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We propose a modified version of the Horowitz-Maldacena final-state boundary condition based upon a
matter-radiation thermalization hypothesis on the Black Hole interior, which translates into a particular
entangled state with thermal Schmidt coefficients. We investigate the consequences of this proposal for
matter entering the horizon, as described by a Canonical density matrix characterized by the matter
temperature T. The emitted radiation is explicitly calculated and is shown to follow a thermal spectrum
with an effective temperature Teff . We analyze the evaporation process in the quasistatic approximation,
highlighting important differences in the late stages with respect to the usual semiclassical evolution, and
calculate the fidelity of the emitted Hawking radiation relative to the infalling matter.
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Black holes (BHs) are probably the most fascinating
objects in our Universe. Although initially related to the
general theory of relativity, they have become an interdis-
ciplinary field, where ideas from thermodynamics, quan-
tum field theory in curved spacetimes, string theory and
quantum information are applied in order to understand
those aspects which go beyond the purely gravitational
context. Among them, the most spectacular is the BH
evaporation effect [1], which shows that quantum BHs,
unlike their classical counterparts, emit particles in the
form of thermal radiation. Even more intriguing is the
suggestion Hawking made [2] that black holes will evapo-
rate completely and the information about their formation
will be lost forever. Obviously, if the whole process is
governed by a unitary transformation, as demanded by
quantum mechanics, no information can be lost. This
question, however, is still under debate, and several hy-
pothesis have been suggested [3].

Recently, Horowitz and Maldacena [4] (HM, hereafter)
have made a proposal to describe this transformation based
on a final-state projection condition, which resembles
quantum teleportation (but without a classical communi-
cation channel). In the original HM proposal, matter inside
the BH is in a maximally entangled state with the incoming
Hawking radiation. The unknown effects of quantum grav-
ity are encoded into an additional unitary transformation S
acting on matter states alone. The overall transformation
acting on matter entering the horizon is obtained by the
projection onto this final state.

Several comments and modifications of this interesting
proposal have been discussed later. Gottesmann and
Preskill [5] have argued that the interaction between the
collapsing body and the infalling Hawking radiation would
modify the suggested maximally entangled state, and this
modification gives rise, in general, to a loss of information.
Following this idea, in [6] the author allows for a modified
final state with random Schmidt coefficients. As a conse-
quence, some information is lost, giving ‘‘almost certain
escape’’ for general states.

In this paper, we propose a different form for the HM
entangled state, which is in fact described by a thermal
spectrum. Several arguments will be given to justify this
proposal. We will then determine explicitly the radiation
emitted by the BH, and analyze both the consequences
regarding the evaporation process and the relation between
the information contained in the infalling matter and that of
the emitted Hawking radiation. We use units such thatG �
@ � c � kB � 1.

Let us begin with a brief description of the final-state
projection proposal. The Hilbert space of the infalling
matter plus Hawking radiation can be written as

 H � HM �Hin �Hout; (1)

where HM corresponds to matter degrees of freedom, and
Hin (Hout) stands for the incoming (outgoing) Hawking
radiation, described by an entangled thermal state belong-
ing to Hin �Hout. We denote this state by j�iin�out and can
be expressed, in a compact form, as

 j�iin�out �
X

j

�THj jjiin � jjiout: (2)

In the above equation, the states jjiin (jjiout) denote Fock
states for the incoming (outgoing) radiation. In a more
detailed way, we can write

 jjiin � jN1N2 . . .iin (3)

(analogously for jjiout), where Ni denotes the occupation
number for frequency !i, (i � 1; 2; . . . ) and we have to
take into account all possible positive frequencies.
Following these conventions, the coefficients in Eq. (2)
would read as

 �THj �
1�������
ZH
p exp���H�j=2�; (4)

with �j the energy corresponding to the Fock state (3),
�H � 1=TH the inverse of the Hawking temperature,
given, for the Schwarzschild BH, by TH � 1=8�M (M is
its mass), and 1�����

ZH
p is a normalization factor.
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Following HM, the matter state inside the BH, together
with the infalling radiation, form a pure entangled state
j iM�in, written in the form

 j iM�in �
X

j

�jjjiM � jjiin: (5)

The states fjjiMg form an orthonormal basis of the
Hilbert space HM. In the original proposal, it is suggested
that this state is maximally entangled, therefore all the �j
would be the same. Moreover, as mentioned above, a BH
unitary transformation S acting on matter degrees of free-
dom is included in that proposal. We will, however, keep
the above form, with yet undefined coefficients �j, as a
starting point for our discussion.

Let us first compare Eqs. (2) and (5). From each of them
one can obtain the density matrix describing the infalling
Hawking radiation, by tracing out over the remaining
degrees of freedom. For consistency, both expressions
should coincide, i.e.:

 �in � trout�j�iin�outin�outh�j� � trM�j iM�inM�inh j�:

(6)

In other words,

 �in �
X

j

��THj �
2jjiininhjj �

X

j

��j�2jjiininhjj; (7)

which implies �j � �THj 8j. As a consequence, the state
j iM�in described by Eq. (5) adopts the form of a thermal
state, similar to Eq. (2). More precisely, if we trace out the
incoming radiation, the resulting density matrix is given by

 �M � trin�j iM�inM�inh j� �
X

j

��THj �
2jjiMMhjj; (8)

where the diagonal elements ��THj �
2 follow a (Canonical)

thermal distribution with temperature equal to the
Hawking temperature. Let us discuss this result in more
detail. One could argue that, as matter enters the horizon, it
would eventually thermalize with the incoming radiation,
and finally adopt a thermal distribution with the same
temperature (the Hawking temperature). A supporting ar-
gument for this hypothesis is given in [7], where it is
claimed that, as a spacelike singularity is approached,
solutions to Einstein’s equations become chaotic, with
rapid cycles through all states in the Hilbert space, so
that time averages give the same results as ensemble
averages on a thermal system.

We also note that the above suggested (thermal) form for
j iM�in has also been discussed in [8] within the context of
gravitational collapse of a matter shell (described by a
scalar massless field). It is then shown that, for a given
frequency !, the stationary state of matter and incoming
radiation inside the black hole is a ‘‘maximally entangled
two-mode squeezed’’ state with coefficients given by
Eq. (4). However, when discussing the final-state projec-

tion, in this reference the author also includes the unknown
S matrix discussed in the HM proposal. Our point of view
is different: given the arguments above, we suggest the
state j iM�in as the state to be used for the final-state
projection. In this way, our proposal resembles the one in
[6] (compare Eq. (6) in this reference with our Eq. (5)), but
now the �j’s to be used, instead of possessing a random
distribution, have a thermal one, shown in (4). Notice that
the ideas we introduce in this paper specifies the coeffi-
cients appearing in (5), without modifying the nonlinear
nature of the HM proposal. The consequences of such a
nonlinear behavior, when a subset of a bipartite system
crosses the horizon, while the other part remains coher-
ently accessible to experiments in the exterior region, have
been studied in [9].

This specific form for the final state allows us to make
explicit calculations for the emitted radiation within the
context of final-state projection, as suggested by HM.
Following these ideas, we define the projector

 �M�in � j iM�inM�inh j: (9)

An incoming state of matter j�iM entering the horizon
would be transformed into the state j�iout of outgoing
Hawking radiation, according to the projection

 �M�in�j�iMj�iin�out� � j iM�inj�iout: (10)

In order to study more realistic situations, we generalize
the above rule to matter described by a density matrix. This
would be the case, for example, when we consider a non-
degenerate gas falling into the black hole, as we discuss
later. Let �M be the matter density matrix, and define
�in�out � j�iin�outin�outh�j. We extend the final-state pro-
jection in the straightforward way

 �M�in��M � �in�out��M�in � j iM�inM�inh j � ��out;

(11)

where ��out � M�inh j��M � �in�out�j iM�in is the unnor-
malized density matrix describing the outgoing Hawking
radiation. After some algebra, one obtains the following
result for the normalized density matrix:

 �out �

P
i;j
�Mij�

TH
i �

TH
j jiioutouthjj

P
i
�Mii��

TH
i �

2
; (12)

with �Mij � Mhij�MjjiM the matrix elements of �M. As a
particular case, which will be useful for further discus-
sions, let us assume that the infalling matter is described by
a Canonical ensemble characterized by a temperature T,
such that �M �

1
Z

P
ie
���i jiiMMhij and � � 1=T. Here

Z �
P
ie
���i is the matter partition function. In this case,

it is straightforward to obtain

 �out �
1

Zeff

X

i

e��eff�i
i jiioutouthij;
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where �eff � �� �H and Zeff �
P
ie
��eff�i
i . From the

above equation, we immediately see that, as a consequence
of the model introduced in this paper, the BH radiates with
an effective temperature

 Teff �
TTH
T � TH

: (13)

Suppose we consider the infall of matter inside a BH.
This situation could correspond to the accretion disk
around a solar mass (or larger) BH. The gas can be
described by a nondegenerate (Canonical) distribution
function. The temperature of the gas in the inner disk
depends on several parameters such as the mass of the
BH, the distance to the center and the viscosity of the
gas, but typically one finds temperatures T � 107K [10].
For M�M	, the Hawing temperature is TH � 10�7K.
Since T 
 TH the black hole emits radiation at the usual
Hawking temperature Teff � TH. Using standard argu-
ments, let us now consider the evaporation process mod-
eled as a sequence of quasistationary states, each of them
radiating with the instantaneous temperature Teff �
Teff�T; TH�M�t���, which varies with time, and where the
BH mass M�t� satisfies the evolution equation

 

dM
dt
� �4�R2

S�T
4
eff ; (14)

with Rs � 2M the Schwarzschild radius and � is the
Stefan-Boltzmann constant. In the usual case Teff ! TH
and we have that the BH cooling time (corresponding to
complete evaporation) is tc �

256�3

3� M3
0, where M0 � M�0�

is the BH initial mass. Now, defining m � M�t�=M0 and
	 � t=tc the above equation can be rewritten as

 

dm
d	
� �


4m2

3�1� 
m�4
; (15)

where 
 � T=T0
H and T0

H � 1=8�M0 is the initial
Hawking temperature.

Equation (15) shows two different regimes. The first one
corresponds to 
m � T=TH�t� 
 1. During this phase one
has Teff ’ TH and the evaporation proceeds as in the stan-
dard case, i.e.m3 ’ 1� 	. However, whenm
� 1, that is
T � TH�t� and Teff ’ T, the evolution is drastically modi-
fied to m ’ 3=
4	, i.e. the mass goes to zero asymptoti-
cally, rather than showing a finite evaporation time.

For the example described above, one has 
� 1014 ,
which means that the transition 
m� 1 occurs at 	 �
	1 � 1� 10�42, when the BH mass is M�M0=
�
1019g: Such a mass is certainly macroscopic, and well
above the Planck mass scale, where quantum gravity ef-
fects are thought to dominate the evaporation.
Equivalently, the transition corresponds to TH � T. As
we show below, at this stage the information released by
the evaporating BH starts to approach the one correspond-
ing to the initial infalling matter.

In order to compare how much information have in
common the incoming matter and the outgoing radiation,
we compute the fidelity F��out; �M� � tr��1=2

M �out�
1=2
M 

1=2

between �M and �out. Notice, however, that these two
operators are expressed in different basis. Therefore, we
first add the operator U0 which performs the trivial, infor-
mation conserving map U0jiiM � jiiout. After some simple
algebra, one obtains

 F��out; �M� �
1

�ZZeff�
1=2

X

j

e�����eff ��j=2: (16)

It is simpler to take logs on the above expression. For
example, one has logZ � �

P
! log�1� e��!�. We per-

form the sum over frequencies by using a simple box
normalization, i.e.

P
! ! V

R d3!
�2��3

, where V is the box

volume, which we take as V � 4
3�R

3
s . The remaining terms

in Eq. (16) are calculated in a similar way, giving the final
expression

 logF��out; �M� � �
24y4 � 48y3 � 33y2 � 9y� 1

8640y3�2y2 � 3y� 1�3
:

(17)

The latter formula depends only on the ratio y � TH=T.
The resulting expression, Eq. (17), is plotted in Fig. 1, as

a function of y for the most relevant range. As it follows
from the above formula, F��out; �M� is exponentially sup-
pressed for T 
 TH , and becomes close to unity as TH
approaches T. Let us return to the astrophysical scenario
described previously. Initially, we have y � 1=
� 10�14;
therefore, for similar scenarios F��out; �M� ! 0, and the
Hawking radiation does not contain the information about
the infalling matter. Now assume that the accretion even-
tually stops, and that the BH continues to evaporate, so that
M decreases and TH increases accordingly. Following the
above results, the information carried out by the accreted
mass will be approximately recovered when T � TH or, in
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FIG. 1. Fidelity of �out with respect to �M, as calculated from
Eq. (17).
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other words, when the BH approaches the asymptotic
evaporation phase.

To sum up the results presented in this paper, using a
thermalized final-state projection model, slightly different
from the original proposal by Horowitz and Maldacena, we
considered the infall of matter (in the form of a thermal gas
characterized by a temperature T) into the Black Hole. Our
model allows to quantitatively determine the form of the
radiation emitted by the Black Hole, which is thermal at
the temperature Teff given in Eq. (13). Modeling the evapo-
ration process as a sequence of quasistationary states, each
characterized by the instantaneous temperature Teff , we
have shown that, for realistic values of the Black Hole
initial mass M0 and of T, the emission rate is the standard
one, i.e. Teff � TH, for most of its lifetime.

Extrapolation of our results to the late stages of the
evaporation shows the transition to a new regime, where
Teff reaches its maximum value T and the black hole mass
goes to zero asymptotically. The fidelity, measuring the
information content in the emitted radiation relative to the
initial infalling matter, is essentially zero during the first
phase of the evaporation, and goes to unity as the BH
approaches the asymptotic regime, when information
from the infalling matter would be released.
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