmixed states to the experimental values below the DK and D^*K thresholds. Being both states below their isospin-preserving two-meson threshold, the only allowed strong decays to $D_s^*\pi$ would violate isospin and are expected to have small widths O(10) keV^{13,14}. As a consequence, they should be narrower than the $D_{s2}(2573)$ and $D_{s1}(2536)$, opposite to what it is expected from heavy quark symmetry. The second isoscalar $J^P=1^+$ state, with an energy of 2555 MeV and 98% of $c\bar{s}$ component, corresponds to the $D_{s1}(2536)$. Regarding the $D_{sJ}^*(2317)$, it has been argued that a possible DK molecule would be preferred with respect to an I=0 $cn\bar{s}\bar{n}$ tetraquark, what would anticipate an I=1 $cn\bar{s}\bar{n}$ partner nearby in mass¹⁵. Our results confirm the last argument, the vicinity of the isoscalar and isovector tetraquarks, however, the re-

4 J. Vijande

Table 3. Electromagnetic decay widths, in keV, for the $D_{sJ}^*(2317)$ and $D_{sJ}(2460)$ (QM), compared to the results of two different quark models based only on $q\overline{q}$ states. To compare with the experimental data by CLEO and Belle we have assumed for $\Gamma(D_s^{*+}\pi^0) \approx \Gamma(D_s^{+}\pi^0) \approx 10$ keV as estimated in Ref. ¹⁴.

	Quark models			Experiments	
Transition	QM	$Ref.^{13}$	$Ref.^{14}$	$CLEO^2$	Belle^3
$D_{sJ}^*(2317) \to D_s^{*+} \gamma$	1.6	1.74	1.9	< 0.59	< 1.8
$D_{sJ}(2460) \to D_s^{*+} \gamma$	0.06	4.66	5.5	< 1.6	< 3.1
$D_{sJ}(2460) \to D_s^+ \gamma$	6.7	5.08	6.2	< 4.9	$5.5{\pm}1.3{\pm}0.8$

stricted coupling to the $c\bar{s}$ system allowed only for the I=0 four-quark states opens the possibility of a mixed nature for the $D_{sJ}^*(2317)$ while the I=1 $J=0^+$ and $J=1^+$ four-quark states appear above 2700 MeV and cannot be shifted to lower energies.

Apart from the masses, the structure of the $D_{sJ}^*(2317)$ and the $D_{sJ}(2460)$ mesons could be scrutinied also through the study of their electromagnetic decay widths. We compare in Table 3 our results with different theoretical approaches and the experimental limits reported by Belle and CLEO. The main difference is noticed in the suppression predicted for the $D_{sJ}(2460) \to D_s^{*+}\gamma$ decay as compared to the $D_{sJ}(2460) \to D_s^{*+}\gamma$. A ratio $D_{sJ}(2460) \to D_s^{*+}\gamma/D_{sJ}(2460) \to D_s^{*+}\gamma \approx 1-2$ has been obtained assuming a $q\bar{q}$ structure for both states 13.14 (what seems incompatible with their properties). We find a larger value, $D_{sJ}(2460) \to D_s^{*+}\gamma/D_{sJ}(2460) \to D_s^{*+}\gamma$ ≈ 100 , due to the small 1^3P_1 $c\bar{s}$ probability of the $D_{sJ}(2460)$. A similar enhancement has been obtained in Ref. 16 in the framework of light-cone QCD sum rules.

This work has been partially funded by Ministerio de Ciencia y Tecnología under Contract No. FPA2004-05616, by Junta de Castilla y León under Contract No. SA-104/04, and by Generalitat Valenciana under Contract No. GV05/276.

References

- 1. B. Aubert et al., [BABAR Collaboration], Phys. Rev. Lett. 90, 242001 (2003).
- 2. D. Besson et al., [CLEO Collaboration], Phys. Rev. D 68, 032002 (2003).
- 3. Y. Mikani et al., [Belle Collaboration], Phys. Rev. Lett. 92, 012002 (2004).
- 4. K. Abe et al., [Belle Collaboration], Phys. Rev. D 69, 112002 (2004).
- 5. J.M. Link et al., [FOCUS Collaboration], Phys. Lett. B 586, 11 (2004).
- 6. G.S. Bali, Phys. Rev. D 68, 071501(R) (2003).
- 7. J. Vijande et al., Phys. Rev. D 72, 034025 (2005).
- 8. J. Vijande, F. Fernández, and A. Valcarce, J. Phys. G 19, 2013 (2005).
- 9. S. Eidelman et al., Phys. Lett. B **592**, 1 (2004).
- 10. S. Godfrey and R. Kokoski, Phys. Rev. D 43, 1679 (1991).
- 11. J. Hein et al., Phys. Rev. D 62, 074503 (2000).
- 12. P. Boyle, [UKQCD Collaboration], Nucl. Phys. B (Proc. Supp.) 63, 314 (1998).
- 13. W.A. Bardeen, E.J. Eichten, and C.T. Hill, Phys. Rev. D 68, 054024 (2003).
- 14. S. Godfrey, Phys. Lett. B 568, 254 (2003).
- 15. T. Barnes, F.E. Close, and H.J. Lipkin, Phys. Rev. D 68, 054006 (2003).
- 16. P. Colangelo, F. de Fazio, and A. Ozpineci, Phys. Rev. D 72, 074004 (2005).