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Abstract An Abelian gerbe is constructed over classical phase spgdme2—cocycles
defining the gerbe are given by Feynman path integrals whiegrands contain the
exponential of the Poincaré—Cartan form. The U(1) gaugegon the gerbe has a
natural interpretation as the invariance group of the Satiirgger equation on phase
space.

1 Introduction

Quantum mechanics on phase space, pioneered by Wigner 1838, has received
renewed attention recentlyl[2, 3]. In this paper we relageapproach to phase—space
guantum mechanics presented in refsl [14, 5] with the appréaguantisation via
gerbes[IB] introduced in ref[][7]. Our conclusions can be mamsed in the statement
thatsymplectic covariance of the Sdainger equation on phase spade the sense
of refs. [4[5],is equivalent to gauge invariance under a U(1) gerbe on plspsee
the latter invariance understood as in rél. [7]. Our redhits lead to a gauge theory
of quantum mechanics on phase space. However this gaugy teemt of the usual
Yang—Mills type (a potential 1-form and a field—strengthdnf). Rather, gauge in-
variance here is in the sense of U(1) gerbes with a conneffjoa potential 1-form
A, a potential 2—formB (or Neveu—Schwarfzeld) and a field strength 3—fori .

2 The gerbe

In this section we summarise the results of r&f. [7] concrynihe construction of an
Abelian gerbe with a connection or2d—dimensional phase spaelLet a mechanical
action

S = /HdtL (1)

be given as the integral of the Lagrangiaover a certain time intervdl C R. On the
open sef/,, C PP we can pick Darboux coordinatqgsa),pga) such that the restriction
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w|u, reads
d

w= Z dg’ A dp;, (2

j=1
where we have dropped the indexThe canonical 1-forri on P defined as([8]

d
0=~ pd (3)
j=1
satisfies
df = w. (4)

We will also need the integral invariant of Poincaré—Qartdenoted\. If H denotes
the Hamiltonian function, theh is defined ad 8]

A= 0 + Hdt. (5)

Then the actior[{1) equals (minus) the line integral of

S:—/H/\. (6)

On constant—energy submanifoldsiyfor else for fixed values of the time, we have
d\ = w, ‘H = const. (7

In what follows it will be convenient to drop the indgxwhile maintaining the
indexa of Cech cohomology. Let any three poirits,, , Pa, )» (Gas, Pas)s (das, Pas)
be given onP, respectively covered by coordinate chdits , U,, andU,,. Assume
thatU,, N U,, NU,, IS nonemptyi.e,,

Ualagag = Ual N UOQ N Ua3 7£ ¢a (8)
and let(ga,,s, Paioy) DE @ variable point in this triple overlap,
(qalza apoqza) € Ua1a2a3 . (9)
Furthermore leL,,, o, a5 (123) be a closed loop withif? as constructed in refl[7],
Lo, asas (@123) := Layas (0123) + Lagyas (@123) + Laga, (@123), (10)

where have explicitly indicated the dependence of thedtajg on the variable mid-
POINt (Gay0ss Paras) € Uasasas- Altogether, the latter is traversed three times: once
along the ledL,, », from a; to a2, once more along the Ieg,, ., from s to a3, and
finally along the ledL,.+, from as to aq. For ease of writing, however, we will drop
123 from our notation.

In the stationary—phase approximation, the 2—00%@2&3 defininga U(1) gerbe

onP turns out to belll7]
(0) = _1 11
Jotanas = €XP < 5 /}L o A) ; (11)



the superindeXx?) standing forevaluation at the extremathat is, at that closed loop
L&?Ram of the type [(ID) that renders the integraloéxtremal. Equivalently, we can
expressgffl)aw3 in terms of an integral over an extremal surface,

©  _ 1
9o omas = XD ( 5 /S(O) w) . (12)

Qlazag

WhereS&Ol)oézoé3 is any surface bounded by the lo@pl(10). The cocycle is wéihdd in
the sense that it does not depend on amyiori choice of the pointsi;, as andas.

Eqn. [11) and its equivaledi{12) give the stationary—plaqala;;rleoximatior:ry&ol)aw3
to the 2—cocyclg.,, a.as- The latter is a function of the variable midpoift (9) thrbug
the extremal integration paﬂhﬁ?ﬂaw‘3 or its equivalent extremal integration surface
sg%m, even if we no longer indicate this explicitly. Hencefortk will also drop the
superindeX?, with the understanding that we are always working in théstary—
phase approximation. The latter is equivalent to the quantmechanical WKB ap-
proximation. Its role is that of minimising the symplectiea of the surfacg,, o, q;-
Now, in the WKB approximation, the absolute valuefgfu/h is proportional to the
number of quantum—mechanical states contributed by tHaca® [9]. Hence the
stationary—phase approximation applied here picks ogetlsnirfaces that contribute
the least number of quantum—mechanical states. Moredanee e are considering
constant—energy surfacBsthose states are stationary.

Concerning the connection on the gerlde [6], one finds for tierin A [I7]

i
A=—7x (13)

For the 2—formB one finds, on constant—energy submanifolds of phase space,
i
B,, — B,, = ~FWaras (14)

The above equation is interpreted as follows. Given thedioate patche#/,, and
U.,, such thal,, NU,, is nonempty, lew,,, ., denote the restriction af to U,, NU,, .
Then a knowledge of3 on the patch/,, gives us the value oB on the patch/,,.
Finally we have the 3—form

H=dB. (15)

3 AU() invariance

By eqn. [®) we can perform the transformation
A — A+df, fe =P, (16)

wheref is an arbitrary function of® with the dimensions of an action, without altering
the classical mechanics defineddby Since the classical actiofis given by the line
integral [), the transformatiof{lL6) amounts to shiftigy a constant’,

S— S+, C::—/df. (17)
I



The way the transformatiof.{lL6) acts on the quantum theoweis known. In the
WKB approximation, the wavefunction reads$ [9]

Ywks = Rexp (%S> (18)

for some amplitude?. Thus the transformatiof{IL6) multiplies the WKB wavefunc-
tion Ywkg and, more generally, any wavefunctign by the constantphase factor
exp (iC/h):

1) — exp <%C) . (29)

Gauging the rigid symmetr{{19) one obtains the transfoiondaw

1 — Uy :=exp (—%f) Y, fec>(P), (20)

f being an arbitrary function on phase space, with the dinosissof an action. Now
eqn. [2D) implies that, if the original wavefunctigndepends only on the coordinates
g, its transform¥ ¢ under an arbitraryf € C>(IP) generally depends also on the
momentgp. According to standard lore this is prohibited by Heisegtsuncertainty
principle. Moreover, even if wavefunctions can be definechbase space, the local
transformations[{20) need not be a symmetry of our theory. address these two
points separately in sectiofls 4 did 6.

4 Probability distributions on phase space

Concerning the first objection raised above one should gbdbat phase—space quan-
tum mechanicswhile respecting the constraints imposed by Heisenbengreiple,
is almost as old as quantum mechanics itdelf [1]; we referd¢iaeer tol[2[ 3] for a
compilation of relevant literature. We will henceforthlddle objectsV ; = U ,(q, p)
introduced in[ZD)probability distributions they are defined of?. For simplicity, in
what follows we will omit the subscript from W ;.

Specifically, in refs. [[4,15] it has been shown that the usudir&dinger equation
for the usual wavefunctiott = ¢ (q),

H (g, —ihdy) P (q) = Ev(q), (21)

is equivalent to the following Schrodinger—like equationthe probability distribution
¥ = ¥(q,p) onP:

q . p .
H (5 +ih0,, 3~ 1ﬁ8q) U(q,p) = E¥(q,p). (22)
Moreover, the quantum operators

Quy = g +ih0y,  Pay = g —ihd), (23)



satisfy the usual canonical commutation relations
[Qay, Pay] = ih, (24)

so eqn.[[2R) can be rewritten as

H (Qays Pay) U(q,p) = E¥(q,p). (25)

A computation shows thak (q, p) in @) andy(q) in 1) are related as per eqi]20),
the argumeny (g, p) of this latter exponential being

1 1 .
fayla.p) = 5pa = 5pid’. (26)
Thatis, the Schrodinger eqnEX21) and (22) are equivilemtd only if, the respective
probability amplitudel (¢, p) and wavefunction)(q) are related as

i
¥(q,p) = exp (—%pq> ¥(q)- (27)
Eqn. [2T) is in perfect agreement with the results of réis5[4

The reason for the subindek, in (Z3)-[26) above is the following. Consider the
symplectiexterior derivative on phase space,

d' :=—dqd, +dp0,. (28)

Consider also the following connectiofj, on phase space:

pdq+qdp). (29)

I R
A 1= —qdfag = 57

Let us now covariantisé’ as
d — D;% =d + Aj. (30)

We see that the operators of edn.] (23) are the result of gatiggrsymplectic derivative
d’ by the connection;:

ihD/y, = dg (g - iﬁaq) +dp (g n iﬁap) . (31)

Covariantising the symplectic derivative as per efinl (8 Bquivalent to the symplec-
tic transformation considered in refsl [4, 5] that rendbeesguantum theory manifestly
symmetric under the symplectic exchangegadind p. This latter symmetry is con-
spicuously absent in the usual formulation of quantum meicksebased on the usual
Schrodinger equatiofi(R1).

One can consider more general covariantisations of the lgptipderivative[(ZB).
Given a solution) = (q) of the usual Schrodinger equatiénl21), and given a functio
far € C=(P), define¥ = ¥(q, p) as per eqn{20). We can require the latter to satisfy



a phase-space Schrodinger equation, that we can deteamiiolows. One picks a
certain connection

1
A= = [A}(q,p)dq + A, (. p)dp] (32)
that one takes to covariantise the symplectic derivativef (23),
Dy =d + A, (33)

The componentsl; = A (q,p) and A} = A (q,p) are unknown functions of, p.
However they are not totally unconstrained, because thégroand momentum oper-
ators

Qar = A, +1hd)p, Py = A, —ihd, (34)
will enter the Hamiltoniart(Q 4., P4) obtained frontH(Q = ¢, P = —ihd,) by the
replacement§) — Qa, P — Pa:

1 1 . 2 .

H(Qar, Par) = %Pfy +V(Qa) = 5 (Al —ihd,)” + V (A, +ihdp). (35)
As such, the operatorfS{[34) must satisfy the canonical caation relations{24). This
requires that the followinghtegrability conditionhold:

0A,  0A!
P =1, 36

Notice the positive sign, instead of negative, betweenwtesummands on the left—
hand side of[[36). This is ultimately due to the fact that we esvariantising the
symplectic derivativel’ rather than the usual exterior derivative= dg 9, + dp 9,. A
computation shows that the phase—space Schrodingeli@guat

H(Qar, Par)¥(q,p) = EV(q,p) (37)

is equivalent to the usual Schrodinger equation (21) ifi amly if, A}, A}, andfa- are
related as

Ay = 0y far, A, =q—0pfar (38)

When eqn. [[38) holds, the integrability conditiénl(36) iscamatically satisfied. We
conclude that picking ong,. € C>°(PP) and defining the connectioA’ as per eqns.
B2), (38), we arrive at the phase—space wave equdiidn @fgrnatively, given a
connection[(3R) and a phase—space wave equdfidn (37), wiendaa functionf 4, €
C*>(P), defined by[(3B) up to integration constants, such that theesponding prob-
ability distribution¥(q, p) is related to the wavefunction(q) as per eqn{20), where
f = far. Eqn. [3B) above gives us a whdlE® (P)'s worth of phase—space Schrodinger
equations, one per each choice of a functign The latter may well be termed tigen-
erating functionfor the transformatior{20) between configuration—spackprase—
space probability distributions and their correspondiolgr8dinger equations.

Given a connectiod’ as per egns. [[32) anf{38), how 48 is related to the
potential 1-formA on the gerbe, eqn{IL3)? The answer to this question will bengi
in sectior®; it necessitates the notion of gauge transfoomsaon the gerbe, which we
introduce next.



5 Gauge transformations

Given an arbitrary functiorf € C°°(P), the triple of formsA, B, H on the gerbe
transform under the local U(1) group of egi](20) as

SoA = —%df, 0B =0, SH=0, feC>(P). (39)

The gauge transformations eqi.]1(39) are formally identéte U(1) gauge transfor-
mations of electromagnetism. There are, however, threelifieyences:

i) the Noether charge of electromagnetism may, but need nggsent here. Should
electric charges exist, one could introduce aglectromagnetipotential A, and its
corresponding field—strengtfi, := dA.. This however would be an additional U(1)
symmetry, implemented by a fibre bundle instead of a gerbe;

i) the covariant derivative of electromagnetismlis e A., while that considered here
isd + A’

iii) the 2—form d1 on phase space is not a field strength but the defining equation
the Neveu—Schwarz 2—form potential

Altogether we conclude thal is not an electromagnetic potential, nor is the corre-
sponding U(1) that of electromagnetic gauge invariance.

The gauge transformatioris{39) by no means exhaust allplitsss for U(1) trans-
forming the connection on the gerbe. On phase space let wdewsran arbitrary 1—
form ¢ € Q(P) with the dimensions of an action. We define a second set of U(1)
gauge transformations:

§1A = —%gp, 5B = —%dw, SH=0, ©eQ(P). (40)

We observe thad; is parametrised by a 1-form while 6y had a 0—formf 4. as its
gauge parameter. Thg gauge transformation law of the wavefunction is

) — W, :=exp (—ihcp) P, RS Ql(]P’). (42)

After this transformation, the probability distributidn, is no longer a function, but a
nonhomogeneous differential form on phase space. We véllyag this important fact
in a forthcoming papef[10], where the link between our apphoand that of ref[[11]
will also be examined.

6 U(1) gauge invariance and symplectic covariance

We can now answer the question posed at the end of sddtiom&lyiagiven a con-
nectionA’ as per eqns.[{32) and{38), can afae and/ord,—transform the potential
1-form A on the gerbe so that’ = A + §A? Thatis, camd’ and A be gauge equiva-
lent?

Considerd;—transformations first. We are looking for a 1-fogm= ¢,dq + ¢,dp
such thatd + 6; A = A + ¢/(ih) will equal the givenA’ of eqns. [(3R) and{38). One



immediately verifies that

©0q(q,p) :=p+ Ogfa, ©p(q,p) == q— Opfar (42)

meets our requirements, hence atlyis §;—gauge equivalent to the potential 1—-form
A on the gerbe.

Howeverdp—gauge transformations are more restrictive. In this caskave to set
g = 0,F(q,p) andp, = 9,F(q,p) for a certain functiorF € C>°(P). The latter is
to be determined by integration of the system of equations

OgF =p+0yfar, OpF =q—0pfar, (43)
for a given generating functiofy. € C>°(P). A solution to [4B) can exist only when
0gi Opy, far =0, Vi k=1,...d. (44)

The general solution t@(#4) is the sum of a function of commtkés only and a function
of momenta only,

far(q,p) = g(q) + h(p). (45)

So only when the generating functigi (¢, p) of the given connectio’ satisfies
condition [45) can one find &—gauge transformation that will rendéf gauge equiv-
alent to the potential 1—form on the gerbd(13).

This brings us back to the second objection raised after €g8), that we can
finally answer in the affirmative. The local transformati@@8) are a symmetry of our
theory, in the sense already explained in sedfion 4. Narttedytransformation{20)
from+(q) to ¥(q, p) must be accompanied by the corresponding covariantis@®)n
of the symplectic derivativd’ within the Schrodinger equation. Since the connection
A’ and the potential 1-form on the gerbe are gauge equivalent (this is always the case
undersd;, and also undef, whenever conditio{45) holds), this can be understood as
a covariantisation of the symplectic derivatiYewithin the Hamiltonian operator, by
means of the potential 1-forr on the gerbe. Therefore we replace efnl (33) with the
following covariant derivative:

=d + A, (46)

where A is the potential 1-form on the gerbe. So we can always cavis@the
symplectic derivativel’ as per eqn[{46) thanks to the existence of a gerbe on clhssica
phase space.

To summarisegauging the rigid symmetr{{IL9), i.e., allowing for the lbtrans-
formations [ZD), one arrives naturally at a phase—spacenfdation of quantum me-
chanics In other wordslJ(1) gauge invariance on the gerbe is equivalent to symiglect
covariancethe latter understood as in refsl [[4, 5]: as the possitiity(1)—rotate the
Schrodinger equation from configuration space into phpsees and also within the
latter itself, with a point—dependent rotation parameter.
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