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A. Valcarce
Departamento de Fı́sica Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain

T. Fernández-Caramés
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Using the two-body interactions obtained from a chiral constituent quark model, we study all �NN and �NN

states with I = 0, 1, 2 and J = 1/2, 3/2 at threshold, taking into account all three-body configurations with S

and D wave components. We constrain further the limits for the �N spin-triplet scattering length a1/2,1. Using
the hypertriton binding energy, we find a narrow interval for the possible values of the �N spin-singlet scattering
length a1/2,0. We find that the �NN system has a quasibound state in the (I, J ) = (1, 1/2) channel very near
threshold with a width of about 2.1 MeV.
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I. INTRODUCTION

The chiral constituent quark model has been very successful
in the simultaneous description of the baryon-baryon interac-
tion and the baryon spectrum as well as in the study of the
two- and three-baryon bound-state problem for the nonstrange
sector [1]. A simple generalization of this model to the strange
sector has been applied to study the meson and baryon spectra
[2] and the �NN bound-state problem [3]. Recently, a more
elaborate description of the model was developed in Ref. [4],
in which the �NN system was also studied.

In Ref. [4] we studied the �NN and �NN systems at
threshold by solving the Faddeev equations of the coupled
�NN -�NN system in the case of pure S wave configurations
for the channels (I, J ) with I = 0, 1, 2 and J = 1/2, 3/2.
However, since the hyperon-nucleon and nucleon-nucleon
interactions contain sizable tensor terms, there is a cou-
pling between the � = 0 and � = 2 baryon-baryon channels
and between the hyperon-nucleon-nucleon channels with
� = 0 and λ = 0 to the channels with � = 2 and λ = 2.
The importance of the tensor force at the two-body level
manifests itself dramatically in the case of the �−p → �n

process which is dominated by the �N (� = 0) → �N (� = 2)
transition such that if one includes only the �N (� = 0) →
�N (� = 0) transition it is practically impossible to describe
the cross section [3] (this problem was first observed in
Ref. [5]). Thus, one expects that also at the three-body level
the effect of the D waves will be important.

In Refs. [3,4] we considered all configurations in which
the baryon-baryon subsystems are in an S wave and the third
particle is also in an S wave with respect to the pair. However,
to construct the two-body t matrices that serve as input to
the Faddeev equations, we considered the full interaction
including the contribution of the D waves and of course
the coupling between the �N and �N subsystems (which is
known as the truncated t-matrix approximation [6]). In Ref. [4]
we found that our model with only S waves is able to predict
correctly the binding energy of the hypertriton, which is a

bound state in the channel (I, J ) = (0, 1/2). We also found
that the channel (I, J ) = (0, 3/2) will develop a bound state if
the triplet �N scattering length a1/2,1 is larger than 1.68 fm.
In the case of the �NN system, the channel (I, J ) = (1, 1/2)
develops a quasibound state in some cases, while the channel
(I, J ) = (0, 1/2) is also attractive but unbound.

In this work, we will further pursue the study of the
�NN -�NN system at threshold in which the three-body
D wave components are considered. We will analyze their
effects by comparing our results with those obtained when
using only three-body S wave contributions. The structure of
the paper is the following. In the next section we will resume
the basic aspects of the two-body interactions and present the
generalization of the Faddeev equations of Ref. [4] for arbitrary
orbital angular momenta. In Sec. III we will present our results,
comparing them to those of Ref. [4] to discuss the effect of
the three-body D waves. Finally, in Sec. IV we summarize our
main conclusions.

II. FORMALISM

A. Two-body interactions

The baryon-baryon interactions involved in the study of
the coupled �NN -�NN system are obtained from the chiral
constituent quark model [1,2]. In this model, baryons are
described as clusters of three interacting massive (constituent)
quarks, the mass coming from the spontaneous breaking of
chiral symmetry. The first ingredient of the quark-quark inter-
action is a confining potential (CON). Perturbative aspects of
QCD are taken into account by means of a one-gluon potential
(OGE). Spontaneous breaking of chiral symmetry gives rise to
boson exchanges between quarks. In particular, there appear
pseudoscalar boson exchanges and their corresponding scalar
partners [4]. Thus, the quark-quark interaction will read

Vqq(�rij ) = VCON(�rij ) + VOGE(�rij ) + Vχ (�rij ) + VS(�rij ), (1)
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where the i and j indices are associated with i and j quarks,
respectively, and �rij stands for the interquark distance. Vχ de-
notes the pseudoscalar meson-exchange interaction discussed
in Ref. [3], and VS stands for the scalar meson-exchange
potential described in Ref. [4]. Explicit expressions of all
the interacting potentials and a more detailed discussion of
the model can be found in Refs. [2,4]. To derive the local
B1B2 → B3B4 potentials from the basic qq interaction defined
above, we use a Born-Oppenheimer approximation. Explicitly,
the potential is calculated as

VB1B2(LST )→B3B4(L′S ′T )(R) = ξL′S ′T
LST (R) − ξL′S ′T

LST (∞), (2)

where

ξL′S ′T
LST (R)

=
〈
�L′S ′T

B3B4
( �R)

∣∣∑6
i<j=1 Vqq(�rij )

∣∣�LST
B1B2

( �R)
〉

√〈
�L′S ′T

B3B4
( �R)

∣∣�L′S ′T
B3B4

( �R)
〉√〈

�LST
B1B2

( �R)
∣∣�LST

B1B2
( �R)

〉 . (3)

In the last expression, the quark coordinates are integrated out,
keeping R fixed; the resulting interaction is a function of the
Bi–Bj relative distance. The wave function �LST

BiBj
( �R) for the

two-baryon system is discussed in detail in Ref. [1].

B. Faddeev equations at threshold

Our method [3] for transforming the Faddeev equations
from integral equations in two continuous variables into
integral equations in just one continuous variable is based
in the expansion of the two-body t matrices

ti(pi, p
′
i ; e) =

∑
nr

Pn(xi)τ
nr
i (e)Pr (x ′

i), (4)

where Pn and Pr are Legendre polynomials,

xi = pi − b

pi + b
, (5)

x ′
i = p′

i − b

p′
i + b

, (6)

and pi and p′
i are the initial and final relative momenta of the

pair jk, while b is a scale parameter on which the results do
not depend.

In Ref. [4] we give the integral equations for βd scattering
at threshold with β = � or � including the full coupling
between �NN and �NN states for the case of pure S wave
configurations, assuming that particle 1 is the hyperon and
particles 2 and 3 are the two nucleons. To include arbitrary
orbital angular momentum configurations, we consider the
total angular momentum and total isospin J and I, while σ1

(τ1) and σ3 (τ3) stand for the spin (isospin) of the hyperon and
the nucleon, respectively. In addition, �i, si, ji, ii , λi , and Ji are
the orbital angular momentum, spin, total angular momentum,
and isospin of the pair jk, while λi is the orbital angular
momentum between particle i and the pair jk, and Ji is the
result of coupling λi and σi . If in Eqs. (10)–(14) of Ref. [4] we
make the replacements

{ns2i2} → {n�2s2j2i2λ2J2} ≡ γ2, (7)

{ms3i3} → {m�3s3j3i3λ3J3} ≡ γ3, (8)

{rs1i1} → {r�1s1j1i1λ1J1} ≡ γ1, (9)

the three-body equations become

T
γ2

2;JI ;β (q2) = B
γ2
2;JI ;β (q2) +

∑
γ3

∫ ∞

0
dq3

×
[

(−1)1+�2+σ1+σ3−s2+τ1+τ3−i2A
γ2γ3
23;JI (q2, q3; E)

+ 2
∑
γ1

∫ ∞

0
dq1A

γ2γ1
31;JI (q2, q1; E)

×A
γ1γ3
13;JI (q1, q3; E)

]
T

γ3
2;JI ;β (q3), (10)

where T
γ2

2;JI ;β (q2) is a two-component vector

T
γ2

2;JI ;β (q2) =
(

T
γ2

2;JI ;�β (q2)

T
γ2

2;JI ;�β (q2)

)
, (11)

while the kernel of Eq. (10) is a 2 × 2 matrix defined by

A
γ2γ3
23;JI (q2, q3; E)

=
(

A
γ2γ3
23;JI ;��(q2, q3; E) A

γ2γ3
23;JI ;��(q2, q3; E)

A
γ2γ3
23;JI ;��(q2, q3; E) A

γ2γ3
23;JI ;��(q2, q3; E)

)
, (12)

A
γ2γ1
31;JI (q2, q1; E)

=
(

A
γ2γ1
31;JI ;�N(�)(q2, q1; E) A

γ2γ1
31;JI ;�N(�)(q2, q1; E)

A
γ2γ1
31;JI ;�N(�)(q2, q1; E) A

γ2γ1
31;JI ;�N(�)(q2, q1; E)

)
,

(13)

A
γ1γ3
13;JI (q1, q3; E)

=
(

A
γ1γ3
13;JI ;N�(q1, q3; E) 0

0 A
γ1γ3
13;JI ;N�(q1, q3; E)

)
, (14)

where

A
γ2γ3
23;JI ;αβ (q2, q3; E)

=
∑
�′

2r

τ nr
2;�2�

′
2s2j2i2;αβ

(
E − q2

2

2ν2

)
q2

3

2

∫ 1

−1
d cos θ

× Pr (x ′
2)D

ρ ′
2ρ3

23;JI ;β (q2, q3, cos θ )Pm(x3)

E + �Eδβ� − p2
3

/
2µ3 − q2

3

/
2ν3 + iε

;

α, β = �,�, (15)

A
γ2γ1
31;JI ;αN(β)(q2, q1; E)

=
∑
�′

2r

τ nr
3;�2�

′
2s2j2i2;αβ

(
E − q2

2

2ν2

)
q2

1

2

∫ 1

−1
d cos θ

× Pr (x ′
3)D

ρ ′
2ρ1

31;JI ;β (q2, q1, cos θ )Pm(x1)

E + �Eδβ� − p2
1

/
2µ1 − q2

1

/
2ν1 + iε

;

α, β = �,�, (16)
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A
γ1γ3
13;JI ;Nβ (q1, q3; E)

=
∑
�′

1r

τ nr
1;�1�

′
1s1j1i1;NN

(
E + �Eδβ� − q2

1

2ν1

)
q2

3

2

×
∫ 1

−1
d cos θ

Pr (x ′
1)Dρ1′ρ3

13;JI ;β (q1, q3, cos θ )Pm(x3)

E+�Eδβ�−p2
3

/
2µ3−q2

3

/
2ν3.+iε

;

β = �,�, (17)

where

ρi ≡ {�isiji iiλiJi}, (18)

ρ ′
i ≡ {�′

i siji iiλiJi}, (19)

and ηi and νi are the usual reduced masses

ηi = mjmk

mj + mk

,

(20)

νi = mi(mj + mk)

mi + mj + mk

.

In Eqs. (15)–(20) the isospin and mass of particle 1 (the
hyperon) is determined by the subindex β. The subindex
αN (β) in Eq. (16) indicates a transition αN → βN with
a nucleon as spectator followed by a NN → NN transi-
tion with β as spectator. The angular momentum functions
D

ρiρj

ij ;JI ;β (qi, qj , cos θ ) are given by

D
ρiρj

ij ;JI ;β(qi, qj , cos θ )

= (−)ij +τj −I
√

(2ii + 1)(2ij + 1)W (τj τkIτi ; ii ij )

×√
(2ji + 1)(2jj + 1)(2Ji + 1)(2Jj + 1)

×
∑
LS

(2L + 1)(2S + 1)




�i λi L

si σi S

ji Ji J







�j λj L

sj σj S

jj Jj J




×(−)sj +σj −S
√

(2si + 1)(2sj + 1)W (σjσkSσi ; sisj )

× 1

2L + 1

∑
Mmimj

C
�iλiL
mi,M−mi,M

C
�j λj L

mj ,M−mj ,M
��imi

�λiM−mi

×��j mj
�λj M−mj

cos(−Mθ − miθi + mjθj ), (21)

where W is the Racah coefficient, and ��m = 0 if � − m is
odd, while

��m = (−)(�+m)/2√(2� + 1)(� + m)!(� − m)!

2�((� + m)/2)!((� − m)/2)!
(22)

if � − m is even. The angles θ, θi , and θj are given by

cos θ = �qi · �qj

qiqj

, (23)

cos θi = �qi · �pi

qipi

, (24)

cos θj = �qj · �pj

qjpj

, (25)

with

�pi = −�qj − ηi

mk

�qi,

(26)
�pj = �qi + ηj

mk

�qj .

τ nr
i;�i�

′
i si ji ii ;αβ

(e) are the coefficients of the expansion in terms
of Legendre polynomials of the hyperon-nucleon t matrix
ti;�i�

′
i si ji ii ;αβ(pi, p

′
i ; e) for the transition αN → βN , i.e.,

τnr
i;�i�

′
i si ji ii ;αβ(e) = 2n + 1

2

2r + 1

2

×
∫ 1

−1
dxi

∫ 1

−1
dx ′

iPn(xi)ti;�i�
′
i si ji ii ;αβ (pi, p

′
i ; e)Pr (x ′

i). (27)

The energy shift �E is chosen such that at the βd threshold,
the momentum of the αd system has the correct value, i.e.,

�E = [(mβ+md )2−(mα+md )2][(mβ+md )2−(mα−md )2]

8µαd (mβ+md )2
,

(28)
where µαd is the αd reduced mass.

The inhomogeneous term of Eq. (10), Bγ2
2;JI ;β (q2), is a two-

component vector

B
γ2
2;JI ;β (q2) =

(
B

γ2
2;JI ;�β (q2)

B
γ2
2;JI ;�β (q2)

)
, (29)

where

B
γ2
2;JI ;αβ (q2) =

∑
�′

2rρ10

τnr
2;�2�

′
2s2j2i2;αβ

(
Eth

β − q2
2

/
2ν2

)

×Pr (x ′
2)D

ρ ′
2ρ10

31;JI ;β (q2, 0, 0)φd;l1 (q2), (30)

and

ρ10 ≡ {�1, s1 = 1, j1 = 1, i1 = 0, λ1 = 0, J1}, (31)

which corresponds to a hyperon-deuteron initial state, φd;�1 (q2)
is the deuteron wave function with orbital angular momentum
�1, E

th
β is the energy of the βd threshold, Pr (x ′

2) is a Legendre
polynomial of order r , and

x ′
2 =

η2

m3
q2 − b

η2

m3
q2 + b

. (32)

Finally, after solving the inhomogeneous set of
equations (10), the βd scattering length is given by

Aβd = −πµβdTββ, (33)

with

Tββ = 2
∑

nρ10ρ2

∫ ∞

0
q2

2dq2φd;�1 (q2)Pn(x ′
2)

×D
ρ10ρ2
13;JI ;β (0, q2, 0)T γ2

2;JI ;ββ (q2). (34)

In the case of the �NN system, even for energies below the
�d threshold, one encounters the three-body singularities of
the �NN system so that to solve the integral equations (10),
one has to use the contour rotation method in which the
momenta are rotated into the complex plane qi → qie

−iφ,

since as pointed out in Ref. [3] the results do not depend on
the contour rotation angle φ.

We give in Table I the two-body channels that contribute in
the case of the six three-body channels (I, J ) with I = 0, 1, 2
and J = 1/2, 3/2. For the parameter b in Eqs. (5) and (6) we
found that b = 3 fm−1 leads to very stable results, while for
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TABLE I. Two-body �N channels with a nucleon as spectator (��s�j�i�λ�J�)N , two-body �N

channels with a nucleon as spectator (��s�j�i�λ�J�)N , two-body NN channels with a � as spectator
(�NsNjN iNλNJN )� , and two-body NN channels with a � as spectator (�NsNjN iNλNJN )� that contribute
to a given �NN -�NN state with total isospin I and total angular momentum J .

I J (��s�j�i�λ�J�)N (��s�j�i�λ�J�)N (�NsNjN iNλNJN )� (�NsNjN iNλNJN )�

0 1
2

(
000 1

2 0 1
2

)
,
(

011 1
2 0 1

2

)
,

(
000 1

2 0 1
2

)
,
(

011 1
2 0 1

2

)
,

(
00010 1

2

) (
01100 1

2

)
,
(

21100 1
2

)
,(

211 1
2 0 1

2

)
,
(

011 1
2 2 3

2

)
,

(
211 1

2 0 1
2

)
,
(

011 1
2 2 3

2

)
,

(
01102 3

2

)
,
(

21102 3
2

)
(

211 1
2 2 3

2

) (
211 1

2 2 3
2

)
1 1

2

(
000 1

2 0 1
2

)
,
(

011 1
2 0 1

2

)
,

(
000 1

2 0 1
2

)
,
(

011 1
2 0 1

2

)
,

(
00010 1

2

)
,
(

01100 1
2

)
,

(
00010 1

2

)
(

211 1
2 0 1

2

)
,
(

011 1
2 2 3

2

)
,

(
211 1

2 0 1
2

)
,
(

011 1
2 2 3

2

)
,

(
21100 1

2

)
,
(

01102 3
2

)
,(

211 1
2 2 3

2

)
,
(

000 3
2 0 1

2

)
,

(
211 1

2 2 3
2

) (
21102 3

2

)
(

011 3
2 0 1

2

)
,
(

211 3
2 0 1

2

)
,(

011 3
2 2 3

2

)
,
(

211 3
2 2 3

2

)
2 1

2

(
000 3

2 0 1
2

)
,
(

011 3
2 0 1

2

)
,

(
00010 1

2

)
(

211 3
2 0 1

2

)
,
(

011 3
2 2 3

2

)
,(

211 3
2 2 3

2

)
0 3

2

(
000 1

2 2 3
2

)
,
(

011 1
2 0 1

2

)
,

(
000 1

2 2 3
2

)
,
(

011 1
2 0 1

2

)
,

(
00012 3

2

) (
01100 1

2

)
,
(

21100 1
2

)
,(

211 1
2 0 1

2

)
,
(

011 1
2 2 3

2

)
,

(
211 1

2 0 1
2

)
,
(

011 1
2 2 3

2

)
,

(
01102 3

2

)
,
(

01102 5
2

)
,(

011 1
2 2 5

2

)
,
(

211 1
2 2 3

2

)
,

(
011 1

2 2 5
2

)
,
(

211 1
2 2 3

2

)
,

(
21102 3

2

)
,
(

21102 5
2

)
(

211 1
2 2 5

2

) (
211 1

2 2 5
2

)
1 3

2

(
000 1

2 2 3
2

)
,
(

011 1
2 0 1

2

)
,

(
000 1

2 2 3
2

)
,
(

011 1
2 0 1

2

)
,

(
00012 3

2

)
,
(

01100 1
2

)
,

(
00012 3

2

)
(

211 1
2 0 1

2

)
,
(

011 1
2 2 3

2

)
,

(
211 1

2 0 1
2

)
,
(

011 1
2 2 3

2

)
,

(
21100 1

2

)
,
(

01102 3
2

)
,(

011 1
2 2 5

2

)
,
(

211 1
2 2 3

2

)
,

(
011 1

2 2 5
2

)
,
(

211 1
2 2 3

2

)
,

(
01102 5

2

)
,
(

21102 3
2

)
,(

211 1
2 2 5

2

)
,
(

000 3
2 2 3

2

)
,

(
211 1

2 2 5
2

) (
21102 5

2

)
(

011 3
2 0 1

2

)
,
(

211 3
2 0 1

2

)
,(

011 3
2 2 3

2

)
,
(

011 3
2 2 5

2

)
,(

211 3
2 2 3

2

)
,
(

211 3
2 2 5

2

)
2 3

2

(
000 3

2 2 3
2

)
,
(

011 3
2 0 1

2

)
,

(
00012 3

2

)
(

211 3
2 0 1

2

)
,
(

011 3
2 2 3

2

)
,(

011 3
2 2 5

2

)
,
(

211 3
2 2 3

2

)
,(

211 3
2 2 5

2

)

the expansion (4) we took twelve Legendre polynomials, i.e.,
0 � n � 11.

III. RESULTS

In Ref. [4] we constructed different families of interacting
potentials, by introducing small variations of the mass of the
effective scalar exchange potentials, that allow us to study
the dependence of the results on the strength of the spin-
singlet and spin-triplet hyperon-nucleon interactions. These
potentials are characterized by the �N scattering lengths ai,s,

and they reproduce the cross sections near threshold of the five
hyperon-nucleon processes for which data are available (see
Ref. [4]).

A. �N N system

The channels (I, J ) = (0,1/2) and (0,3/2) are the most
attractive ones of the �NN system. In particular, the channel
(0,1/2) has the only bound state of this system, the hypertriton.
We give in Table II the results of the models constructed
in Ref. [4] for the two �d scattering lengths and the
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TABLE II. �d scattering lengths A0,3/2 and A0,1/2 (in fm) and
hypertriton binding energy B0,1/2 (in MeV) for several hyperon-
nucleon interactions characterized by �N scattering lengths a1/2,0

and a1/2,1 (in fm). We give in parentheses the results obtained in
Ref. [4] including only three-body S wave configurations.

a1/2,0 a1/2,1 A0,3/2 A0,1/2 B0,1/2

2.48 1.41 31.9 (66.3) −16.0 (−20.0) 0.129 (0.089)
2.48 1.65 −72.8 (198.2) −13.8 (−17.2) 0.178 (0.124)
2.48 1.72 −40.8 (−179.8) −13.3 (−16.6) 0.192 (0.134)
2.48 1.79 −28.5 (−62.7) −12.9 (−16.0) 0.207 (0.145)
2.48 1.87 −22.0 (−38.2) −12.5 (−15.4) 0.223 (0.156)
2.48 1.95 −17.9 (−27.6) −12.1 (−14.9) 0.239 (0.168)
2.31 1.65 −76.0 (198.2) −17.1 (−22.4) 0.113 (0.070)
2.55 1.65 −73.6 (198.2) −13.6 (−16.8) 0.185 (0.130)
2.74 1.65 −72.1 (198.2) −12.0 (−14.4) 0.244 (0.182)

hypertriton binding energy. We compare them with the results,
in parentheses, obtained in Ref. [4] when only the three-body
S wave configurations were included. As a consequence of
considering the D waves, the hypertriton binding energy
increases by about 50–60 keV [7], while the A0,1/2 scattering
length decreases by about 3–5 fm. The largest changes occur in
the A0,3/2 scattering length where both positive and negative
values appeared, which means, in the case of the negative
values, that a bound state is generated in the (I, J ) = (0, 3/2)
channel. Since this channel depends mainly on the spin-triplet
hyperon-nucleon interaction and experimentally there is no
evidence whatsoever for the existence of a (I, J ) = (0, 3/2)
bound state, one can use the results of this channel to
set limits on the value of the hyperon-nucleon spin-triplet
scattering length a1/2,1. We plot in Fig. 1 the inverse of the
two �d scattering lengths as a function of the spin-triplet
�N scattering length a1/2,1. As one can see, by increasing
a1/2,1, one increases the amount of attraction that is present
in the system, since the three-body channel (I, J ) = (0, 3/2)
becomes bound if a1/2,1 > 1.58 fm. Moreover, we found in
Ref. [4] that the fit of the hyperon-nucleon cross sections is
worsened when the spin-triplet �N scattering length is smaller
than 1.41 fm; so we conclude that 1.41 � a1/2,1 � 1.58 fm. This
range of values is narrower than the one found in Ref. [4].
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FIG. 1. Inverse of the (I, J ) = (0, 1/2) and (0, 3/2) �d scattering
lengths as a function of the �N a1/2,1 scattering length.

TABLE III. Hypertriton binding energy (in MeV) for several
hyperon-nucleon interactions characterized by �N scattering lengths
a1/2,0 and a1/2,1 (in fm) which are within the experimental error bars
B0,1/2 = 0.130 ± 0.050 MeV.

a1/2,1=1.41 a1/2,1=1.46 a1/2,1=1.52 a1/2,1=1.58

a1/2,0=2.33 0.080 0.087 0.096 0.106
a1/2,0=2.39 0.094 0.102 0.112 0.122
a1/2,0=2.48 0.129 0.140 0.152 0.164

To show the dependence of these results on the spin-singlet
�N scattering length a1/2,0, we have also plotted in Fig. 1
the results of the last three rows of Table II where a1/2,1 =
1.65 fm and a1/2,0 = 2.31, 2.55, and 2.74 fm (they are
denoted by diamonds). As one can see, 1/A0,3/2 almost
does not change, although there is a large sensitivity in
1/A0,1/2. To try to set some limits to the hyperon-nucleon
spin-singlet scattering length, we have calculated in Table III
the hypertriton binding energy, using for the hyperon-
nucleon spin-triplet scattering length the allowed values
1.41 � a1/2,1 � 1.58 fm and using for the spin-singlet scattering
length 2.33 � a1/2,0 � 2.48 fm, which leads to results for the
hypertriton binding energy within the experimental error bars
B0,1/2 = 0.13 ± 0.05 MeV.

With regard to the isospin 1 channels (I, J ) = (1, 1/2) and
(1,3/2), we show in Fig. 2 the Fredholm determinant of these
channels for energies below the �NN threshold, where one
sees that the (1, 1/2) channel is attractive but not enough to
produce a bound state, while the (1, 3/2) channel is repulsive.
These results are very similar to those found in Ref. [4].

B. �N N system

We show in Table IV the �d scattering lengths A′
1,3/2 and

A′
1,1/2. The �d scattering lengths are complex since the in-

elastic �NN channels are always open. The scattering length
A′

1,3/2 depends mainly on the spin-triplet hyperon-nucleon
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FIG. 2. Fredholm determinant for the �NN channels (I, J ) =
(1, 1/2) and (1, 3/2) for the model with a1/2,0 = 2.48 and a1/2,1 =
1.41 fm and energies below the �NN threshold.
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TABLE IV. �d scattering lengths A′
1,3/2 and A′

1,1/2 (in fm) and position of the quasibound state B ′
1,1/2 (in

MeV) for several hyperon-nucleon interactions characterized by �N scattering lengths a1/2,0 and a1/2,1 (in
fm). We give in parentheses the results obtained in Ref. [4] with only three-body S waves.

a1/2,0 a1/2,1 A′
1,3/2 A′

1,1/2 B ′
1,1/2

2.48 1.41 0.14 + i0.24 (0.20 + i0.26) 19.82 + i16.94 (19.28 + i25.37) 2.92 − i2.17
2.48 1.65 0.28 + i0.27 (0.36 + i0.29) 12.08 + i38.98 (−1.55 + i42.31) 2.84 − i2.14
2.48 1.72 0.32 + i0.28 (0.40 + i0.30) 2.92 + i43.20 (−10.47 + i40.25) 2.82 − i2.11
2.48 1.79 0.36 + i0.29 (0.44 + i0.31) −8.00 + i42.58 (−17.33 + i35.01) 2.79 − i2.10
2.48 1.87 0.40 + i0.30 (0.49 + i0.33) −16.90 + i37.08 (−21.16 + i28.54) 2.77 − i2.09
2.48 1.95 0.45 + i0.31 (0.54 + i0.34) −21.73 + i29.48 (−22.44 + i22.44) 2.75 − i2.08
2.31 1.65 0.28 + i0.27 (0.36 + i0.29) 19.01 + i23.21 (14.95 + i31.61) 2.88 − i2.14
2.55 1.65 0.28 + i0.27 (0.36 + i0.29) −12.81 + i43.49 (−21.04 + i33.19) 2.79 − i2.11
2.74 1.65 0.28 + i0.27 (0.36 + i0.29) −26.01 + i17.95 (−23.29 + i13.32) 2.73 − i2.09

channels, and both its real and imaginary parts increase when
the spin-triplet hyperon-nucleon scattering length increases.
The effect of the three-body D waves is to lower the real
part by about 20% and the imaginary part by about 10%. The
scattering length A′

1,1/2 shows large variations between the
results with and without three-body D waves, but this is due,
as we will see next, to the fact that there is a pole very near
threshold, a situation quite similar to that of the A0,3/2 �d

scattering length discussed in the previous subsection.
We plot in Fig. 3 the real and imaginary parts of the

�d scattering length A′
1,1/2 as functions of the spin-triplet

�N scattering length a1/2,1, since by increasing a1/2,1 one
is increasing the amount of attraction that is present in the
three-body channel. As one can see, Re(A′

1,1/2) changes sign
going from positive to negative, while at the same time
Im(A′

1,1/2) has a maximum. These two features are the typical
ones that signal that the channel has a quasibound state [8].
Since in the case of the �NN system we are using the contour
rotation method, which opens large portions of the second
Riemann sheet, we can search for the position of this pole
in the complex plane, which is given in the last column of
Table IV. As one can see, the position of the pole changes very
little with the model used to calculate it, and it lies at around
2.8–i2.1 MeV.
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FIG. 3. Real and imaginary parts of the �d scattering length
A′

1,1/2 as a function of the �N a1/2,1 scattering length.

The diagram that gives the most important contribution to
the width of this state is the one drawn in Fig. 4, since the
process �N → �N is dominated by the transition 3S1 →
3D1. For example, at p�

LAB = 40 MeV/c, the on-shell transi-
tion potential V��(3S1 → 3D1) = 4.542 × 10−2 fm2, while
V��(3S1 → 3S1) = −1.008 × 10−2 fm2, a factor of 4 smaller.
The corresponding on-shell transition amplitudes are t��(3S1

→ 3D1) = 8.520 × 10−2 + i5.507 × 10−2 fm2, and t��(3S1

→ 3S1) = −1.061 × 10−2 − i8.961 × 10−3 fm2, roughly a
factor of 8 smaller.

We show in Fig. 5 the real part of the Fredholm determinant
of the six (I, J ) �NN channels that are possible for energies
below the �d threshold. The imaginary part of the Fredholm
determinant is small and uninteresting. As one can see, the
channel (1, 1/2) is the most attractive one, since the Fredholm
determinant is close to zero at the �d threshold, which as
mentioned before, indicates the presence of a quasibound state.
The next most attractive channel is the (I, J ) = (0, 1/2). The
ordering of the two attractive �NN J = 1/2 channels can
be easily understood by looking at Table III of Ref. [4]. All
the attractive two-body channels in the NN,�N , and �N

subsystems contribute to the (I, J ) = (1, 1/2) �NN state [the
�N channels 3S1(I = 1/2) and 1S0(I = 3/2) and the 3S1(I =
0) NN channel], while the (I, J ) = (0, 1/2) state does not have
contributions from two of them, namely, the 1S0(I = 3/2) �N

and especially the 3S1(I = 0) NN deuteron channel.

d
N

N

Σ Λ

=2=0� �

FIG. 4. Diagram that gives the most important contribution to the
width of the �d (I, J ) = (1, 1/2) quasibound state.
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FIG. 5. Fredholm determinant for the (a) J = 1/2 and (b) J = 3/2 �NN channels for the model with a1/2,0 = 2.48 and a1/2,1 = 1.41 fm.
The �d continuum starts at E = −2.225 MeV, the deuteron binding energy obtained within our model.

IV. SUMMARY

We have solved the Faddeev equations for the �NN

and �NN systems using the hyperon-nucleon and nucleon-
nucleon interactions derived from a chiral constituent quark
model with full inclusion of the � ↔ � conversion and taking
into account all three-body configurations with S and D wave
components.

For the �NN system, the inclusion of the three-body D

wave components increases the attraction, reducing the upper
limit of the a1/2,1 �N scattering length if the (I, J ) = (0, 3/2)
�NN bound state does not exist. This state shows a somewhat
larger sensitivity than the hypertriton to the three-body D

waves. By including the three-body D wave configurations
of all relevant observables of two- and three-baryon systems
with strangeness −1, our calculation permits us to constrain
the �N scattering lengths to 1.41 � a1/2,1 � 1.58 fm and
2.33 � a1/2,0 � 2.48 fm.

For the �NN system, a narrow quasibound state exists
near threshold in the (I, J ) = (1, 1/2) channel. The width
of this state, of the order of 2.1 MeV, comes mainly from
the coupling to the �NN system in a D wave three-body
channel.

The actual interest in two- and three-baryon systems
with strangeness −1 [9] makes it worthwhile to pursue the
experimental search of narrow peaks near threshold related
to the predictions of our model based on the description of
almost all known observables of the two- and three-baryons
with strangeness −1.
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