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ABSTRACT 
 

The analysis of the sequences produced by a pseudo-
random number generator based on the iterated quadratic 
function defined over GF(2n) is considered.  Interesting 
results, such as the upper bound for their lengths, are 
stated, and different configurations of the same generator 
are presented as non-suitable for cryptographic uses. The 
sequences generated by 3-neighbourhoud Cellular 
Automata with combinations of rules 90 and 150 are also 
analyzed, presenting a similar behavior. 
 
Keywords : Cryptography, Pseudorandom number 
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1. INTRODUCTION 
 

As it is well known [5,6], the Cellular Automata are 
discrete dynamic systems characterized by a simple 
structure but a complex behavior. This configuration 
makes them very attractive to be used in the generation of 
pseudorandom sequences. In this sense, the cellular 
automata are studied in order to obtain a characterization 
of the rules producing maximal length sequences, with a 
good 0-1 distribution. These sequences can be obtained 
for a given subset of combinations of rules (for example, 
combinations of rules 90 and 150). 
 
From a cryptographic point of view, it is very important 
to study some additional characteristics, such as the linear 
complexity, to determined the unpredictability  of the 
sequences produced. The results of this study point at to 
the equivalence between the sequences generated by 
Cellular Automata and those generated by Linear 
Feedback Shift Registers (LFSR) [2]. Hence, an 
additional step is needed to increment the complexity of 
the sequences. This step corresponds to the concept of 
Programmable Cellular Automata (PCA). 

 
PCA can be defined as CA whose rules are modified 
dynamically. Therefore, PCA include the necessary 
mechanisms to generate different CA configurations.  
The most simple way to design PCA is to maintain tables 
with several CA configurations. As one can suppose, not 
every CA configuration is valid to be included in these 
tables.  
  
Different schemes have been proposed [3,7] to design 
PCA, but all of them share a prerequisite: the CA must be 
a Group CA, that is, the CA configuration must be chosen 
in such a way that every CA state is reachable.  For 
example, the scheme in [7] proposes the use of a ROM to 
save the valid configurations. On the other hand, in [3] 
the term VCCA is introduced consisting of an initial 
Group CA whose configuration rule generates all the 
valid configurations by successive operation of the initial 
matrix.    
 
In this paper, the CA configurations constructed from 
combinations of rules 90 and 150 are studied, but not 
only those producing Group CA. From the results in [8], 
certain class of Nongroup CA can be used to design a 
pseudorandom sequence generator. The sequences 
generated present high length and good 0-1 distribution. 
Here, we study the approximation to this case by means 
of CA with combinations of rules 90 and 150, instead of 
those proposed in [8].  
 
The study of 90-150 PCA is performed in terms of their 
algebraic properties, using the notation introduced in [1].  
Hence, the characteristic polynomial of the CA 
characteristic matrix is employed to classify the 
combinations of the rules. This fact allows us to comp are 
and approximate to the CA in [8] characterized by a 
characteristic polynomial of a very special form. 
Different 90-150 ruled PCA schemes have been 
considered and the results obtained include sequence 
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lengths, autocorrelation tests, 0-1 distribution tests, and 
linear complexity tests. 
  
 In Section 2, the pseudorandom number generator 
derived from [8] is described. Next, the cryptographic 
properties of the sequences generated are analyzed in 
section 3. Finally, section 4 presents the study of such a 
generator implemented by means of 90-150 Cellular 
Automata. 
 

2. THE GENERATOR 
 
Let us consider the mapping f defined as f:GF(2n) →  
GF(2n); f(x) = x2 + bx + c, b,c ∈ GF(2n) with b ≠ 0,1. 
Then, as it is proved in [8], the cycles length upper bound 
of the orbits of this function f is 2n-1- 2. The cycle length 
reaches this bound for certain values of b.  
 
Taking into account that the sequences of quadratic orbits 
in GF(2n) can be generated by means of a CA, we can 
apply the usual techniques to improve the randomness of 
the sequences produced by a CA.  In [3] and [7], different 
versions of programmable CA are proposed, but they are 
only useful for Group CA. Hence, they are not applicable 
to our functions. 
 
The method we consider in this paper is called ARCOS, 
an early version of which was presented in [4] as a 
generic algorithm with many variable parameters, and 
thus, with many possible configurations. The algorithm is 
summarized in the following steps:  
 
Step 1. Choose a pair (b,c0) such that f0(x) = x2 + bx + c0 
presents cycles of maximal length 
 
Step 2. Choose a seed x0 ∈ GF(2n) yielding a maximal 
cycle. (Note that there only exist four values not yielding 
these cycles). Let i =0. 
 
Step 3. Iterate v times fi(xi), i.e., compute fi(xi), fi

2(xi), ..., 
fi

v(xi). 
 
Step 4 . Update the value of ci to ci+1. 
 
Step 5. Let xi+1 = fi

v(xi) be the seed for iterations of that 
fi+1(x) = x2 + bx + ci+1. 
 
Step 6. Let i = i + 1. Go to step 3. 
 
The final sequence is composed by the least significant 
bit of every element x∈ GF(2n) produced in the 
algorithm. 
 
Thus, the sequences produced by this algorithm are 
composed by little pieces of cycles of maximal length 
(that is the reason of the algorithm name: ARCOS 
(arcs)). Every time the value of c is updated, we are 
determining a new cycle, always belonging to an orbit 

with maximal cycles.  
 
The different configurations are determined by the 
updating method of the coefficient c and the range of its 
values, the number of iterations v for every value of c, 
and the way we detect the existence of minimal cycles. It 
is important to note that when a maximal cycle exist, a 
very short cycle of length 1 or 2 also exists. 
 
 

3. ANALYSIS OF THE SEQUENCES  
 
In this section we analyze the cryptographic properties of 
the sequences generated, in order to determined the set of 
suitable configurations of the algorithm ARCOS. 
 
Since the sequence is composed by little sequences (arcs) 
with low linear complexity, the length of these arcs must 
be about n, in order to avoid great jumps in the linear 
complexity graph. Note that the linear complexity graph 
of a truly random sequence is very close to 1/2 slope line. 
Hence, the parameter v is a fixed value around n. Every 
configuration considered in this paper makes use of this 
assumption. 
 
The updating method applied to the coefficient c is 
simply a n-bit counter. Some differences are considered 
regarding the range of valid values, determining several 
configurations. 
 
Prior to define any configuration, it is important to state 
some generic results. 
 
Proposition 1. Let C1 and C2 be the sets defined as C1= 
{c∈ GF(2n); Tr(c/b2) = 0}, and C2 = {c∈GF(2n); Tr(c/b2) 
= 1}, with b producing maximal cycles, and Tr being the 
trace function. Then we have 

• fi[GF(2n)] = fj[GF(2n)] if and only if either 
ci, cj,∈ C1, or ci , cj ∈ C2. 

• fi[GF(2n)] ∩ fj[GF(2n)] = ∅ if and only if 
either ci∈ C1, and cj,∈ C2, or ci∈ C2 and cj ∈ 
C1. 

 
Proof.  Let α be an element in fi[GF(2n)]. Then, the 
following equation is satisfied 
 

x2+ bx + ci = α,  
 

for some x in GF(2n). In other words, Tr((α+ci)/b2) = 0, 
that is to say, 

Tr(α/b2) = Tr(ci/b2)  
 
thus concluding. ð 
 
Remark 2. It can be checked that if x ∈ fi[GF(2n)], then 
σ(x) ∈ fj[GF(2n)], where σ is a permutation over 
fi[GF(2n)], if and only if if either ci, cj,∈ C1, or ci , cj ∈ C2. 
 



Proposition 3. Let arc(b,ci) be the arc generated by the 
coefficients b,ci. Then, there only exists one element in 
arc(b,ci-1) determining arc(b,ci). 
 
Proof. It is a direct consequence of previous proposition. 
ð 
 
Theorem 4.  With the above assumptions, the cycle 
length of the sequences produced by the algorithm 
ARCOS is  

 
l(x) ≤ v22n-2   

 
Proof.  From the results in propositions 1 and 3, one can 
consider only 2n-1 different arcs for every pair (b,ci). On 
the other hand, as it is presented in [4], although the 
maximal cycle length of an f-orbit is 2n-1-2, it is 
recommended to use only the first 2n-2-1 elements of the 
maximal sequence because fk(x) = fk/2(x) + b + 1, for k  = 
2n-2-1. Taking into account that we are considering only 
binary sequences, for every x ∈ f[GF(2n)], we have 
 

• fk(x) ≡  fk/2(x) mod 2, if b ≡ 1 mod 2 
• fk(x) ≡  fk/2(x) +1 mod 2, if b ≡ 0 mod 2 

 
This fact restricts the number of different arcs for the 
same pair (b,ci) to 2n-2. 
 
Let x1, x2, ..., xv be the elements in arc(b,c0), and let y1, y2, 
..., yv be the elements in arc(b,c1). Suppose that arc(b,cj) 
with cj = c0, is composed by the elements  
 

fc0
k/2(x1), fc0

k/2(x2),..., fc0
k/2(xv), 

 
or equivalently, x1+b+1, x2+b+1, ..., xv+b+1. Hence, 
applying the algorithm, we have  
 
arc(b,cj+1) ={ fc1(xv+b+1), fc1

2(xv+b+1), ..., fc1
v(xv+b+1)}. 

 
Since fc1(xv+b+1) = fc1(xv)+b+1 = y1+b+1, then 
 

arc(b,cj+1) ={ y1+b+1, y2+b+1, ..., yv+b+1}. 
 
Thus, there only exists 2n-2 different elements to be 
considered as part of arc(b,cj). Since 2n values of c are 
considered, the maximal length is restricted to v2n2n-2 = 
v22n-2.ð 
 
Next, we consider four basic configurations based on two 
parameters, the valid range for the coefficient c, and the 
usage of mechanisms to control short cycles ocurrence. 
  
Definition 5. The configuration satisfying the following 
items is called Configuration I: 

• Only one fixed value of b is used.  
• The value of b determines maximal cycles. 
• The valid range of c is GF(2n). 
• ci+1 = ci +1 mod 2n, with c0 = 0. 

• v is configurable. 
• No control is applied on the occurrence of 

short cycles. 
 
Definition. The configuration satisfying the following 
items is called Configuration II: 

• Only one fixed value of b is used.  
• The value of b determines maximal cycles. 
• The valid range of c is GF(2n). 
• ci+1 = ci +1 mod 2n, with c0 = 0. 
• v is configurable. 
• Short cycles are detected for every pair 

(ci,xi). If a short cycle is determined, then 
the corresponding arc is not used, and the 
pair (ci+1, xi) is now considered. 

 
Definition. The configuration satisfying the following 
items is called Configuration III : 

• Only one fixed value of b is used.  
• The value of b determines maximal cycles. 
• The valid range of c is GF(2n)-{αn-1 + αn-2 + 

...+α+1}. 
• ci+1 = ci +1 mod 2n, with c0 = 0. 
• v is configurable. 
• No control is applied on the occurrence of 

short cycles  
 
Definition.  The configuration satisfying the following 
items is called Configuration IV: 

• Only one fixed value of b is used.  
• The value of b determines maximal cycles. 
• The valid range of c is GF(2n)-{αn-1 + αn-2 + 

...+α+1}. 
• ci+1 = ci +1 mod 2n, with c0 = 0. 
• v is configurable. 
• Short cycles are detected for every pair 

(ci,xi). If a short cycle is determined, then 
the corresponding arc is not used, and the 
pair (ci+1, xi) is now considered. 

 
In general, the cryptographic properties of the sequences 
produced by ARCOS depend on many parameters. This 
fact makes the study hard. In any case, we can state the 
following results. 
 
The four configurations produce sequences of period far 
from the theoretical upper bound, although it is important 
to note that configurations III and IV produce longer 
sequences than I and II. 
 
The linear complexity (LC)  of the sequences produced 
by means of this configurations I and III is extremely 
low. However, the LC is very good in configurations II 
and IV. More precisely, the LC graph evolves around the 
1/2 slope line, and the final value corresponds to the 
effective length of the sequences.  
The effective length is determined by the first significant 



peak in the autocorrelation graph. This length is, in most 
cases, the half of the sequence period. 
 
From these results, one can conclude that configuration 
IV is the best of those considered in this paper. However, 
the sequences produced by the this configuration are 
strongly dependent on many others parameters, such as 
the seed and the arc length v. Hence, further study is 
necessary to establish the optimum parameters. 
 

4. 90-150 CELLULAR AUTOMATA 
 

In the field of the CA, the 3-neighbour rules are the most 
used because of theirs advantages in software and 
hardware implantations. Mainly, the hybrid group CA 
with rules 90 and 150 are the most extended [3], [8].  
 
That is the reason we have applied the previous algorithm 
to hybrid nongroup CA with rules 90 and 150 and 
characteristic polynomial of the form x(x+1)Q(x), where 
Q(x) is primitive. The use of these CA configurations 
simplifies the hardware implementations and avoid 
several precomputations to obtain the matrix associated 
to quadratic functions. Thus, we are studied the next 
cases for different CA lengths, n,: 

• For n = 4, with CA polinomial x(x+1)(x2+ x +1) 
and configuration 90-90-150-150 

• For n = 6, with CA polinomial x(x+1)(x4+ x +1) 
and configuration 90-150-150-90-90-150 

• For n=7, with CA polynomial 
x(x+1)(x5+x4 +x3+x+1) and configuration 90-
150-90-150-150-90-150 

• For n = 8, with CA polinomial x(x+1)(x6 + x +1) 
and configuration 90-90-90-90-150-150-150-90 

 
As in the previous section, the results for the case n = 4 
are not cryptographically interesting. For n = 5; there is 
no hybrid CA with rules 90 and 150 of characteristic 
polynomial of the mentioned form. For n > 5, the results 
are very similar to those obtained previously as we can 
see in the next table.  
 

n = 6 n = 7 n = 8 v 
Per. LC Per. LC Per. LC 

4 1184 596 15250 7621 21084 10542 
5 605 302 19055 9527 26355 13177 
6 1778 889 22870 11435 10550 5275 
7 2058 1029 26698 13349 5243 2621 
8     42208 21104 
9     15831 7915 
10     52720 26360 

 
Therefore, we can conclude that it seems to be possible to 
simplify the generation of sequences by means of 
quadratic functions. Specifically, we can generate this 
kind of sequences using Hybrid Nongroup CA with rules 
90 and 150 instead of the CA equivalent to the quadratic 
functions. 

5. CONCLUSIONS 
 
In this paper, the Nongroup CA configurations 
constructed from combinations of rules 90 and 150 are 
studied. The sequences generated based on the orbits of 
quadratic functions in GF(2n) presents cycles of high 
length and good 0-1 distribution. A pseudorandom 
sequence generator based on these functions is developed 
by means of a Nongroup Hybrid Additive Cellular 
Automata, after checking that the original CA derived 
from the quadratic function can be replaced by a simpler 
Nongroup CA defined by the usual rules 90 and 150.   
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