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volume can be seen in a finite box by studying, for instance, the dependence of the chiral

condensate from the volume and the quark mass. We perform a feasibility study of this

program by computing the quark condensate on the lattice in the quenched approximation

of QCD at small quark masses. We carry out simulations in various topological sectors of

the theory at several volumes, quark masses and lattice spacings by employing fermions

with an exact chiral symmetry, and we focus on observables which are infrared stable and

free from mass-dependent ultraviolet divergences. The numerical calculation is carried out

with an exact variance-reduction technique, which is designed to be particularly efficient

when spontaneous symmetry breaking is at work in generating a few very small low-lying

eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the

topological sectors considered agrees, within our statistical accuracy, with the expectations

of the chiral effective theory. Close to the chiral limit we observe a detailed agreement with

the first Leutwyler-Smilga sum rule. By comparing the mass, the volume and the topology

dependence of our results with the predictions of the chiral effective theory, we extract the

corresponding low-energy constant.
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1. Introduction

Spontaneous symmetry breaking plays a central rôle in our understanding of the strong

interactions. In QCD with (a small number of) Nf light flavors the standard expectation is

that the SU(Nf )L×SU(Nf )R chiral symmetry group breaks spontaneously to SU(Nf )L+R

with the formation of a non-zero quark condensate. There are many evidences that support

this picture [1 – 15], but a conclusive study with a reliable determination of the condensate

is still missing.1

The lattice formulation of gauge theories is at present the only approach where QCD

can be defined non-perturbatively. Computations in this regime are performed by numer-

ical simulations, and therefore limited to be at finite volume and lattice spacing. The

spontaneous formation of a quark condensate Σ at infinite volume can be detected in a

finite box by studying the properties of the long-range correlations left in the system, a

technique widely used in statistical mechanics [17]. In QCD the simplest observable to

1For a recent review of the experimental implications of spontaneous symmetry breaking in QCD see

ref. [16] and references therein.
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consider is maybe the chiral condensate generated by adding a small quark mass m to the

action. This explicit breaking of chiral symmetry gives also rise to additive ultraviolet di-

vergences which make the definition of the condensate ambiguous. The crucial observation

here is that the ultraviolet divergences are independent on the volume V and, in a regular-

ization that preserves chiral symmetry, their magnitude is suppressed by a factor 1/V with

respect to the contributions from the long-range correlations [18]. At any given lattice

spacing the value of Σ can then be extracted with arbitrary precision from a finite-size

scaling study of the condensate if the volumes are large enough.

In a finite box it is also interesting to consider QCD in a fixed topological sector, i.e.

with the functional integral restricted to gauge-field configurations with a given topological

charge. Recent progress in the understanding of topology on the lattice [19 – 21] allows to

show that the chiral condensate has the same ultraviolet divergences in the full theory and

at fixed topology. It can be made ultraviolet finite with the very same renormalization

constants and subtraction coefficients. On the other hand the chiral effective theory makes

definite predictions, with no extra free parameters, for the topology dependence of the

infrared contribution to condensate [18, 22, 23], predictions which can be directly tested

against lattice QCD results.

Despite of many efforts dedicated to implement this program in the lattice commu-

nity [7, 10, 11], a reliable determination of the QCD chiral condensate is still missing. The

main reasons being the limitations in our ability of going beyond the quenched approxi-

mation in the numerical simulations of QCD, and the large numerical instabilities in the

commonly used estimators of the chiral condensate at finite volume [11]. The first problem

is being solved over the last few years thanks to the development of new algorithms for

simulating dynamical fermions [24, 25]. The implementation of some of these new ideas

to simulate dynamical Ginsparg-Wilson fermions is progressing quite fast. First results

were already presented [26 – 29]. The second problem arises in computations of correlation

functions at finite volume in the mass range mΣV <
∼1. The long-range correlations left in

the system generate small eigenvalues of the Dirac operator of order 1/V [18]. The latter

give rise to extremely large fluctuations in the commonly used statistical estimators of

correlation functions, and make it difficult to control the statistical errors [11, 30].

In this paper we address the second problem. We introduce numerical estimators of

the condensate which are infrared stable and free from mass-dependent additive ultravio-

let divergences. This progress builds on the recent understanding of the renormalization

properties of the spectral density of the Dirac operator [31]. The form of these estimators

represents and explicit example of how the informations from the chiral effective theory

can be used not only for the interpretation/extrapolation of the data, but also to design

more efficient numerical algorithms.

We apply these ideas to the computation of the chiral condensate in the quenched

approximation of QCD with Neuberger fermions. For cubic lattices with linear extensions

L>
∼1.5 fm, we observe a finite-size scaling behaviour of the condensate compatible with a

theory which exhibits spontaneous symmetry breaking at asymptotically large volumes.

The topology dependence of the data supports the predictions of the (quenched) effective

theory. Close to the chiral limit we observe a detailed agreement with the first Leutwyler-
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Smilga sum rule [18]. Eventually we extract the value of the low-energy constant Σ by

matching the chiral effective theory formulas with the lattice results.

The paper is organized as follows. In section 2 we discuss the ultraviolet properties of

the chiral condensate with Neuberger fermions; in section 3 we summarize the predictions

of the effective theory for its volume, mass and topology dependence; in section 4 we give

details of the numerical computation, and in section 5 we compare our results with the

predictions of the effective theory. The appendices A and B are devoted to more technical

details.

2. The quark condensate with Ginsparg-Wilson fermions

We consider QCD with Nf ≥ 2 degenerate flavours regularized on an Euclidean lattice of

spacing a with the standard plaquette gauge action and with the Neuberger-Dirac oper-

ator [32]. The latter (see appendix A for unexplained notations) satisfies the Ginsparg-

Wilson relation [33]

γ5D + Dγ5 = aDγ5D , (2.1)

which guarantees an exact chiral symmetry

δψ = iγ5 (1 − aD)ψ , δψ = ψγ5i , (2.2)

of the massless fermion action at finite lattice spacing [34]. The Jacobian of the transfor-

mation is non-trivial, and the chiral anomaly is recovered à la Fujikawa [34 – 36], with the

topological charge density operator defined as [32, 37, 38]

a4q(x) = −
a

2
tr

[

γ5D(x, x)
]

. (2.3)

In a given gauge background the topological charge operator

Q = a4
∑

x

q(x) (2.4)

is related to the index of the lattice Dirac operator Q = n+ − n− where n+ (n−) is

the number of zero modes of D with positive (negative) chirality. All the cumulants of

the topological charge Q are ultraviolet finite and thus the charge distribution [19 – 21].

Correlation functions of renormalized local operators inserted at a physical distance are

therefore ultraviolet finite also in the theory restricted to a fixed topological sector. The

action of the theory is invariant under the non-singlet chiral transformations analogous to

the one in eq. (2.2). They ensure that in the chiral limit the quark condensate renormalizes

only multiplicatively

〈ψψ〉 = lim
a→0

ZS〈ψψ̃〉 , (2.5)

where ψ̃ = {ψ̃1, . . . , ψ̃Nf
}, ψ is defined analogously and the rotated field ψ̃i is given in the

appendix A. ZS is the logarithmic-divergent renormalization constant of the scalar density

fixed with a given renormalization prescription. For our finite-size scaling study we are

– 3 –
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interested in breaking the chiral symmetry explicitly by adding a mass term to the action,

which can be introduced by defining the massive Dirac operator as

Dm =

(

1 −
am

2

)

D + m . (2.6)

The quark condensate develops additional ultraviolet divergences which can be parameter-

ized as

−
ZS〈ψψ̃〉

Nf

= b1m + b2m
3 + {finite terms} , (2.7)

with the asymptotic behaviour of b1 and b2 being 1/a2 and ln(a) respectively. In finite

volume it is useful to define the chiral condensate in fixed topological sectors ν = |Q|. It

can be parameterized as

−
〈ψψ̃〉ν
Nf

=
ν

V m
+ χν , (2.8)

where

χ̂ν = ZSχν = b1m + b2m
3 + {finite terms} . (2.9)

The 1/m infrared divergence in eq. (2.8) is the trivial topology-dependent contribution

due to the presence of the zero modes of D in the quark propagator. The renormalization

constant ZS , and the additive subtractions, which are needed to remove the additive ul-

traviolet divergences, can be chosen to be independent on the topology, see appendix B.

As a consequence the continuum limit of the combinations

χ̂ν1
− χ̂ν2

(2.10)

is unambiguously defined at finite quark mass provided the volume is large enough.

The spectral density ρ(λ) of the massive Dirac operator Dm has a well defined ther-

modynamic limit. It can be defined as [39]

ρ(λ) =
1

V

∑

k

〈 δ(λ − |λk|) 〉 (2.11)

where |λk|
2 are the non topological eigenvalues of D†D restricted to one of the chiral

sectors. Recently it has been shown that its renormalized counterpart

ρ̂(λ) = ZSρ(ZSλ) (2.12)

has a universal continuum limit [31]. The same applies to the spectral density ρν(λ) defined

in the theory at fixed topology. At this point the renormalized spectral density ρ̂(λ) can,

in principle, be computed with lattice simulations. However it is more realistic from a

numerical point of view to consider integrals of ρ̂(λ) with a given probe function. There is

clearly a lot of choice. In the rest of our paper we will focus on observables “condensate-

like” of the form

τ̂ν(λ̂min, λ̂max) = 2m̂

∫ λ̂max

λ̂min

1 − (āZS λ̂/2)2

[1 − (āZS m̂/2)2]λ̂2 + m̂2
ρ̂ν(λ̂) dλ̂ , (2.13)
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with λ̂ = λ/ZS and m̂ = m/ZS , which have a well defined continuum limit if λ̂min and λ̂max

are kept fixed when a → 0. For λ̂max ≪ ΛQCD these integrals are expected to be dominated

from the most infrared part of the Dirac spectrum (see below) where also discretization

effects are expected to be quite small. A more detail study of other possible choices is left

for future studies. At fixed lattice spacing the quantity

τ̂ν(λ̂min,∞) = lim
λ̂max→∞

τ̂ν(λ̂min, λ̂max) (2.14)

has the same ultraviolet divergences of the chiral condensate in eq. (2.9). They arise from

the contributions to the integral at the upper end of the integration domain. Since they

are topology independent, the observables

τ̂ν1
(λ̂min1,∞) − τ̂ν2

(λ̂min2,∞) (2.15)

are unambiguously defined. The chiral condensate χ̂ν is recovered by taking λ̂min = 0

in eq. (2.14). The coefficient of the leading order in m̂ is the first Leutwyler-Smilga sum

rule [18]

1

V

∂

∂m̂
χ̂ν

∣

∣

∣

∣

m=0

=
2

V

∫ ∞

0

1 − (āZS λ̂/2)2

λ̂2
ρ̂ν(λ̂) dλ̂ . (2.16)

and differences of sum rules analogous to eq. (2.10) are free from ultraviolet ambiguities.

All these considerations remain valid in the so-called quenched approximation, where the

fermion determinant is dropped in the effective gluon action.

3. The quark condensate in the effective chiral theory

In presence of spontaneous symmetry breaking, the QCD correlation functions at small

masses and momenta are expected to match those of a chiral effective theory which contains

only the pseudo-Goldstone bosons as dynamical degrees of freedom [1, 2]. At asymptotically

large volumes L ≫ 1/ΛQCD and for small quark masses the finite volume behaviour of

QCD correlation functions can then be predicted [40, 41]. In the mass range m̂ΣV <
∼ 1 the

partition function of the effective theory reads

Z =

∫

SU(Nf )
dU0 exp [µ ReTr U0] , (3.1)

where U0 are the zero-momentum modes in the chiral theory, dU0 is the corresponding Haar

measure, µ = m̂ΣV , and Σ is the infinite volume chiral condensate. The quark condensate

(with opposite sign) is given by [18]

Σ(µ) =
Σ

Nf

∂

∂µ
lnZ =

Σ

2Nf

µ ·

{

2 Nf = 2

1 Nf ≥ 3
+ · · · , (3.2)

and it vanishes in the chiral limit since spontaneous symmetries breaking can only occur in

infinite volume. For µ ≪ 1 the linear proportionality of the condensate to the quark mass

and the volume is a distinctive sign of a theory which undergoes spontaneous symmetry
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breaking in infinite volume [17, 18, 39]. It is due to the long-range correlations left in the

system at finite volume. The quark condensate plays the rôle of the magnetization of a

ferromagnet with the quark mass being the analogous of the external magnetic field. A

tiny variation of the quark mass requires a variation of order (m̂V ) in the condensate.

This behaviour is not spoiled in QCD at finite lattice spacing if fermions preserve an exact

chiral symmetry. The mass-dependent ultraviolet divergences in eq. (2.7) affect only the

sub-leading corrections suppressed by a factor 1/V .

The partition function of the theory at fixed topological charge ν at asymptotically

large volumes and in the same mass range reads

Zν =

∫

U(Nf )
dU (detU)νexp [µ ReTr U ] , (3.3)

and the quark condensate is given by [18]

Σν(µ) =
Σν

µ
+ χ̃ν(µ) =

Σ

Nf

∂

∂µ
lnZν =

Σν

µ
+

Σ

2(Nf + ν)
µ + · · · Nf ≥ 2 (3.4)

The infrared divergence matches exactly the analogous one on the QCD side in eq. (2.8).

For µ ≪ 1 the linear proportionality of the condensate to the quark mass and the volume

signals in this case the presence of a non-zero condensate in the thermodynamic limit of

the full theory. The low-energy constant Σ can be determined with arbitrary precision, if

the quark mass and the volume V are properly tuned, by matching the combinations

χ̃ν1
(µ) − χ̃ν2

(µ) (3.5)

with the QCD counterparts in eq. (2.10). The next-to-leading (NLO) corrections to the

scaling behaviour can be computed in so-called ǫ-expansion [41]. They are suppressed

as (4πFL)−2, with F being the Goldstone boson decay constant in the chiral limit, and

they can be included by replacing Σ with the volume dependent parameter Σeff(V ), whose

expression can be found in ref. [41]. This implies that the ratios

χ̃ν1
(µ) − χ̃ν2

(µ)

χ̃ν3
(µ) − χ̃ν4

(µ)

∣

∣

∣

∣

µ=0

=
(ν1 − ν2)

(ν3 − ν4)

(ν3 + Nf )(ν4 + Nf )

(ν1 + Nf )(ν2 + Nf )
, ν3 6= ν4 , (3.6)

are non-trivial parameter free predictions of the effective theory up to NLO, which is the

higher order at which sub-leading corrections are presently known. The functional form

of the condensate Σν(µ) is known for arbitrary values of µ ≤ 1 [18, 42]. The condensate

is also known in a partially quenched chiral effective theory with Nf flavors and an extra

valence one of mass m̂v. From its discontinuity across the imaginary axis

Disc
∣

∣

∣

m̂v=iλ̂
ΣpQ

ν (µ, m̂v) = lim
ǫ→0

ΣpQ
ν (µ, iλ̂ + ǫ) − ΣpQ

ν (µ, iλ̂ + ǫ) = 2πρ̃ν(λ̂) , (3.7)

it is possible to extract the NLO effective theory prediction ρ̃(λ̂) of the spectral density

in presence of Nf flavors [22, 23]. This is the functional form that is expected to match

ρ̂(λ̂) in eq. (2.12) for λ̂ ≪ ΛQCD ≪ 1/ā. In the following for brevity we report the full

– 6 –
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Figure 1: The microscopic spectral density and ρ̄ν(ζ)/ζ2 for ν = 0–5 are shown on the left and on

the right plots respectively.

expressions for the chiral condensate and the spectral density for the quenched case only,

which is the one needed in rest of the paper.

In the quenched approximation of QCD, an effective low-energy chiral theory is for-

mally obtained if an additional expansion in 1/Nc, where Nc is the number of colors, is

carried out together with the usual one in quark masses and momenta [43, 44]. Here we

adopt the pragmatic assumption that the quenched chiral theory describes the low-energy

regime of quenched QCD in certain ranges of kinematic scales at fixed Nc. Correlation

functions can be parameterized in terms of effective coupling constants, the latter being

defined as the couplings of the effective theory.

The quenched condensate at fixed topology ν at asymptotically large volumes (LO) is

given by [22, 23]

ΣLO
ν (µ)

Σ
= µ (Iν(µ)Kν(µ) + Iν+1(µ)Kν−1(µ)) +

ν

µ
, (3.8)

where Iν , Kν are modified Bessel functions. At the NLO in the ǫ-expansion the condensate

is [22, 45]

µ ΣNLO
ν (µ) = µeffΣLO

ν (µeff), (3.9)

with µeff = mΣeffV . The infrared sickness of quenched chiral perturbation theory, as well

as of quenched QCD, manifests itself in the fact that Σeff diverges logarithmically with L.

In the following we define operatively Σeff at a given volume as

2νχ̃ν(µ)

m̂V

∣

∣

∣

∣

m̂=0

= Σ2
eff(V ) ν > 0 . (3.10)

– 7 –
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If we consider two box sizes V1,2 = L4
1,2, the volume dependence of Σeff at NLO in ǫ-

expansion of the quenched chiral theory is [45, 46]

Σeff(V1)

Σeff(V2)
= 1 +

1

3F 2

{

m2
0

8π2
ln

(

L1

L2

)

− β1α

(

1

L2
1

−
1

L2
2

)}

(3.11)

where β1 = 0.140461 is a shape coefficient [47], m0 and α are the singlet mass and the

additional low-energy constant of the singlet kinetic term in the chiral Lagrangian respec-

tively (see ref. [45] for unexplained notation). From the discussion above it follows that

the ratios in eq. (3.6), for νi > 0 and with Nf = 0, are non-trivial parameter-free predic-

tions also in the quenched effective theory up to the sub-leading corrections of higher order

presently known. The spectral density of the Dirac operator in the quenched approxima-

tion can be extracted from eqs. (3.7), (3.8) and (3.9). They lead to the microscopic spectral

density [22, 45]

ρ̄ν(ζ) =
ζ

2

[

Jν(ζ)2 − Jν+1(ζ)Jν−1(ζ)
]

, (3.12)

which is related to ρ̃ν as

ρ̄ν(ζ) =
1

Σeff
ρ̃ν(ζ/ΣeffV ) . (3.13)

with ζ = λ̂ΣeffV . For λ̂ ≪ ΛQCD the integral τ̂ν(λ̂min, λ̂max) in eq. (2.13) can then be

matched with

τ̃ν

(

ζmin

ΣeffV
,

ζmax

ΣeffV

)

= 2Σeffµ

∫ ζmax

ζmin

1

ζ2 + µ2
ρ̄ν(ζ) dζ , (3.14)

The functions ρ̄ν(ζ) and ρ̄ν(ζ)/ζ2 are shown in figure 1. They highlights the fact that large

parts of the integrals in eq. (3.14) come from the region with ζ<
∼20, where a handful of

low-lying eigenvalues of the Dirac operator provides the bulk of the contribution. Similar

conclusions apply in the range µ ≤ 1.

4. Numerical computation

The primary observables in our numerical computations are the integrals τ̂ν(λ̂min,∞) de-

fined in eq. (2.14). The lower bound λ̂min is chosen to ensure the reliability of the Monte

Carlo estimate (see below) and at the same time to minimize the difference with χ̂ν . The

low energy constant Σeff is extracted from a matching of the combinations in eq. (2.15)

with the corresponding formulas in the effective theory. Our final goal, the computation

of (χ̂ν1
− χ̂ν2

), is then achieved by adding the small contribution from the infrared tail

analytically using the functional form in eq. (3.14).

4.1 Numerical estimator

The underlying chiral symmetry guarantees that for every background gauge configuration

the quark propagator Sm(x, y) (see appendix A) satisfies

∑

x

tr
[

Sm(x, x)
]

=
ν

m
+ 2

∑

x

tr
[

Pc Sm(x, x)Pc

]

(4.1)

– 8 –
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with ν being the absolute value of the topological charge of the configuration and Pc the

chiral projector into the chiral sector without zero modes.2 In this form, and once the topo-

logical charge is known, the calculation of the quark condensate requires the computation

of the propagator in the sector without zero modes only [7].

On reasonably large lattices the computation of all eigenvalues of the Dirac operator or

of the propagator from every source point x is numerically unfeasible. It is quite standard,

however, to compute the quark propagator from a few fixed source points or to extract

a few low-lying eigenvectors. Let us assume that once ν has been determined, a number

n of approximate low-lying eigenvalues of PcD
†DPc and the corresponding eigenvectors is

computed by minimizing the Ritz functional starting from random vectors generated with

a Gaussian action, i.e. invariant under space-time translations [48]. The minimization is

carried out until the approximated eigenvalues have a relative error ωk and satisfy

PcD
†DPcuk = |λk|

2uk + rk , (k = 1, . . . , n) ; (4.2)

(ul, uk) = δlk ; (4.3)

(ul, rk) = 0 ∀(l, k) , ||rk|| ≤ ωk|λk|
2 . (4.4)

The propagator in the sector without zero modes can then be split in a light and a heavy

contribution as follows:

Pc Sm(x, y)Pc = m
n

∑

k=1

Pcũk(x)u†
k(y)Pc

(1 − a2m2/4)|λk|2 + m2
+ PcS

h(x, y)Pc , (4.5)

where ũk is defined from uk as in eq. (A.9). It is easy to prove that, once averaged over

the gauge configurations, the spin-color trace of each contribution on the right-hand side

of eq. (4.5) is translational invariant even if the uk are only approximate eigenvectors,

i.e. ωk 6= 0 [48]. The condensate, after the trivial contribution from the zero modes is

subtracted, can then be decomposed as

χν =
1

V

∑

x

〈

tr
[

Sm(x, x)
]〉

ν
−

ν

mV
= χl

ν + χh
ν , (4.6)

where the heavy and the light contributions can be computed as

χl
ν =

2m

V

n
∑

k=1

〈

1 − a2|λk|
2/4

(1 − a2m2/4)|λk|2 + m2

〉

ν

, (4.7)

χh
ν = 2

〈

tr
[

PcS
h(0, 0)Pc

]〉

ν
. (4.8)

It must be stressed that eq. (4.6) is exact independently on the values of ωk and the num-

ber of the extracted eigenvectors n. By contrast, the statistical variance of the estimator

changes with ωk and n. The local fluctuations of the approximated eigenvectors uk(x) are

enhanced on the r.h.s. of eq. (4.5) by the smallness of the denominator. Under the working

2In finite volume the probability of having a configuration with zero modes in both chiralities is zero.
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lat β L/a L (fm) Ncfg Nν
cfg am

c1 5.8458 12 1.49 fm 672 119, 205, 155, 0.001, 0.003, 0.008,

104, 51, 29 0.012 ,0.0016

c2 5.8458 16 1.98 fm 488 49, 69, 82, 0.000316, 0.000949, 0.00253,

72, 50, 54 0.00380, 0.00506

c3 6.0 16 1.49 fm 418 74, 137, 101, 0.000612, 0.00184, 0.00490,

62, 27, 12 0.00735, 0.00980

Table 1: Parameters of the simulations: β = 6/g2 is the bare gauge coupling, L is the linear

extent of the each lattice, Ncfg is the total number of configurations generated, and am are the bare

quark masses considered. Nν
cfg refers to the subset of configurations with fixed topological charge

for ν = 0–5.

assumption that they are responsible for large variations in the trace of the local propaga-

tor, the variance of the estimator in eq. (4.6) is greatly reduced with respect to the one of

tr [PcS(0, 0)Pc]. Deep in the chiral regime the probability of having a configuration with

eigenvalues lying in the infrared tail of the spectral density ρ̂(λ) is small but not negligible.

The tail is poorly sampled by the Monte Carlo while at the same time the smallness of the

eigenvalues generates large fluctuations in the light part of the condensate χl
ν . To overcame

this problem we replace χl
ν with

τ l
ν =

2m

V

n
∑

k=1

〈

1 − a2|λk|
2/4

(1 − a2m2/4)|λk|2 + m2
θ(|λk| − λmin)

〉

ν

, (4.9)

in eq. (4.6), where θ is the usual step function. The value of λmin is chosen in such a way

that only 5 eigenvalues in all the Monte Carlo history of a given data set are lower. The

parameter Σeff is then extracted by matching these observables with the analogous ones in

the effective theory. Eventually the chiral condensate χν is computed by adding the small

contribution from the tail analytically using the formula in eq. (3.14). When the latter is

substantial the determination of Σeff from differences of τ̂ν(λ̂min,∞) is still correct, but the

value of χν is heavily affected by the functional form used and therefore it less interesting

to us. In the following we only consider data sets where the integral of the tail is at most

25 per cent of χ̃ν , and in most of the cases it is less than 10 per cent. A positive side effect

of this requirement is that the computation of the eigenvalues does not have to be very

precise. The tail contribution in χν can, of course, be reduced by increasing the statistics

of the data set, i.e. sampling part of the tail with confidence.

This procedure complements for the case of the chiral condensate the low-mode av-

eraging (LMA) technique proposed in ref. [49]. The latter has been successfully applied

already to meson two-point functions [49 – 51], baryon two-point functions [52] and more

recently to three-point functions for the extraction of low-energy constants of the ∆S = 1

chiral effective Hamiltonian [53].

4.2 Numerical experience

We have generated ensembles of gauge configurations by standard Monte Carlo techniques

– 10 –
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Figure 2: Monte Carlo history for the run c1, am = 0.008 and for the topological sectors ν = 0 (left)

and ν = 1 (right). The first plot from the bottom shows the Monte Carlo history of the absolute

value of the smallest eigenvalue of PcD
†DPc; the second one represents the condensate (divided by

the quark mass) computed without LMA (black-thin line) and the sum a3(τ l
ν +χh

ν )/(am) (magenta-

thick line). The third and the fourth show the Monte Carlo histories of the heavy contribution

(a3χh
ν )/am and the light one (a3τ l

ν)/am, respectively.

with the Wilson gluon action and periodic boundary conditions. The fermions are dis-

cretized with the Neuberger-Dirac operator as defined in eq. (A.3) with s = 0.4. A sum-

mary of the parameters of our runs are reported in table 1. We have simulated three lattices

with two different volumes (runs c1 and c2) and two lattice spacings (runs c1 and c3). The

linear extent always satisfies L>
∼1.5 fm, a size that we expect to be large enough for a finite-

size scaling study. This is suggested by the results in ref. [12], where for L>
∼1.5 fm it was

found a detailed agreement of the predictions of random matrix theory for the low-lying

eigenvalues of the Dirac operator with quenched QCD results. The values of the two lattice

spacings are chosen to guarantee the locality of the Neuberger operator [54], and to be in a

range where discretization effects were found to be small in several observables [14, 55]. The

quark masses for the lattice c1 are fixed to be roughly in the interval 0.07 <
∼ µ <

∼ 1.2. For

the lattice c2 the masses are such that the values of (mV ) match those of c1. The masses

for the lattice c3 are chosen so that the dimensionless quantity (mV/ẐSr3
0) is constant,

where r0 = 0.5 fm is a widely used reference scale in quenched QCD computations [56, 57]

and ẐS is the renormalization constant of the scalar density in the RGI scheme which

we have taken from ref. [14]. The calculation of the topological charge, of the low-lying

eigenvalues, and of the quark propagator is performed following ref. [48]. For each run the

low-mode averaging is implemented as described in the previous subsection with n = 20

and ωk = 0.05. A posteriori we have verified that the highest eigenvalue extracted satisfies

(〈|λ20|〉ΣeffV ) > 20 for all lattices.

In figure 2 we show a typical Monte Carlo history for the smallest eigenvalue of the

Neuberger operator, for the chiral condensate with and without LMA and for the heavy and

– 11 –
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Figure 3: The quantities a2χh
ν/m (bottom) and a3χl

ν (top) as a function of ν, for the second

heaviest mass of the run c1 (black points) and run c2 (red points).

light contributions separately. It is obtained from the run c1 for ν = 0, 1 and am = 0.008.

A first observation is that the heavy part of the condensate is very stable in all topological

sectors. Moreover the quantity tr
[

PcS
h(0, 0)Pc

]

/(am) is essentially independent on the

quark mass configuration by configuration. For all lattices, its largest relative deviation

that we have observed among different masses is roughly 10−3. We interpret this as a

consequence of the fact that |λ20| ≫ m configuration by configuration. We thus expect

that a further stabilization of the heavy contribution would not reduce the variance of

the condensate significantly. The Monte Carlo history of τ l
ν does not show large spikes

for any mass, and a statistical analysis is applicable. Some of the lighter masses at lower

topologies, however, have been discarded (see table 2) to satisfy the upper limit on the tail

contribution discussed in the previous subsection. As expected the light part fluctuates

much more than the heavy one. Large contributions appear in coincidence with the lower

values of |λ2
1| consistently with the expectations. The Monte Carlo history of the local

estimator tr [PcS(0, 0)Pc] has fluctuations which are much larger than those with LMA.

Moreover for the lower topologies extreme statistical fluctuations are observed for most

of the masses considered, which invalidate the statistical analysis of the sample. In the

following the physics analysis is carried out only on the data with LMA.

In figure 3 we show our results for the heavy and the light contributions to the chiral

condensate as a function of ν for the second heaviest mass of the runs c1 and c2. The heavy

part divided by the quark mass is weakly dependent on the topological charge and the
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Figure 4: Results for (a3χν)/am as a function of the quark mass, for the lattice c1 at several

values of ν. The data on the left are obtained with low-mode averaging, while on the right we show

the values computed with the local estimator.

volume. The results for a3χl
ν at the corresponding masses are compatible. This indicates

that the light contribution is to a good approximation a function of the variable (mV ).

In addition, the 1/ν behavior predicted close to the chiral limit by the first Leutwyler-

Smilga sum rule is reproduced qualitatively. These observations, which are valid for all

masses simulated, point to the fact that the splitting between heavy and light contribution

is such that the bulk of the heavy part behaves essentially like an ultraviolet divergence

(i.e. volume and topology independent and linear in the mass), while the light part scales

with respect to topology, mass and volume essentially as predicted by chiral perturbation

theory. The analysis in the chiral effective theory in the previous section suggests that

these features are mostly volume independent.

The effect of low-mode averaging can be appreciated in figure 4, where we show

(a3χν)/am for ν = 0–5 as a function of the quark mass, with (left) and without (right)

LMA.3 It is clear that the variance reduction is much more effective for the sectors with

lower topological charge, which are dominated by infrared contributions. Nevertheless with

LMA we still obtain a variance reduction of a factor ∼ 2 up to ν = 5 in all our runs.

5. Comparison with the effective theory

In this section we compare our numerical results with the predictions of the chiral effec-

tive theory. We first focus on the finite-size scaling and the topology dependence of the

condensate, and then we extract the value of Σeff from a fit in the mass of our data. Our

3At lower topologies and without LMA the average values and their errors are only indicative since the

statistical analysis is invalidated by extreme statistical fluctuations.
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lat ν\am 0.001 0.003 0.008 0.012 0.016

c1 0 0.00484(18) 0.00610(16) 0.00721(15)

1 0.000382(12) 0.00114(3) 0.00291(7) 0.00422(8) 0.00546(8)

2 0.000304(3) 0.000910(8) 0.002413(19) 0.00359(3) 0.00475(3)

3 0.000283(3) 0.000849(8) 0.002261(21) 0.00338(3) 0.00450(4)

4 0.0002712(22) 0.000814(7) 0.002168(17) 0.00325(3) 0.00433(3)

5 0.0002622(23) 0.000787(7) 0.002097(18) 0.00314(3) 0.00419(4)

lat ν\am 0.000316 0.000949 0.00253 0.00380 0.00506

c2 0 0.0043(3) 0.00480(25)

1 0.00182(12) 0.00256(14) 0.00319(15)

2 0.000157(9) 0.00047(3) 0.00123(6) 0.00182(9) 0.00237(10)

3 0.000129(3) 0.000387(8) 0.001026(20) 0.00153(3) 0.00202(4)

4 0.000110(4) 0.000329(11) 0.00088(3) 0.00131(4) 0.00174(5)

5 0.0001047(21) 0.000314(6) 0.000837(16) 0.001255(24) 0.00167(3)

lat ν\am 0.000612 0.00184 0.00490 0.00735 0.00980

c3 0 0.00246(11) 0.00324(11) 0.000394(10)

1 0.000217(7) 0.000648(19) 0.00168(4) 0.00246(5) 0.00321(5)

2 0.0001850(14) 0.000556(4) 0.001474(11) 0.002200(15) 0.002915(19)

3 0.0001729(18) 0.000520(5) 0.001382(14) 0.002070(20) 0.00276(3)

4 0.0001677(17) 0.000504(5) 0.001342(13) 0.002012(20) 0.00268(3)

5 0.0001622(17) 0.000488(5) 0.001299(13) 0.001947(20) 0.00260(3)

Table 2: Numerical results for a3χν with ν = 0–5.

raw numerical results of χν for ν = 0–5, are reported in table 2. The statistical errors have

been estimated with a jackknife procedure.

5.1 Finite-size scaling

The parameters of the lattices c1 and c2 have been chosen to carry out a finite-size scaling

study. The lattice spacing is the same and the physical volume differ by more than a

factor 3. The bare combinations a3(χ1 − χ2)/am and a3(χ2 − χ3)/am computed on these

lattices are shown in the plots on the left of figure 5. Their values differ from zero by

many standard deviations for both volumes. Finite size effects are clearly visible. The

rescaled combinations are shown in the plots on the right of the same figure as a function

of (mV )a−3. The corresponding data sets are in very good agreement for all masses simu-

lated within the statistical errors. These results are compatible with the finite size scaling

behaviour expected at asymptotically large volumes for a theory which exhibits sponta-

neous symmetry breaking. Within our statistical errors we do not observe deviations from

the leading scaling behaviour. Similar conclusions apply for the other combinations made

with ν = 0–3. Results from higher topological sectors tend to depart from the LO scaling

behaviour, but our statistical errors are too large to draw any definite conclusion.
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Figure 5: The ratios a3(χ1 − χ2)/(am) and a3(χ2 − χ3)/(am) (left), and a6(χ1 − χ2)/(mV ) and

a6(χ2 − χ3)/(mV ) (right) as a function of (mV )a−3 for lattices c1 and c2.

Figure 6: On the left, the ratios (χν1
− χν2

)/(χ1 − χ3) as a function of the quark mass for the

lattice c1 and for (ν1, ν2) = (1, 2), (1, 4), (1, 5). The points at m = 0 represent the theoretical

expectations from the Leutwyler-Smilga sum rule in eq. (3.6). On the right the same ratios, at the

lightest mass available for lattices c1, c2, c3, is compared with the theoretical expectations.

5.2 First Leutwyler-Smilga sum rule

The sensitivity on the topology of the spectral density of the low-lying eigenvalues induces

a non-trivial ν-dependence in the chiral condensate. The latter has to be compared with
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Figure 7: The quantity mr4
0(χν1

− χν2
) as a function of mV/(ẐSr3

0) for the lattices c1 and c3.

the prediction of the chiral effective theory in eq. (3.8). For the ratios

χν1
− χν2

χν3
− χν4

(5.1)

the prediction in the chiral limit is given in eq. (3.6). It is parameter-free and valid up to

the NLO. For the lattice c1 and ν = 1–5, the ratios in eq. (5.1) are shown in the first plot of

figure 6 as a function of (mV )a−3. As expected from eq. (3.8) the mass dependence is very

mild, and the two lightest points are consistent with a flat behaviour for all combinations.

Results for lattices c2 and c3 show analogous features. In the plot on the right we report

the points at the lightest mass available for each of the three lattices, together with the

theoretical expectations from the first Leutwyler-Smilga sum rule in eq. (3.6). The very

good agreement supports the fact that the topology dependence of these ratios is well

reproduced in the (quenched) chiral effective theory. This is one of the main results of this

paper.

5.3 Discretization effects

Since we use fermions with an exact chiral symmetry, the leading discretization effects in our

observables are of order a2. We can estimate their magnitude by comparing renormalized

dimensionless quantities calculated on the lattices c1 and c3. In figure 7 we show the

quantity mr4
0(χν1

− χν2
) as a function of mV/(ẐSr3

0). Within our statistical errors we

do not observe significant deviations between the points of the two data sets. A similar

behaviour is observed in the other topological sectors. Discretization effects are small and
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Figure 8: The function χ̃ν1
− χ̃ν2

is superimposed on data for χν1
− χν2

from lattice c1.

lat ν1 − ν2 a3Σeff/ZS

c1 0-1 0.0040(6)

1-2 0.0039(3)

2-3 0.0034(3)

c2 0-1 0.0035(8)

1-2 0.0049(9)

2-3 0.0040(5)

c3 0-1 0.0015(3)

1-2 0.00178(18)

2-3 0.00188(12)

Table 3: Results for a3Σeff/ZS as determined from a fit of the lattice data (see text).

are likely to be comparable or below our statistical errors. This is not surprising: quenched

computations of various physical quantities carried out with Neuberger fermions show small

discretization effects at the lattice spacings of our simulations [14, 55]. A continuum limit

extrapolation of our results is beyond the scope of this paper, and we find it of limited

interest before removing the quenched approximation.

5.4 Extraction of the low-energy constant

For every lattice and for (ν1, ν2) = (0, 1), (1, 2), (2, 3), we extract the value of the low-energy

constant Σeff/ZS from a one-parameter fit of the observables χν1
− χν2

, with the infrared

tail truncated as described in section 4, to the corresponding functional form predicted by

the chiral effective theory. Combinations with ν1, ν2 ≥ 4 have larger statistical errors and

are not considered in this analysis. The fit always reproduces the data very well, and

the uncorrelated χ2/d.o.f. are typically very small. The results for Σeff/ZS are reported
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in table 3. At small values of (mV ) the quenched effective theory predicts a logarithmic

behaviour of the form (mV ) log (mV ) in χ0, which is clearly seen in our data. If this term

is removed from the fit function, the latter is not compatible with the data anymore. For

illustration in figure 8 the function χ̃ν1
− χ̃ν2

is superimposed on the data for χν1
− χν2

from lattice c1.

The values of a3Σeff/ZS are in good agreement within each data set, a consequence

of the fact that the effective theory reproduces the topology dependence observed in the

data. The results from lattices c1 and c2 confirm that, within our statistical errors, we do

not observe a volume dependence in Σeff . By taking α = 0, the topological susceptibility

from ref. [58] and the quenched value of F from ref. [30], the NLO formula in eq. (3.11)

suggests for Σeff(L ≃ 2.0 fm)/Σeff(L ≃ 1.5 fm) a positive deviations from 1 of the order

of 10 per cent. This is comparable to our statistical uncertainty, and the same holds if we

vary α within a reasonable range of values.4 Our best result for the renormalization group

invariant condensate from the lattices c1 and c3 is for the combination (ν1, ν2) = (1, 2),

while from lattice c2 is for (2, 3):

(Σ̂effr3
0)(L = 1.5 fm) = 0.33(3) c1 , (5.2)

(Σ̂effr3
0)(L = 2.0 fm) = 0.34(5) c2 , (5.3)

(Σ̂effr3
0)(L = 1.5 fm) = 0.29(3) c3 . (5.4)

We take as our best estimate of the condensate at L = 1.5 fm the result from lattice c3,

which is the one with the finer lattice spacing. The latter, converted into the more usual

MS-scheme at 2GeV [59], is

r3
0Σ

MS
eff (2 GeV) = 0.40(4) at L = 1.5 fm, (5.5)

and if we use the phenomenological value r0 = 0.5 fm we obtain

ΣMS
eff (2 GeV) = (290 ± 11 MeV)3 at L = 1.5 fm . (5.6)

The errors in eqs. (5.5) and (5.6) do not include uncertainties due to discretization effects.

Our result is in the range expected from previous computations in the quenched approxi-

mation of QCD [5 – 15]. The determinations from the infinite volume regime [5, 6, 8, 9, 13]

are affected by NLO chiral corrections which usually are not taken into account, and which

are different from those in the finite volume regime. Even tough the comparison cannot be

very accurate, it is reassuring the good agreement of our result with some of these deter-

minations. First exploratory studies of the chiral condensate in the finite volume regime

were performed with small volumes and low statistics [7, 10, 11]. This may be the reason

why the large statistical fluctuations generated by the very small eigenvalues of the Dirac

operator, which were first reported in ref. [11], did not occur in some of these computations.

A yet different method to extract Σeff was pursued in ref. [12, 14, 15]. They compared

the average value of the individual low-lying eigenvalues of the Dirac operator with the

prediction of random matrix theory. This approach relies on non-trivial assumptions: it

4Explicitly, one finds Σeff (L = 2.0 fm)/Σeff (L = 1.5 fm) ∼ 1 + 0.09 + 0.03α.
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has not been proven so far, to our knowledge, that the single eigenvalue of the Dirac op-

erator renormalizes with 1/ZS ; there are proposals on how to extract the distribution of

the single eigenvalue directly from the chiral effective theory [60], but an explicit formula

which includes sub-leading corrections has not been derived yet. Bearing in mind these

caveats, it is interesting to notice that the values of Σeff obtained in these computations

are in good agreement with our result.

6. Conclusions

The functional form of the (quenched) QCD chiral condensate in the volume range

(5–16) fm4 and for masses m̂ΣV ≤ 1 turns out to be in good agreement, within our statisti-

cal errors, with the prediction of the chiral effective theory: the volume, mass and topology

dependence are well reproduced by our data. Close to the chiral limit we observe a detailed

agreement with the first Leutwyler-Smilga sum rule. The low-energy constant Σeff is then

extracted from a matching of the lattice results with the chiral formulas.

A technical progress which made the computation possible is the introduction of a

numerical estimator which is stable in the finite volume regime of (quenched) QCD. Very

small eigenvalues of the Dirac operator, which do occur in the Monte Carlo history, do not

generate large fluctuations, and a finite size scaling study of the condensate becomes feasible

all the way down to the chiral limit. We have not tried to exploit the great freedom in the

possible choices of the QCD observable, discussed in section 2, which are unambiguously

defined in the continuum limit and could lead to a more precise determination of the low-

energy constant Σeff . This is beyond the scope of this paper and we leave it to future

studies.

This technique is directly applicable to the computation of the condensate in full QCD

simulations.
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A. Definitions and conventions

We consider the Euclidean space-time discretized on a lattice with spacing a. Our conven-

tions for the Dirac matrices are

γ†
µ = γµ {γµ, γν} = 2δµν , (A.1)

with

γ5 = γ0γ1γ2γ3 =

(

1 0

0 −1

)

. (A.2)

and the chiral projectors defined as P± = (1 ± γ5)/2. The massless Neuberger-Dirac

operator is defined as

D =
1

a
{1 + γ5sign(Q)} , (A.3)

where

Q = γ5(aDW − 1 − s) , |s| < 1 , a =
a

1 + s
, (A.4)

and DW is the Wilson Dirac operator

DW =
1

2

{

γµ(∇∗
µ + ∇µ) − a∇∗

µ∇µ

}

. (A.5)

The covariant forward and backward derivatives ∇µ and ∇∗
µ are

∇µψ(x) =
1

a
{U(x, µ)ψ(x + aµ̂) − ψ(x)} , (A.6)

∇∗
µψ(x) =

1

a

{

ψ(x) − U(x − aµ̂, µ)−1ψ(x − aµ̂)
}

, (A.7)

where U(x, µ) ∈ SU(3) are the gauge variables and µ̂ is the versor in direction µ. The

massive quark propagator is

Sm(x, y) =ψ̃(x)ψ(y) =
1

1 − am
2

{

D−1
m −

a

2

}

(x, y) , (A.8)

where

ψ̃ =

(

1 −
a

2
D

)

ψ . (A.9)

B. Renormalization of the scalar density

The bare singlet scalar density

S0(x) = ψ(x)ψ̃(x) (B.1)

needs to be renormalized to make finite its correlation functions with other gauge invariant

operators inserted at a physical distance. S0 itself and the identity multiplied by proper

combinations of the mass matrix are the only operators with dimension d ≤ 3 and the

same transformations properties under the SU(Nf )L ⊗SU(Nf )R group. For quark masses

degenerate and real, the renormalized operator can then be written as

Ŝ0(x) = ZS

[

S0(x) + c1m + c2m
3
]

, (B.2)
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where ZS is the logarithmic-divergent renormalization constant of the scalar density, and

c1 and c2 are subtraction coefficients which at asymptotically large a diverge as 1/a2 and

ln(a) respectively.5 The coefficients c1 and c2 can be fixed, for example, by requiring that

in the infinite volume limit the condensate satisfies

d

dm̂
〈Ŝ0〉

∣

∣

∣

m̂=0
= 0 , (B.3)

d3

dm̂3
〈Ŝ0〉

∣

∣

∣

m̂=0
= 0 . (B.4)

The value of the renormalized condensate for m̂ > 0 is therefore prescription dependent, a

well known fact in QCD. The cumulants of the topological charge Q are ultraviolet finite,

and thus the distribution of the topological charge as defined in eq. (2.4) [19 – 21]. This

implies that correlation functions of renormalized local operators inserted at a physical

distance are finite also in the theory at fixed topology. In particular the combinations

〈Ŝ0〉ν1
− 〈Ŝ0〉ν2

(B.5)

are unambiguously defined outside the chiral limit, i.e. they are independent on the par-

ticular prescription chosen to renormalize the chiral condensate at finite mass.
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[3] L. Del Debbio, L. Giusti, M. Lüscher, R. Petronzio and N. Tantalo, QCD with light Wilson

quarks on fine lattices (I): first experiences and physics results, JHEP 02 (2007) 056

[hep-lat/0610059].

[4] ETM collaboration, P. Boucaud et al., Dynamical twisted mass fermions with light quarks,

hep-lat/0701012.

[5] L. Giusti, F. Rapuano, M. Talevi and A. Vladikas, The QCD chiral condensate from the

lattice, Nucl. Phys. B 538 (1999) 249 [hep-lat/9807014].

[6] T. Blum et al., Quenched lattice QCD with domain wall fermions and the chiral limit, Phys.

Rev. D 69 (2004) 074502 [hep-lat/0007038].

[7] P. Hernández, K. Jansen and L. Lellouch, Finite-size scaling of the quark condensate in

quenched lattice QCD, Phys. Lett. B 469 (1999) 198 [hep-lat/9907022].

[8] L. Giusti, C. Hoelbling and C. Rebbi, Light quark masses with overlap fermions in quenched

QCD, Phys. Rev. D 64 (2001) 114508 [hep-lat/0108007].

[9] P. Hernández, K. Jansen, L. Lellouch and H. Wittig, Scalar condensate and light quark

masses from overlap fermions, Nucl. Phys. 106 (Proc. Suppl.) (2002) 766 [hep-lat/0110199].

5Notice that for Nf = 3 the chiral group allows for a term proportional to m2. Since the topological

charge distribution is ultraviolet finite, this term is not ultraviolet divergent.

– 21 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHYSA%2CA96%2C327
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C158%2C142
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C158%2C142
http://jhep.sissa.it/stdsearch?paper=02%282007%29056
http://arxiv.org/abs/hep-lat/0610059
http://arxiv.org/abs/hep-lat/0701012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB538%2C249
http://arxiv.org/abs/hep-lat/9807014
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C074502
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C074502
http://arxiv.org/abs/hep-lat/0007038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB469%2C198
http://arxiv.org/abs/hep-lat/9907022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C114508
http://arxiv.org/abs/hep-lat/0108007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C106%2C766
http://arxiv.org/abs/hep-lat/0110199


J
H
E
P
0
4
(
2
0
0
7
)
0
9
0

[10] MILC collaboration, T.A. DeGrand, Another determination of the quark condensate from an

overlap action, Phys. Rev. D 64 (2001) 117501 [hep-lat/0107014].

[11] P. Hasenfratz, S. Hauswirth, T. Jorg, F. Niedermayer and K. Holland, Testing the fixed-point

QCD action and the construction of chiral currents, Nucl. Phys. B 643 (2002) 280

[hep-lat/0205010].
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