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Exact relativistic β decay endpoint spectrum
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The exact relativistic form for the β decay endpoint spectrum is derived and presented in a simple factorized
form. We show that our exact formula can be well approximated to yield the endpoint form used in the fit method
of the KATRIN Collaboration. We also discuss the three-neutrino case and how information from neutrino
oscillation experiments may be useful in analyzing future β decay endpoint experiments.
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I. INTRODUCTION

The discovery of neutrino oscillations [1–5] probes the
neutrino squared mass differences and mixing angles [6], but
it leaves open the issue of the absolute scale of neutrino
mass. The latter has important cosmological implications in
the cosmic microwave background and large-scale structure
in the Universe, as already indicated by the sensitivities
reached, for example, by the recent WMAP-3 [7], the 2dF
Galaxy Redshift Survey [8], and Sloan Digital Sky Survey
results [9]. One expects even better sensitivities in the next
generation of cosmological observations [10,11]. Interesting
as these may be, there are essentially only two ways to
get insight into the absolute scale of neutrino mass in the
laboratory: searches for neutrinoless double β decay [12] and
investigations of the β spectra near their endpoints [13–18].
For the latter direct search for the neutrino mass a very
low β endpoint is crucial: Tritium was used in the most
sensitive spectrometer experiments [14,15] and rhenium in
the upcoming cryobolometer experiments [19].

Currently, a next-generation tritium β decay experiment is
being prepared, scaling up the size and precision of previous
experiments by an order of magnitude, and increasing the
intensity of the tritium β source: the KArlsruhe TRItium
Neutrino experiment KATRIN [13,16–18]. Such an improved-
sensitivity experiment will probe neutrino masses an order of
magnitude smaller than the current limits and therefore play a
crucial role in probing for direct effects of neutrino masses.

Prompted by the prospects that high sensitivities can be
achieved in the next generation of high-precision neutrino
mass searches from tritium β decay experiments [16,17] we
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reexamine the accuracy of the kinematical formulas used in
the determination of neutrino masses from the shape of the
endpoint spectrum. We also discuss the interplay of neutrino
oscillation data and the expectations for the β decay endpoint
counting rates for the different types of neutrino mass spectra.

II. RELATIVISTIC β DECAY KINEMATICS

In what follows we label the relativistic momenta and
energies involved in tritium β decay according to

3H(0,M) → 3He+(p′, E′) + e−(pe, Ee) + ν̄e(pν, Eν). (1)

The masses of 3He+, e−, and ν̄e are denoted by M ′,me, and
mν , respectively. To see the convenience of an exact relativistic
description we mention, as recently noted in Ref. [20], that
the well-known relativistic formula for the maximum electron
energy

Emax
e = 1

2M

[
M2 + m2

e − (mν + M ′)2
]
, (2)

gives a value about 3.4 eV lower than the approximation
M − M ′ − mν often used. This suggests the desirability of
carrying out the full phase-space integration using relativistic
kinematics.

Start from the standard formula for the decay width at rest,

� = 1

29π5M

∫
d3ped

3pνd
3p′

EeEνE′

× |M|2δ4(pinitial − p′ − pe − pν), (3)

where |M|2 denotes the spin-summed, Lorentz-invariant
“squared” amplitude. To explore the constraint of Lorentz
invariance one might a priori consider expanding |M|2 in
terms of invariants constructed from the four-momenta. For
example, up to two powers of momenta, the most general
form is

|M|2 = A − Bpe · pν − Cp′ · pinitial + · · · , (4)
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where A,B, and C are constants. Now it is easy to perform
some initial integrations. As usual

∫
d3p′ is first done with the

momentum delta function. Then the angle between pe and pν

is eliminated by using the energy delta function. Three more
angular integrals are trivial. As a result one may replace in the
3H rest frame

|M|2 → A + B(EeEν − pe · pν) + CM(M − Ee − Eν), (5)

where

pe · pν ≡ 1
2

[
M2 − M ′2 + m2

e + m2
ν − 2MEe + 2Eν(Ee − M)

]
.

(6)

Equation (5) can now be inserted in the resulting usual formula
[21]

� = 1

26π3M

∫
dEνdEe|M|2. (7)

Next we find d�/dEe by integrating over dEν for each Ee.
The limits of integration Emin

ν (Ee) and Emax
ν (Ee) can be read

from Ref. [21]. The most tedious part of the present calculation
is finding the factorizations:

Emax
ν − Emin

ν = 2Mpe

(m12)2

(
Emax

e − Ee

)1/2

×
[
Emax

e − Ee + 2mνM
′

M

]1/2

, (8)

Emax
ν + Emin

ν = 2M

(m12)2
(M − Ee)

×
[
Emax

e − Ee + mν

M
(M ′ + mν)

]
, (9)

wherein

(m12)2 = M2 − 2MEe + m2
e . (10)

The importance of the factorization is that it makes the
behavior at the endpoint Ee = Emax

e transparent. Then we have
the exact relativistic result,

d�

dEe

= 1

(2π )3

pe

4(m12)2

√
y

(
y + 2mνM ′

M

){
A + CM(M − Ee)

+BM
MEe − m2

e

(m12)2

[
y + mν

M
(M ′ + mν)

]

−C
M2

(m12)2
(M − Ee)

[
y + mν

M
(M ′ + mν)

] }
, (11)

where y = Emax
e − Ee.

As it stands, this formula is based only on the kinematical
assumption in Eq. (4). It obviously vanishes at the endpoint
y = 0 as

√
y. Note that all other terms are finite at y = 0. The

overall factor
√

y(y + 2mνM ′/M) gives the behavior of d�
dEe

extremely close to y = 0 for any choice of A,B, and C but
departs from d�

dEe
away from the endpoint.

Dynamics is traditionally put into the picture [22] by
examining the spin sum for a four-fermion interaction wherein
the nuclear matrix element is assumed constant. This is
presented as a non-Lorentz-invariant term,

|M|2 = BEeEν. (12)

We will see that this is excellently approximated in our fully
relativistic model by

A = C = 0, B �= 0. (13)

A more accurate treatment of the underlying interaction
might give rise to small admixtures of nonzero A and C as
well as other unwritten coefficients in Eq. (4).

The form for the spectrum shape near the endpoint that
results from putting A = C = 0 in Eq. (11) is

d�

dEe

= peMB

(2π )34(m12)4

(
MEe − m2

e

)√
y

(
y + 2mνM ′

M

)

×
[
y + mν

M
(M ′ + mν)

]
. (14)

Note that if we had employed the nonrelativistic form given
in Eq. (12) the net result would be a replacement of an overall
factor in Eq. (14) according to(

MEe − m2
e

) → (
MEe − E2

e

)
. (15)

The difference of these two factors yields the contribution
of the pe · pν term. It is really negligible near the endpoint
region because it is proportional to p2

e and is suppressed like
p2

e /(MEe) compared to unity. We have checked that the result
of our calculation with just the EeEν term agrees with the
calculation of Ref. [23], though their result looks much more
complicated, as they did not present it in the simpler factorized
form given here.

Note that only the two rightmost factors vary appreciably
near the endpoint of Eq. (14). If we further approximate
M ′/M → 1 and M ′+mν

M
→ 1 the endpoint shape is well

described by

d�

dEe

∝ (y + mν)
√

y(y + 2mν). (16)

Now we compare with the formula used in the experimental
analysis [15]

d�

dEe

∝ (E0 − Vi − E)
√

(E0 − Vi − E)2 − m2
ν . (17)

This agrees with the approximation in Eq. (16) if one identifies

(E0 − Vi − E) = y + mν. (18)

Note that E is the nonrelativistic energy given by E = Ee −
me. Furthermore, E0 − Vi is identified with our (M − M ′ −
me − δEmax

e ), with δEmax
e defined by

Emax
e = M − M ′ − mν − δEmax

e , (19)

which was shown in Ref. [20] to be independent of mν to a
good approximation. Thus we see that the exact relativistic
endpoint structure obtained here may be well approximated
by the form used in the experimental analysis.

Often, authors express results in terms of a variable x, which
from our discussion may be seen to be the same as

x = −y − mν = Ee − Emax
e − mν. (20)

In Fig. 1, d�/dEe as computed from the exact formula,
Eq. (14), is compared with its approximate analog as a function
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FIG. 1. (Color online) Comparison of ap-
proximate and exact formula.

of x. As can be seen, the differences between the approximate
and exact formulas are tiny.

It may be worthwhile to remark that the exact relativistic
kinematical expression in Eq. (14) is no more complicated
than the approximation one ordinarily uses.

III. NUMERICAL SIMULATIONS

We have done Monte Carlo simulations by creating random
data sets following the exact relativistic kinematical expression
in Eq. (14) for neutrino masses of mν = 0 eV and mν =
1 eV and fitting them with the standard formula, Eq. (17). The
simulations were performed for a KATRIN-like experiment
[18] by considering

(i) the rovibrational states of the T2 → (T 3He)+ decay [24];
(ii) a signal rate from a KATRIN-like molecular gaseous

windowless tritium source with a column density of 5 ×
1017 molecules/cm2 over an active area of 53 cm2 and
an accepted solid angle of ��/4π = 0.18;

(iii) an expected background rate of 0.01 s−1;
(iv) a response function of a KATRIN-like experiment

considering the energy losses within the tritium source
and the main spectrometer transmission function with a
total width of 0.93 eV; and

(v) three years of total data , covering an energy range of
the 25 eV below and 5 eV above the tritium endpoint

following an optimized measurement point distribution
[18].

Figure 2 shows the results for the observable m2
ν obtained

from the fitting of 10,000 sets of Monte Carlo data randomized
according to the exact relativistic formula [Eq. (14)] and
to a fitting routine using the standard formula [Eq. (17)],
with neutrino masses assumed to be 0 eV (left) and 1 eV
(right). The rms values of the Gaussian-like distributions
correspond to the expected statistical uncertainty �m2

ν,stat for
a KATRIN-like experiment. Clearly the mean value of the
fit results for the neutrino mass squared, m2

ν , does not show
any significant deviation from the starting assumption of mν =
0 eV or mν = 1 eV, respectively. This establishes that the exact
relativistic formula, Eq. (14), can be well approximated by the
standard equation (17) for the precision needed for the next-
generation tritium experiment KATRIN. The validity of this
approximation is probably because KATRIN is investigating
the last 25 eV of the β spectrum below its endpoint only, where
the recoil corrections are nearly independent of the electron
energy.

IV. THREE-NEUTRINO CASE

Of course, the most interesting application is to the case of
three neutrinos with different masses, m1,m2, and m3. Then
there will be different endpoint energies Emax

i corresponding

FIG. 2. Results on the observable m2
ν from

the fitting of 10,000 sets of Monte Carlo data
randomized according to the exact relativistic
formula [Eq. (14)] and to a fitting routine based
on the standard formula [Eq. (17)] for neutrino
masses of 0 eV (left) and 1 eV (right). The
rms values of the Gaussian-like distributions
correspond to the expected statistical uncertainty
�m2

ν,stat for a KATRIN-like experiment.
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to each one. The effective endpoint factor in the good
approximation of Eq. (16) is the weighted sum,

Feff(Ee) =
3∑

i=1

|K1i |2(yi + mi)[yi(yi + 2mi)]
1/2θ (yi), (21)

where yi(Ee) = Emax
i − Ee and the K1i are the elements of the

3 × 3 lepton mixing matrix [25,26]. We note that the further
good approximation that the quantity δEmax

e is independent of
the neutrino mass gives the useful relation

yi − yj = mj − mi. (22)

Now let the unindexed quantity y stand for the yi with the
smallest of the neutrino masses. Using Eq. (22) allows us
to write the explicit formula for the case (denoted “normal
hierarchy,” or NH) where m1 is the lightest of the three neutrino
masses as

FNH(y) = |K11|2(y + m1)[y(y + 2m1)]1/2

+ |K12|2(y + m1)[(y + m1 − m2)

× (y + m1 + m2)]1/2θ (y + m1 − m2)

+ |K13|2(y + m1)[(y + m1 − m3)

× (y + m1 + m3)]1/2θ (y + m1 − m3). (23)

In the other case of interest (denoted “inverse hierarchy,” or
IH) we have

FIH(y) = |K13|2(y + m3)[y(y + 2m3)]1/2

+ |K11|2(y + m3)[(y + m3 − m1)

× (y + m3 + m1)]1/2θ (y + m3 − m1)

+ |K12|2(y + m3)[(y + m3 − m2)

× (y + m3 + m2)]1/2θ (y + m3 − m2), (24)

where m3 is the lightest of the three neutrino masses. From
these equations we may easily find the counting rate in the
energy range from the appropriate endpoint up to ymax as
proportional to the integral

nNH(ymax) =
∫ ymax

0
dyFNH(y), (25)

or, for the inverse hierarchy case, as proportional to

nIH(ymax) =
∫ ymax

0
dyFIH(y). (26)

We note that, as stressed in Ref. [20], information on neu-
trino masses and mixings obtained from neutrino oscillation
experiments is actually sufficient in principle to predict n(ymax)
as a function of a single parameter (up to a twofold ambiguity).
Thus, in principle, suitably comparing the predicted values of
n(ymax) with results from a future endpoint experiment may
end up determining three neutrino masses.

To see how this might work out we make an initial
estimate using the best-fit values [6] of neutrino squared mass
differences,

A ≡ m2
2 − m2

1 = 7.9 × 10−5 eV2,
(27)

B ≡ ∣∣m2
3 − m2

2

∣∣ = 2.6 × 10−3 eV2,

and the weighting coefficients,

|K11|2 = 0.67,

|K12|2 = 0.29, (28)

|K13|2 = 0.04.

Currently |K13|2 is consistent with zero and is only bounded.
For definiteness we have taken a value close to the present
upper bound. However, we have checked that the effect
of putting it to zero is very small. Now, from the two
known differences in Eq. (27) we can for each choice of m3

(considered as our free parameter) find the masses m1 and m2,
subject to the ambiguity as to whether m3 is the largest (NH)
or the smallest (IH) of the three neutrino masses. Of course we
hope that future long-baseline neutrino oscillation experiments
[27–30] might eventually determine whether nature prefers the
NH or the IH scenario.

Figure 3 shows typical solutions for the mass set (m1,m2)
in terms of the free parameter m3. Very large values of m3

would fall within the sensitivity of upcoming cosmological
tests [10,11]. In the right panel of Fig. 3 we display the
predicted values of n(ymax) for each possible mass scenario
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FIG. 3. (Color online) (Left) Typical solutions for (m1,m2) as a function of m3 for the NH case (solid curves) and the IH case (dashed
curves); the middle dot-dashed line is given for orientation. (Right) The predictions for the quantities n(ymax) proportional to the event counting
rate, which includes emitted electrons within, respectively, 1, 10, and 20 eV from the appropriate endpoint.
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and the choices of 1, 10, and 20 eV for ymax. These quantities
are proportional to the electron counting rate in the energy
interval from the endpoint (for each mass scenario) to ymax

eV below the endpoint. The different values of ymax reflect,
of course, different experimental sensitivities. The main point
is that, for sufficiently large m3 values, the counting rate is
seen to distinguish the different possible neutrino mass sets
from each other. We hope that the present method of relating
observed neutrino oscillation parameters to predictions for the
β decay endpoint counting rates may play a useful role in the
forthcoming experiments.

V. SUMMARY AND DISCUSSION

We have derived the exact relativistic form for the β decay
endpoint spectrum and presented it in a very simple and
useful factorized form. We showed that our exact formula
can be well approximated to yield the endpoint form used

in the fit method of the KATRIN Collaboration. This was
explicitly established through a detailed numerical simulation.
We have also discussed the three-neutrino case and shown
how information from neutrino oscillation experiments may
be useful in analyzing future β decay endpoint experiments.
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